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Chiral-glass and spin-glass orderings of the nearest-neighbor XY spin glasses in three dimensions are
studied numerically by means of a Monte Carlo simulation, together with a T =0 domain-wall
renormalization-group method. The results strongly suggest the occurrence of a Gnite-temperature
chiral-glass ordering accompanied with broken reAection symmetry with orientational symmetry
preserved. The estimated chiral-glass exponents, vcr=1. 5+0.3 and gcz= —0.4+0.2, are close to the
exponents of the three-dimensional Ising spin glass, suggesting that the chiral-glass transition in an XY
spin glass belongs to the universality class of the standard Ising spin glass. By contrast, the conventional
orientational spin-glass ordering seems to occur only at zero temperature, consistent with the previous
results. EAects of uniform magnetic fields and random magnetic anisotropies are discussed.

I. INTRODUCTION

Owing to extensive experimental studies, it now seems
well established that the spin-glass magnets exhibit an
equilibrium phase transition at a finite temperature. '

From theoretical side, there now seems to be a consensus
that the lower critical dimension (LCD) of an Ising
(n =1) spin glass with short-range interactions is between
d=2 and 3, while the LCD of vector spin glasses (n ~2)
with short-range interactions is greater than d =3.' In
other words, at d =3, only an anisotropic Ising spin glass
exhibits an equilibrium spin-glass transition at a finite
temperature, whereas isotropic vector spin glasses like
XF(n=2) and Heisenberg (n =3) spin glasses exhibit
only a zero-temperature transition.

It has been known that the magnetic interactions in
many of real spin-glass materials are nearly isotropic, be-
ing well described by an isotropic Heisenberg model.
However, they also have a weak magnetic anisotropy ori-
ginated from, e.g., the Dzyaloshinski-Moriya interaction
or the dipolar (pseudodipolar) interaction. ' This means
that the magnetic anisotropy inherent to real spin glasses,
albeit weak in magnitude, is crucially important in induc-
ing the experimentally observed spin-glass transition at a
finite temperature.

One should bear in mind, however, that concerning the
true nature of the experimentally observed spin-glass
transitions there still remains a puzzle not completely un-
derstood: Namely, although most of real spin-glass ma-
terials are well approximated by an isotropic Heisenberg
model, experimentally observed spin-glass transitions ap-
pear to be well described by an anisotropic Ising model. '

Furthermore, no detectable sign of Heisenberg-to-Ising
crossover has been observed in experiments which is usu-
ally expected to occur if the observed Ising-like critical
behavior is caused by the weak magnetic anisotropy.

Meanwhile, since the pioneering work by Villain, it has
been known that vector spin glasses such as XY and
Heisenberg spin glasses possess a twofold Ising-like de-
generacy, called "chirality, " in addition to a continuous
degeneracy associated with the original spin-rotation

symmetries. The appearance of such twofold [Zz j chiral
degeneracy is a consequence of the noncollinear or non-
coplanar spin structures induced by spin frustration.
Chirality physically represents the sense or the handed-
ness of these noncollinear (or noncopolanar) spin struc-
tures. Note that, in its ordered (symmetry-broken) state,
such noncollinear (noncoplanar) spin orderings break the
full symmetry of the Hamiltonian, O(n ) =Zz XSO(n ).

Recently, it has been suggested that such chiral degree
of freedom hidden in vector spin glasses may be a key in-
gredient in solving the above-mentioned puzzle concern-
ing the nature of the experimentally observed spin-glass
transitions. It should be stressed here that the standard
criterion of a spin-glass transition concerns the appear-
ance of the spin-glass order parameter or the divergence
of the spin-glass susceptibility. Since the chirality is a
multispin variable of higher-order in the original spin
variables as described below, the above-mentioned prop-
erty that the LCD of vector spin glasses is greater than
three does not necessarily exclude the possibility of a
finite-temperature chiral-glass transition in d =3. In fact,
this interesting possibility has not fully been addressed in
the literature until recently.

Numerical study of the chiral ordering in vector spin
glasses was initiated about ten years ago for the case of
the two-dimensional XY spin glass, the simplest spin-glass
model which can sustain a nontrivial chiral degree of
freedom. Thus, via a Monte Carlo simulation of the
two-dimensional +JXY model, Kawamura and Tanemu-
ra reported that the ordering tendency of the chirality ap-
peared to be much enhanced as compared with that of
the XY spin. They observed that, although both the spin
and chirality order only at zero temperature, the chiral-
glass susceptibility of the model behaves essentially like
the spin-glass susceptibility of a pure Ising spin glass,
with the associated chiral-glass susceptibility exponent,
ye&~4. 5. Analogy to the Ising spin glass was also ob-
served in the dynamics of the chirality by Batrouni and
Dagotto, who found by numerical simulation of the
two-dimensional XY spin glass that the dynamics of the
chiral variable is of the thermal-activation type, in sharp
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contrast to the dynamics of the XY spin. Kawamura and
Tanemura further claimed, on the basis of a numerical
T=0 domain-wall renormalization-group (DWRG) cal-
culation for the same model, that there appeared to exist
two distinct diverging length scales in this zero-
temperature transition, one associated with the spin and
the other associated with the chirality. The respective
spin-glass and chiral-glass correlation-length exponents
were estimated to be vs~=1.2+0. 15 and vc~=2. 6+0.3.
This observation indicates that the chirality is decoupled
from the spin on a long length scale, and that the chiral-
glass correlation length is much longer than the spin-
glass correlation length. This rather unusual property
was also observed by the Monte Carlo calculation by Ray
and Moore, who found vs&-—1.0 and vc&-—2.0. Similar
behavior was also reported in an n =3-component
Heisenberg spin glass in two dimensions.

Much more interesting in connection with real spin-
glass materials is a possible chiral-glass ordering in the
three-dimensional systems. For a three-dimensional XY
spin glass, on the basis of their DWRG calculation,
Kawamura and Tanemura reported the evidence of a
finite-temperature chiral-glass ordering without a conven-
tional spin-glass order parameter. The low-temperature
phase is then an unusual chir al-glass phase where
reflection symmetry is broken with rotation symmetry be-
ing preserved. Similar behavior has also been reported in
the DWRG calculation for the Heisenberg spin glass in
three dimensions.

With these DWRG results for three-dimensional vec-
tor spin glasses, it is now clearly desirable to perform
Monte Carlo simulations for the same system to study
the possible chiral-glass ordering. In the present paper, I
report on the results of an intensive Monte Carlo simula-
tion performed for the nearest-neighbor +JXF (plane ro-
tator) model on a simple cubic lattice, aimed at obtaining
further information about its chiral-glass ordering. Such
calculation is expected to supplement the previous T=O
DWRG calculation in several points: First, Monte Car-
lo simulations give direct information about finite-
temperature properties of the model, whereas the previ-
ous DWRG calculation was limited to zero temperature.
Second, in the previous DWRG calculation, chiral order-
ing was investigated somewhat indirectly by examining
the response of the system against the change of the
boundary conditions, without an explicit calculation of
the chiral variable. In a Monte Carlo simulation, by con-
trast, one can explicitly calculate the chiral variable and
study its ordering process more directly. Third, Monte
Carlo simulations enable one to estimate the critical ex-
ponents associated with a finite-temperature chiral-glass
transition, if any. Then, one can get information about
the universality class of the chiral-glass transition.

In addition to these Monte Carlo results, I also wish to
present in this paper some results of the DWRG calcula-
tion, which supplement the previous calculation by
Kawamura and Tanemura. The data are improved over
those in Ref. 7 in the following two points: First, in addi-
tion to the +J model (binary distribution of the nearest-
neighbor bonds) previously studied, I have made a similar
calculation also for the Gaussian bond distribution in or-

der to check whether the results are sensitive to the par-
ticular type of bond distributions or not. Second, I have
improved statistics in a configurational average by in-
creasing the number of samples by an order of magni-
tude.

Overall, the obtained results are consistent with each
other, and give fairly strong support to the occurrence of
a finite-temperature chiral-glass ordering in a three-
dimensional XY spin glass. Furthermore, the estimated
critical exponents associated with this chiral-glass transi-
tion have turned out to be close to the spin-glass ex-
ponents of the standard Ising spin glass, suggesting that
the chiral variable in a three-dimensional XY spin glass
behaves essentially like an Ising variable, as has been ob-
served in the corresponding two-dimensional systems.
A preliminary account of the Monte Carlo simulation has
already been reported. '

This paper is organized as follows. In Sec. II, the mod-
el is defined and the chirality is introduced. Details of a
Monte Carlo simulation are explained in Sec. III. Monte
Carlo results for the three-dimensional +JXY model are
presented and analyzed in Sec. IV. In particular, the
chiral-glass transition temperature and the associated
chiral-glass exponents are determined from the finite-size
scaling analysis. The results of the T=O DWRG calcula-
tion are presented in Sec. V both for the binary (+J ) and
Gaussian bond distributions. The results in Sec. V are
complementary to those in Ref. 7. On the basis of the ob-
tained numerical results, effects of uniform magnetic
fields and random magnetic anisotropies are analyzed in
Sec. VI on the basis of a symmetry consideration. Sec-
tion VII is devoted to summary and discussion. In par-
ticular, a possible close connection to d-wave ceramic su-
perconductors is noticed.

II. CHIRALITY

The model considered is the nearest-neighbor random-
bond XP (plane-rotator) model on a d=3-dimensional
simple cubic lattice with two-component, fixed-length
spins with orientations 0;. The bond distribution is either
binary (+J) or Gaussian. The Hamiltonian is

(2.1)

where the sum runs over all nearest-neighbor pairs (ij ).
In the case of the binary bond distribution, the J;. are in-
dependent random variables taking the values +J and—J with equal probability, while in the case of the
Gaussian bond distribution, they obey the Gaussian dis-
tribution with zero mean and the variance J.

The local chirality may be defined for two neighboring
spins at the sites i and j, or on the (ij ) bond, by the sca-
lar, v;. = [S;XS.],=sin(8, —8.). The scalar chirality for
the XY spins is quadratic in the spin variables, and is dis-
tinct from the scalar chirality for the three-component
Heisenberg spins: The latter may be defined for three
neighboring spins by the scalar g;.k=S, XS .Sk, being
cubic in the spin variables. ' ' '"

Often, it is more convenient to define the local chirality
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at each plaquette a by,

v =2 g sgn( J,") sin(0, —8.), (2.2)

where the sum runs over a directed contour, say of clock-
wise orientation, along the sides of the plaquette. Note
that the chirality defined in this way is local gauge invari-
ant of the group Z2. Namely, ~ remains invariant under
the local transformations, S;~—S, and Ji i+&~ —J, i+&,
where 5 denote all nearest neighbors of the ith site.
Chirality defined by Eq. (2.2) may be regarded as a "con-
tinuous" Ising variable taking values around +1 for frus-
trated plaquettes and values around zero for unfrustrated
plaquettes. Note that the present definition of chirality
differs from the one used in Ref. 8, in which K was
defined as a "discrete" Ising variable taking values strict-
ly +1 even for nearly collinear spin configurations on un-
frustrated plaquettes.

In any case, the chirality is a pseudoscalar in the sense
that it is invariant under global spin rotation whereas it
changes sign under any global spin reAection 0; —+0o —0;
where 0o specifies the axis of reAection. Evidently, chiral
order can be regarded as a manifestation of the breaking
of reAection symmetry.

The chiral-glass order parameter qcG, or the chiral-
glass susceptibility gcG which is expected to diverge at
the chiral-glass transition temperature T=TCG, may be
defined by

q co' = (Np ) g [ & Ir ~p ) T ]J,
a, P

(&)
+CG —&pqCG

(2.3)

(2.4)

where X =3% is the total number of plaquettes on a sim-
ple cubic lattice with N=L XL XL lattice sites, & ) T
denotes a thermal average, and [ . ]z indicates a
configuration average over the bond distribution. The
sum over a (or P) is taken over all plaquettes on the lat-
tice.

The spin-glass order parameter qsG, or the spin-glass
susceptibility ysG, may be defined by

q' '=N g [&S,'S )T]J, (2.5)

(2)
+SG +q SG

Qne can also introduce the corresponding higher-order
correlations q CG or q sG by

qcG=Np Q [&x ~~ ~s)T]~, (2.7)
a,P, y, 5

qsa=N ' g [&S; S,Sk.SI&'T]J . (2.8)
i,j,k, I

Note that these spin-glass and chiral-glass correlations
are all invariant under global symmetries of the Hamil-
tonian, namely, under both rotations and reAections.

It is often useful to look at the dimensionless ratio, '
called the Binder parameter, ' defined by

where gcG and gsG are normalized so that, in the I.~ ~
limit, they tend to zero above T„and tend to unity below
T, provided the ground state is nondegenerate. At the
chiral-glass (or spin-glass) transition point, curves of gco
(or gso ) against T for different L should intersect.

In contrast to the standard Ising variable, the magni-
tude of the local chiral variable I~, defined by Eq. (2.2),
varies with temperature to some extent. In order to allow
for this short-range order effect in gcG and to make the
correspondence with Ising spins closer, I define a reduced
chiral-glass susceptibility ycG by dividing ycG by the ap-
propriate power of the magnitude of the local
chirality, ' '

~co =&co~& ~'&'

&~')—=N y[&~ 2), ], .

(2.11)

(2.12)

III. MONTE CARLO SIMULATION

Monte Carlo simulations based on a single-spin-Aip
Metropolis algorithm have been performed. The method
is standard, except perhaps that, when a Monte Carlo up-
dating is rejected, a spin reAection with respect to the
molecular-field axis is made with certain probability.
This energy-preserving reAection procedure tends to Aip

the chirality and considerably speeds up the chirality re-
laxation at low temperatures.

In order to test whether the obtained Monte Carlo data
are equilibrium ones, I follow Bhatt and Young and com-
puted the correlations like q CG, q sG, q CG, and q sG in two
ways, each of which is known to give an upper or lower
bound of a true equilibrium value in finite observation
time. ' For that purpose, it is convenient to rewrite the
spin-glass and chiral-glass correlations (2.3), (2.5), (2.7),
and (2.8) in terms of an overlap between two independent
"replicas" denoted by 1 and 2. Then, the spin-glass
correlations may be written in terms of a tensor variable
q„with 2 =4 independent components,

qs'o =X [&q„'.&T]J, (3.1)
p, v

qs'o'= & [&q„'.qs, &r]J
p~ v~6~ p

q„=(1/N)g S;I„')S;I,) (p, v=x,y) .

(3.2)

(3.3)

(3.5)

Note that these spin-glass correlations, Eqs. (3.1) and
(3.2), differ from the ones used in Ref. 8 by Ray and
Moore. The present definitions may have some advan-
tage in that they are invariant under both global spin ro-
tations and reAections made independently for the two re-
plicas, 1 and 2, while those used in Ref. 8 are not so.

Likewise, for the chiral-glass correlations, one has

(3.4)

gcG = [3—qco ~(qco )']~2

gsG 3 2'qsG ~(qsG )
(4) (2)

(2.9)

(2.10)

q. ——(1&N, )y~(')~(') . (3.6)

Again, the chiral-glass correlations, Eqs. (3.4) and (3.5),
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are invariant both under global rotations and reflections
made independently for the two replicas.

Then, in one way of numerically estimating the corre-
lations, the two configurations corresponding to 1 and 2
are taken from a single Monte Carlo run but at two dis-
tant Monte Carlo (MC) times, say, at t = to and at
t =tI=2to, where to is a presumed thermalization time.
As one increases to, these correlations are expected to ap-
proach true equilibrium values from above. In actual
computation, I take an average of the instantaneous over-
laps over an interval of tI = [2to, 2to+ b.t ] with
b, t =2 X 10 MCS (Monte Carlo steps per spin).

In the second way of numerically estimating the corre-
lations, the two replica configurations corresponding to 1
and 2 are taken from two independent Monte Carlo runs
for the same bond realization at the same MC time.
These two runs are evolved independently from different
spin initial conditions and with different random-number
sequences. Then, the instantaneous overlaps between
these two configurations are averaged over a MC time in-
terval t =[to,2to]. With increasing to, these overlaps are
expected to approach true equilibrium values from below.

The data are accepted only when the results computed
in these two ways agree within the errors. If not, the ob-
tained data are rejected, and longer runs with larger to
are tried until this criterion is satisfied.

The lattices studied are L =4, 6, 8, 12 with periodic
boundary conditions. Sample averages are taken over
1000 (L =4), 500-900 (L =6), 400-800 (L =8), 200
(L = 12) independent bond realizations. The relaxation
time associated with the chirality becomes extremely long
at low temperatures even for rather small lattices studied
in this work. By contrast, it is generally easier to equili-
brate spin degrees of freedom. In the present calculation,
I could equilibrate both the spin and chiral degrees of
freedom down to T/J=0. 2 (L =4), 0.28 (L =6), 0.30
(L =8), and 0.42 (L = 12). For the largest lattice,
L = 12, two data points at T/J =0.42 and 0.43 are newly
added to the data presented in Ref. 10. The longest runs
were made for L =8 at T/J=0. 30, where to is taken to
be 10 MCS. The whole simulation took about 300 h of
CPU time on the supercomputer VP2600 at Kyoto Uni-
versity.

IV. MONTE CARLO RESULTS

In this section, the results of Monte Carlo simulations
are presented. Figures l(a) and 1(b) display the size and
temperature dependence of the Binder parameters for the
chirality and for the spin, gcz and gs&, respectively. One
can see from Fig. 1(a) that the data of geo for L =4, 6, 8

all come together at T /J =0.32 suggesting the oc-
currence of a chiral-glass transition at
Tca/J=O 32+0.03. The value of gee at T= Tco. is es
timated to be gc&=0.72+0.05. The data below Tc~
stick to a common curve and does not splay out, which is
reminiscent of the behavior found in the Binder parame-
ter g of the three-dimensional Ising spin glass below
Ts~. ' One may interpret such an apparent absence of
the splay out below Tc~ as indicating that the system
remains critical all the way below TCG. However, it
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FIG. 1. The temperature and size dependence of the Binder
parameters for the spin and for the chirality, g«(a) and g&&
(b), of the three-dimensional +JXY spin glass. The arrow in (a)
indicates a chiral-glass transition point.

seems also likely to the author that this is related to a
very slow power-law decay of the chiral-glass correlations
below Tc& to its asymptotic long-distance value

(2) ~ 0 12(b)
~CO &

Somewhat above Tco, gcz takes negative values unlike
the g of the three-dimensional Ising spin glass, although
it tends to zero at high enough temperatures. This nega-
tivity of gcz probably reflects the character of the local
chirality: Namely, even in the ordered configuration, a
significant portion of the local chirality takes values
around v =0 on unfrustrated plaquettes, in addition to
the values around v =+1 on frustrated plaquettes. Due
to the existence of such ~ =0 component, the probability
distribution of the chiral variables may well differ from
that of the standard discrete Ising variables, which may
account for the observed negativity of gcz. I note that a
negative Binder parameter g has also been observed in
the three-dimensional +J Ising spin glass with asym-
metric bond distributions by Shirakura, Matsubara, and
Inawashiro. '

In sharp contrast to gc&, the Binder parameter for the
spin, gsz, decreases monotonically for increasing L at all
temperatures studied, as can be seen from Fig. 1(b). One
may safely conclude that a finite-temperature spin-glass
transition, if any, must occur at a temperature
significantly lower than 0.2J. The data certainly favor
the occurrence of a conventional spin-glass order only at
zero temperature, consistent with the previous re-
sults. ' ' ' To the author's knowledge, this is the first
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calculation of the Binder parameter for three-dimensional
Uector spin glasses. As an indicator of the transition, the
dimensionless Binder parameter has an advantage over
some other methods such as examining the linearity of
the log-log plot of the susceptibility versus temperature.
Thus, the present data have given further support to
common belief concerning the absence of a finite-
temperature spin-glass ordering in three-dimensional vec-
tor spin glasses. ' ' "" Anyway, qualitative
diA'erence observed between gcG and gsz, both estimated
from exactly the same Monte Carlo runs, is quite strik-
iIlg.

Next, let us proceed to the determination of chiral-
glass critical exponents, assuming the occurrence of a
chiral-glass transition at TCG, /J=0. 32. With use of the
standard finite-size scaling relation for geo of the form

(4. 1)

400 :
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FICi. 3. The temperature and size dependence of the reduced
chiral-glass susceptibility ye&, defined by Eq. {2.11) in the text,
of the three-dimensional +JXY spin glass.

and setting Tc~/J=0. 32, the chiral-glass correlation-
length exponent is estimated from a one-parameter scal-
ing fit as vc&=1.5+0.3. The corresponding finite-size
scaling plot is displayed in Fig. 2.

The temperature and size dependence of the reduced
chiral-glass susceptibility pc&, defined by Eq. (2.11), is
shown in Fig. 3. Standard Anite-size scaling analysis is
also applied based on the relation

Xco=L "' Xca(L ' T Tcol)— (4.2)

With setting Tc& /J =0.32 and vcG = 1.5, the chiral-glass
critical-point decay exponent is estimated from a one-
parameter scaling IIit as geo= —0.4+0.2. The corre-
sponding 6nite-size scaling plot is displayed in Fig. 4.

If one uses here standard scaling relations for ex-
ponents, the chiral-glass susceptibility and the chiral-
glass order-parameter exponents are estimated to be
y co =3.6 and /3co =0 45

In contrast to the spin-glass susceptibility ps~ which is
found to be a nondecreasing function of L at all tempera-
tures studied, ye& behaves in this way only at T/J SO. 5,
but tends to rather decrease for large L at T/2 ~0.55.

Since the susceptibility in the critical regime should be an
increasing function of L, this observation suggests that
the critical region associated with a chiral-glass transition
might be rather narrow. Similar narrowness of the criti-
cal region associated with a chiral-glass transition was
also reported in two dimensions by Ray and Moore, al-
though the chiral-glass transition in two dimensions takes
place at zero temperature.

Remarkably, the obtained chiral-glass exponents are
close to the spin-glass exponents of a three-dimensional
Ising spin glass: Indeed, for the +J Ising spin glass,
Monte Carlo simulation gave v = 1.3+0.3 and
g= —0.3+0.24 or v= 1.3+0. 1 and q= —0.22
+0.05, " ' high-temperature series expansion gave
v=1.3+0.2 and g= —0.25+0. 17 ~ ' ' while for the
Gaussian distribution, Monte Carlo simulation gave
v=1.6+0.4 and q= —0.4+0.2. ' ' ' Thus our present re-
sult is entirely consistent with the claim that the chiral-
glass transition of an XY spin glass lies in the same
universality class as that of an Ising spin glass. This coin-
cidence is further supported by the observation that the
value of the Binder parameter at the transition point
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FIG. 2. Finite-size scaling plot of the Binder parameter for
the chirality, gcz, of the three-dimensional JXY spin glass.

FIG. 4. Finite-size scaling plot of the reduced chiral-glass
susceptibility gcG, defined by Eq. (2.11) in the text, of the three-
dimensional +JXY spin glass.
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gcz ——0.72, which is expected to be a universal quantity,
is nearly the same as the corresponding value for the
three-dimensional Ising spin glass. ' ' Of course, in view
of the uncertainties associated with the numerical esti-
mates of exponents, one cannot draw a truly definite con-
clusion from numerical simulations.

Such correspondence is not totally unexpected, since
the chirality is essentially an Ising-like variable, at least
from a symmetry viewpoint. However, one should also
remember that the chirality is a multispin variable, not
independent of the XY spins at the microscopic level. So,
generally speaking, symmetry alone is not sufhcient to
conclude that the chirality behaves like an Ising variable
independent of the XY spins. Indeed, in regularly frus-
trated XY spin systems in three dimensions, chirality
behaves as a composite operator parasitic to the XY
spins, not as an independent Ising variable. ' A re-
markable point in the present result is that, on longer
length scales, or upon enough renormalization, chirality
appears to be decoupled from the XY spins, or more pre-
cisely, its proper-rotation part. In other words, the two
orthogonal parts of the order-parameter space,
ZzXSO(2), appear to be decoupled on longer length
scales into the Z2 part, corresponding to reAection, and
the SO(2) part, corresponding to proper rotation. In
fact, it has been shown that such decoupling really occurs
in frustrated XY spin systems in one dimension both in
regular and in spin-glass systems, although both the
spin-glass and the chiral-glass orderings occur only at
T=O in one dimension. Since the randomness often
causes an e6'ective reduction of the space dimensionality
of the system, the occurrence of such decoupling of spin
and chirality is not so unlikely even in three dimensions
in random systems.

The temperature and size dependence of the spin-glass
susceptibility ysG is shown in Fig. 5. One can also apply
the standard finite-size scaling analysis to ps' with as-
suming Ts&=0. A reasonable fit has been obtained by
choosing vs6-2. 0 and ps&- —0.8, as shown in Fig. 6.
These exponents are close to the values determined by
Jain and Young from their Monte Carlo data taken for
I, = 16 lattices but at much higher temperatures
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FIG. 6. Finite-size scaling plot of the spin-glass susceptibility
ysG of the three-dimensional +JXY spin glass.

T/J ~0.65. However, a one-parameter scaling plot for
gsG, with Tsz =0 and vs& =2.0, yields a rather poor fit as
shown in Fig. 7. In fact, the data for gsz do not scale
well for any values of the assumed Tsz and vs&, in sharp
contrast to the case of its chiral counterpart gcz. The
reason for this is probably the following: If the chiral-
glass order really takes place at TCG/J=0. 32, it wi11

have some efFects on the XY spin degree of freedom, al-
though the spin-glass susceptibility itself does not diverge
at T=Tco. (Here, recall that the XY spins themselves
are transformed nontrivially under rejections. ) Then, it is
likely that the asymptotic critical behavior associated
with the T=O spin-glass transition is realized only at
T «Tcz. Around TCG, in addition to the spin-glass
correlation length gsG, there exists another hidden
diverging length scale, the chiral-glass correlation length

The existence of such second length scale may well
deteriorate the quality of the one-parameter scaling form
written solely in terms of /so. In order to examine the
asymptotic critical behavior associated with the T=0
spin-glass transition, one has to go down to much lower
temperature T « Tco. where equilibrium data could not
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the spin, gsG, of the three-dimensional +JXY spin glass.
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be obtained in the present simulation. Therefore, a good
fit obtained for iso with the exponents consistent with
those of Ref. 9 may in fact be fortuitous. Remember, one
could often manage to get an apparently good fit if one is
allowed to use two or more free fitting parameters. Al-
though it seems quite likely from the data of gsG. in Fig.
l(b) that the conventional spin-glass ordering occurs only
at zero temperature, further study utilizing the data at
T & Tcz is required in order to reliably estimate the ex-
ponents associated with this zero-temperature spin-glass
transition.

Before concluding this section, I wish to give a com-
ment on the relation to a possible phase transition of a
gauge glass of random type-II superconductors in mag-
netic fields. For the gauge glass, recent Monte Carlo
simulations ' as well as numerical DWRG calcula-
tions ' ' suggest the existence of a finite-temperature
transition in three dimensions, while there is no finite-
temperature ordering in two dimensions. Indeed, for
the gauge-glass model in three dimensions, Huse and
Seung pointed out its close resemblance to the Ising spin
glass, while Reger et al. gave an estimate
v=1.4+0.4, which is close both to the Ising spin-glass
exponent and to the chiral-glass exponent determined in
this work.

However, one should realize that there is a fundamen-
tal difference between the chiral-glass and the gauge-glass
problems. In the case of the chiral-glass ordering in an
XY spin glass, the original Hamiltonian possesses both
rotation and reAection symmetries. Chiral-glass ordering
concerns the spontaneous breaking of reAection symme-
try with preserving rotation symmetry. By contrast, in
the case of the gauge glass, the original Hamiltonian
possesses rotation symmetry only. Gauge-glass ordering
concerns the spontaneous breaking of rotation symmetry,
while reAection symmetry has already been broken ener-
getically at the Hamiltonian level. In fact, by deriving
the Landau-Ginzburg-Wijjson Hamiltonians and examin-
ing the number of critical modes, Gingras argued that the
Ising spin glass and the gauge glass should belong to mu-
tually different universality classes.

V. DOMAIN-WALL RENORMALIZATION-t ROUP
CALCULATION

In this section, I report on the results of the numerical
DWRG calculation at zero temperature on the chiral or-
dering of the three-dimensional XY spin glass both with
the binary ( J ) and Gaussian bond distributions. This
section should be regarded as an addendum to Ref. 7.
New results presented here are (i) new data taken for the
Gaussian bond distribution, and (ii) improved statistics
achieved by taking a sample average over an order of
magnitude more bond realizations.

The DWRG method has successfully been used by
various authors in attacking the vector spin-glass prob-
lems. ' ' ' ' Here, we follow Ref. 7 and adapt it to the
form appropriate for the study of the chiral ordering. I[n

the standard DWRG method, the domain-wall energy for
a given sample of linear dimension L is defined as a
difference between the two ground-state energies for

periodic and antiperiodic boundary conditions. (Note
that by the "antiperiodic boundary condition" quoted
here and below we mean antiperiodic boundary condition
in one direction and periodic boundary conditions in the
remaining two directions, while by the "periodic bound-
ary condition" we mean periodic boundary conditions in
all three directions. ) Usually, the variance of the distri-
bution of this energy difference over samples is taken as a
measure of the averaged domain-wall energy W, (L ):

(5.l)

~s Ep EAp (5.2)

(5.3)

with

e, =—min(EP EAp) Ez . — (5.4)

The reason for this choice has been explained in Ref. 7.
When W, (L) behaves as W, (L) ~L ' for L ))1, either
positive or negative y, is associated with a zero-
temperature or a finite-temperature chiral-glass transi-
tion, respectively.

The lattice sizes studied are L =3,4, 5, 6 for both cases
of the binary and Gaussian bond distributions. Sample

where Ep and EAP are the total ground-state energies for
periodic and antiperiodic boundary conditions, respec-
tively. When W, (L) behaves as W, (L) o- L ' for L )) l,
either positive or negative y, is associated with a zero-
temperature or a finite-temperature spin-glass transition,
respectively.

A crucial observation made in Ref. 7 is that, in case of
an XY spin glass, the application of antiperiodic bound-
ary conditions does not cause a Gipping of chirality. This
means that the antiperiodic boundary condition intro-
duces only a spin domain wall into the sample which ac-
companies a proper rotation of XY spins, but not a chiral
domain wall which accompanies the Aipping of chirality.
Note that, by the "spin domain wall" above, we mean all
possible low-energy excitations which do not accompany
the Ripping of chirality. In particular, in addition to
spin-wave-type locally small deformations, it may contain
vortex-type, or possibly, droplet-type excitations which
involve not necessarily small spin deformations. In order
to detect the chiral domain wall, a new "reAection bound-
ary condition" was introduced in Ref. 7, in which bound-
ary spins were re+ected with respect to a fixed axis in the
spin space. Evidently, reAection boundary conditions ac-
company the Gipping of chirality and introduce the chiral
domain wall into the sample. Then the difference be-
tween the ground-state energies for the reAection bound-
ary condition Ez and that for the usual periodic bound-
ary condition e'=Ep —E~, should contain the contribu-
tion of the chiral domain wall in addition to that of the
usual spin domain wall. In actual computations, in order
to suppress the contribution of the spin domain wall, a
slightly different definition has been employed as a mea-
sure of the chiral-domain-wall energy W, (L ):
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averages are taken over 50000 (L =3) 10000 (L =4),
2000 (L =5), and 1000 (L =6) independent bond realiza-
tions. Note that the number of samples for L=6, the
largest size studied, is increased by an order of magnitude
as compared with that in Ref. 7, while that for L =5 is
doubled. The ground-state energy is estimated by repeat-
ing a spin-quench algorithm many times, ' ' ' ' '

where randomly chosen spin initial conditions are used in
each trial. In fact, I have made 5 (L =3), 50 (L =4), 500
(L =5 ), and 5000 (L =6) trials for each sample.
SufBciency of the number of trials has been checked by
performing longer runs for a subset of samples in which
at least a few times more trials are made.

The L dependence of the calculated 8' and 8' is
displayed in Fig. 8 for both cases of the binary (+J ) and
Gaussian bond distributions. The attached error bars
represent one standard deviation associated with the sam-
ple average. From the figure, one finds that W, (L)
iterates toward weak coupling for both types of bond dis-
tributions, which indicates that the conventional spin-
glass transition occurs only at zero temperature.

By contrast, we have found a markedly different
behavior for W, (L). Indeed, W, (L) iterates towards
strong coupling at L ~4 for both distributions, although
it initially iterates towards weak coupling for very small
lattices in case of the +J distribution. A small even-odd
effect discernible in the +J distribution may be due to the
fact that the concentration of antiferromagnetic bonds
for odd-L samples is not strictly equal to 50%, but rather
to 48. 1%%uo (L =3) and 49.6%%uo (L =5), unlike the cases of
even-L samples. Initial decrease of W, (L) observed for
the +J distribution may be due to the residual contribu-

W [+-J]s

tion of the spin domain wall, which should be increasing-
ly negligible for larger lattices. Hence, the data for
W, (L) strongly suggest the occurrence of a finite-
temperature chiral-glass ordering. It corroborates the
Monte Carlo results in the previous section, and gives
fairly convincing evidence for the occurrence of a finite-
temperature chiral-glass ordering in a three-dimensional
XY spin glass.

Before concluding this section, I wish to add a corn-
ment about the behavior of the spin-domain-wall energy,
W, (L). Often, one extracts a stiff'ness exponent from the
slope of the straight-line fit to the data as given in Fig. 8.
Then, a plausible scaling argument is used to identify the
inverse of the stiffness exponent with the spin-glass
correlation-length exponent vsG at the T=O transition.
The present data of W, (L), however, have a systematic
tendency to level off as one goes to larger L, which does
not enable one to estimate vso unambiguously. Taken
literally, a larger value of vsG results if the data for larger
L are used in the fit.

In this connection, it should be mentioned that the
conventional practice of identifying the inverse of the
stiffness exponent with vs& was recently challenged by
Kawashima, Hatano, and Suzuki. Studying the two-
dirnensional Ising spin glass with the Gaussian bond dis-
tribution, they found a large discrepancy between the vs~
value estimated from the stiffness exponent via the stan-
dard DWRG calculations and the values estimated from
other more direct methods, the former being much larger
than the latter. Kawashima, Hatano, and Suzuki then
claimed that the conventional practice of relating the
stiffness exponent to the correlation-length exponent
might be wrong. Here, I will not enter into this problem
any further, but only mention that the spin-domain-wall
energy calculated in this section certainly shows a ten-
dency to level off, but it does not turn over and goes to
weak coupling in the range of the sizes studied.

VI. EFFECTS OF UNIFORM MAGNETIC FIELDS
AND RANDOM MAGNETIC ANISOTROPIES

0.5
W [Gauss]s

W [+-J]
C

slope=0. 47

slope=0. 59

-0.5

W [Gauss]
C

+

1.5

nL

FIG. 8. The L dependence of the spin-domain-wall energy
W, (L), defined by Eqs. (5.1) and (5.2) in the text, and of the
chiral-domain-wall energy 8,(L), defined by Eqs. (5.3) and (5.4)
in the text, on a log-log plot for the three-dimensional XF spin
glass on a L XL XL simple cubic lattice for both cases of the
binary (+J) and Gaussian bond distributions. The error bar on
each point represents one standard deviation associated with a
sample average.

In view of the numerical results in the previous sec-
tions suggesting the occurrence of a Qnite-temperature
chiral-glass ordering, I wish to discuss in the present sec-
tion the effects of uniform magnetic fields and of random
magnetic anisotropies. These perturbations work to
reduce the full 0 (2) symmetry of the system, and it is in-
teresting to study their effects on the phase diagram and
on the nature of the chiral- and spin-glass orderings. The
results in this section are all derived based on naive sym-
metry arguments without performing further numerical
calculations, on the assumption that a fully isotropic XY
spin glass exhibits a finite-temperature chiral-glass transi-
tion with broken reAection symmetry but with orienta-
tional symmetry preserved.

As mentioned, magnetic anisotropies are believed to
play very important roles in the spin-glass ordering of
real materials. ' Here we shall consider two representative
types of random exchange anisotropies: One is the dipo-
lar (or pseudopolar) anisotropy, and the other is the
Dzyaloshinski-Moriya anisotropy. ' The random ex-
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change anisotropy may be written in the generalized form
as

g g Dpj S(„S~~,
l, J P, V

(6.1)

where the anisotropy tensor D,~j is assumed to be a ran-
dom variable with zero mean and with the variance D. In
the case of the dipolar-type anisotropy, D,~ is symmetric,

DPv —D vP
ij ij (6.2)

whereas in the case of the Dzyaloshinski-Moriya-type an-
isotropy, D,I" is antisymmetric

D IMv — D vP
ij v (6.3)

In case of the two-component XY spins, these two types
of anisotropies have very different symmetry properties
as described below.

In what follows, I shall discuss the cases of (a) uniform
magnetic field, (b) random dipolar-type anisotropy, and
(c) random Dzyaloshinski-Moriya-type anisotropy, sepa-
rately.

A. Uniform magnetic field

Let us begin with the case of uniform magnetic fields.
Applied uniform fields reduce the symmetry of the Ham-
iltonian from the original O(2) =Z2 XSO(2) to Z2 asso-
ciated with global spin reAection with respect to the
magnetic-field axis. Note that the remaining Zz symme-
try gives rise to the chiral degeneracy as long as the ap-
plied field is not so strong and the spin ordering remains
noncollinear. Thus, even under magnetic fields, the sys-
tem still remains chiral and can exhibit a chiral-glass
transition. In particular, one can still take the chirality,
defined by Eq. (2.2), as an order parameter of this chiral-
glass transition.

Note that the symmetry change induced by applied
fields occurs only in the spin-rotation part, SO(2)~l.
By contrast, the Z2 chiral degeneracy is kept intact by
applied fields. [The only modification is that, due to the
loss of SO(2) rotation symmetry, the invariant axis of
reAection is now limited to the direction of the applied
field while it can take an arbitrary direction in zero field. ]
Since the SO(2) spin-rotation part has already been
decoupled from the chirality part on a longer length
scale, the chiral-glass transition in applied fields should
be governed by the same fixed point as in the zero-Geld
case.

As such, effects of applied fields on the chiral-glass or-
dering should be relatively minor: (i) For weak fields,
spin orderings remain noncollinear, but spins now tend to
point more to the direction of the magnetic field, which
should reduce the magnitude of the local chirality (2.2).
(ii) In applied fields, the longitudinal component of the
XF spin takes a finite value at any finite temperature.
Under such circumstances, the transverse component of
the XY spin behaves essentially in the same way as the
chirality, and can also be regarded as an order parameter
of the chiral-glass transition. In other words, the chiral-
glass order in applied fields accompanies a conventional

spin-glass order.
From the discussion above, the chiral-glass (or spin-

glass) transition temperature under a magnetic field of
strength H, Tco(H), is expected to be an analytic fun'
tion of H. Remember, there is no changeover of the fixed
points for the chiral-glass transition in a field. Thus,
from (i), one may expect,

Tco(H ) = Tcr (0) cH— (6.4)

for weak fields. The expected phase diagram is sketched
in Fig. 9.

It might be interesting to point out here that the quali-
tative behavior of the transition line for weak fields, Eq.
(6.4), happens to be the same as that of the so-called
Gabay-Toulouse (GT) line of an infinite-range vector
spin-glass model (SK model). Its origin, however, is en-
tirely different. In the spin-glass transition of the SK
model, the symmetries broken at a zero-field transition
and at a finite-field transition differ. This means that the
quadratic H dependence of the GT line should not simply
be regarded as analytic. By contrast, in the present
chiral-glass transition of the short-range model, broken
symmetries remain the same both in zero and nonzero
fields, and the quadratic H dependence should be regard-
ed as genuinely analytic. Furthermore, in spite of its suc-
cess in explaining experimental results, the GT line of the
SK model cannot directly be applicable to real three-
dimensional systems, since a fully isotropic vector spin
glass in d =3 is believed to exhibit no finite-temperature
transition. ' ' "''

By contrast, the present chiral-glass transition line,
though having an appearance of the GT line, persists as a
true transition line even in three dimensions, as long as
the effects of magnetic anisotropies are negligible. Thus,
it is very interesting to relate the experimentally observed

Sl. /0
I:$0

SI ——0
Si, /0
r =0

S~ ——0
Sl. ——0

0

FIG. 9. Schematic phase diagram of a short-range XY spin
glass in three dimensions in the temperature-magnetic field {T-
H) plane. ST, SL, and ~ represent the transverse component of
the spin, the longitudinal component of the spin and the chirali-
ty, respectively. Each inequality and/or equality in the figure
refers to the existence and/or nonexistence of the associated
glass-type long-range correlations.
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GT line to the present chiral-glass transition line, rather
than to the GT line of the SK model.

terized by the anisotropy-crossover exponent P at the
T=0 XY-like fixed point,

B.Random dipolar-type anisotropy Tso(D) =D (6.5)

Next, I wish to discuss the case of the random dipolar-
type symmetric anisotropy. In the presence of the ran-
dom dipolar interaction, the system no longer has an in-
variant reAection axis, and thus, has no chiral degenera-
cy. The local chirality takes a finite value induced by the
anisotropy at any finite temperature, and there cannot be
a chiral-glass transition in contrast to the case of uniform
magnetic fields. A continuous SO(2) symmetry associat-
ed with proper spin rotation is reduced to its discrete sub-
set Z2 associated with global spin inversion, S;~—S;.
Note that this Z2 should not be confused with the Z2 as-
sociated with the chiral degeneracy: In case of the XY
spins, spin inversion does not accompany the chirality
Aipping since the chiral variable is quadratic in the XY
spin s.

The residual Z2 degeneracy, though achiral in nature,
is also Ising-like and is expected to be broken at some
finite temperature. The associated transition should also
be Ising-like with the ordered phase characterized by
nonzero spin-glass order parameter qso )0. Since the re-
sidual Z2 degeneracy is a part of the SO(2) spin-rotation
degeneracy, the spin-glass transition temperature under
finite anisotropy Tso(D) should merge to T=O as D —+0,
in contrast to the case of uniform magnetic fields dis-
cussed above. Here recall that, in a fully isotropic case,
the conventional spin-glass order probably occurs only at
T=O. In this case, the symmetries broken at D =0 and at
DAO are different, and there should be a changeover of
the fixed points between a T=O XY-like fixed point for
D =0 and a T)0 Ising fixed point for DAO. In particu-
lar, the spin-glass transition temperature under finite an-
isotropy should be a nonanalytic function of D, charac-

D

S=0
0

=0
=0

FIG. 10. Schematic phase diagram of a short-range XY spin
glass in three dimensions with random dipolar-type anisotropy
of magnitude D in the temperature-anisotropy (T-D) plane. S
and x represent the XY spin and the chirality, respectively.
Each inequality and/or equality in the figure refers to the ex-
istence and/or nonexistence of the associated glass-type long-
range correlations.

An argument given in Ref. 15 gives /=1+(3/2)vso,
where v&& is the spin-glass correlation-length exponent at
the T=O fixed point. Previous numerical calculations
gave vs&-2, ' ' which mea, ns P-4. The present calcu-
lations suggest, however, that this may not be a true
asymptotic value. An expected phase diagram is
sketched in Fig. 10.

C. Random Dzyaloshinski-Moriya-type anisotropy

Next, I wish to briefly discuss the case of the random
Dzyaloshinski-Moriya-type antisymmetric anisotropy.
The Dzyaloshinski-Moriya-type anisotropy also breaks
reAection symmetry of the Hamiltonian. In fact, this in-
teraction may be regarded as a random chiral field acting
on the (ij ) bond. Again, a finite-temperature chiral-
glass transition in zero anisotropy goes away under an
infinitesimal anisotropy. By contrast, the Dzyaloshinski-
Moriya-type anisotropy keeps the SO(2) rotation symme-
try intact unlike the case of the dipolar anisotropy. This
situation is specific to the XF spins. [In the case of
n =3-component Heisenberg spins, the random
Dzyaloshinski-Moriya-type anisotropy reduces the origi-
nal O(3) symmetry only to Z2 associated with spin inver-
sion. From a symmetry viewpoint, there is no essential
difference between the dipolar-type and the
Dzyaloshinski-Moriya-type anisotropies in the Heisen-
berg case. ] Note that an XI'spin glass in the presence of
the Dzyaloshinski-Moriya-type anisotropy has the same
symmetry as the gauge glass.

It is not clear at the present stage whether, under a
finite Dzyaloshinski-Moriya-type anistropy D, the residu-
al SO(2) symmetry is broken at zero temperature or at
some finite temperature. A similarity to the gauge glass
in its symmetry appears to favor the latter possibility.
Here recall that the recent numerical calculations for the
gauge glass in three dimensions suggest a finite-
temperature ordering. ' If this is true, the same
SO(2) symmetry should be broken at a finite temperature
for D &0, and at zero temperature for D =0. This may
seem somewhat strange, but may be related to the fact
that, in the D =0 case, the Hamiltonian itself has a full
O(2) =Zz X SO(2) symmetry, the chiral Zz symmetry be-
ing broken spontaneously via a chiral-glass transition at a
higher temperature T= Tco, whereas, in the DAO case,
the Hamiltonian has only a SO(2) symmetry, the chiral
Z2 symmetry being broken energetically already at the
Hamiltonian level.

In concluding this section, I add one comment. As
mentioned, many real spin-glass materials are well de-
scribed by the n =3-component Heisenberg spin glass
with weak magnetic anisotropy. In this connection,
effects of magnetic fields and random magnetic anisotro-
pies on the chiral- and spin-glass orderings in Heisenberg
spin glasses are of particular interest. This problem will
be discussed in detail in a separate paper. Let me only
emphasize here that the behavior of these Heisenberg sys-
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tems under magnetic fields or anisotropies are often qual-
itatively different from those of the XY systems analyzed
in this section. For example, in the limit of vanishing an-
isot. opy 8~0, the spin-glass transition temperature of a
weakly anisotropic Heisenberg spin glass tends to a Pnite
value, not to T=O, unlike the case of an XY spin glass.

VII. SUMMARY AND DISCUSSION

In summary, I have presented the results of Monte
Carlo simulations on a three-dimensional XY spin glass,
together with the results of the numerical DWRG calcu-
lation. The results strongly suggest the occurrence of a
finite-temperature chiral-glass ordering without the con-
ventional spin-glass order. The associated chiral-glass ex-
ponents estimated from a Monte Carlo simulation,
vcr=1 5+0.3 and yea= 0 4+0.2, are very close to
those of the three-dimensional Ising spin glass. The re-
sults are consistent with the view that the chiral-glass
transition in vector spin glasses belongs to the universali-
ty class of the standard Ising spin glass, as expected from
a naive symmetry consideration. Then, assuming the ex-
istence of a finite-temperature chir al-glass transition,
effects of uniform magnetic fields and random magnetic
anisotropies are discussed. In particular, the present
chiral-glass picture predicts the existence of a GT-like
transition line under magnetic fields which has an origin
entirely different from the conventional GT-line of an
infinite-range SK model.

Finally, I wish to add a few comments. First, the
behavior of the purely two-component XY (plane rotator)
spin glass studied in this paper might somewhat diA'er

from that of the three-component, XY-like, anisotropic
Heisenberg spin glass, particularly when the XY-like
(easy-plane-type) anisotropy is weak. Usually, the transi-
tion behaviors of the two-component XY (plane rotator)
model and the three-component XY-like model are quali-
tatively the same. However, this is not necessarily the
case in spin glasses. One can see this by noting that, in
case of a weakly anisotropic XY-like Heisenberg spin
glass, the noncoplanar spin ordering is expected to occur
with a finite z component of the spin, ( S, , ) T. In such an
occasion, the transition behavior of a weakly anisotropic
XY-like spin glass might further be complicated due to
the possible symmetry breaking of the Z2 degeneracy as-
sociated with this 5, component. ' Further discussion on

the ordering of such XY-like Heisenberg spin glasses will
be given in a separate paper.

Second, I note that the present pure XY (plane rotator)
spin-glass model might have some direct experimental
relevance to ceramic or granular superconductors with a
d-wave pairing symmetry. Recently, the possibility of a
d-wave superconductivity has been discussed in high-T,
cuprates. In contrast to the standard s-wave supercon-
ductors, the Josephson coupling between the grains of d-
wave superconductors can be either ferromagnetic (0
junction) or negative (~ junction), depending on the spa-
tial direction of the junction and of the crystal grain on
both sides. As such, a d-wave granular superconductor
may be regarded as an ideal realization of the three-
dimensional XY spin glass. Note that in this case, an an-
gle variable in the Hamiltonian 0; represents a phase of
the superconducting order parameter at the ith grain,
which has nothing to do with the physical spin degree of
freedom. In fact, a chiral-glass ordering is also expected
to occur in these d-wave ceramic superconductors, which
might have an interesting consequence on the properties
of high-T, cuprates. More details will be published else-
where. "

Finally, the possibility of a finite-temperature chiral-
glass ordering was suggested also for an n = 3-component
Heisenberg spin glass from the recent numerical calcula-
tion. In connection to the real spin-glass materials, the
Heisenberg system has much more physical significance.
A Monte Carlo simulation on a possible chiral-glass or-
dering of Heisenberg spin glasses has also been made, and
the results will be reported in a separate paper.
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