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Isotopic order by phonon-induced interactions
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We examine conditions for isotopic order on a chain of harmonic oscillators with two isotopic species
(host, with mass m, and impurity, with mass mb ) and find that they are the same as those for a phase
transition of condensation in a one-dimensional model proposed by Fisher. In a thermodynamical equi-
librium state of the system, phonon-induced interactions among impurities are computed and, under a
certain approximation, are conveniently decomposed into a sum over short-range many-body potentials

y, involving s particles inside a cluster of impurities. We show that in a range of physical values for the
model parameters in which m& (m, y, ——1/s for large s.

I. INTRODUCTION

Defects associated with different stable isotopic species
of a particular chemical element that composes a crystal
are inAuential on its phonon properties. ' These "isotopic
impurities" are usually assumed to be randomly distribut-
ed among the lattice sites. This is justified on the basis
that, concerning their chemical nature, all isotopic
species are identical to each other so it is unlikely to And
an a priori positional correlation among particles of a
same species. As a result, in calculating thermodynami-
cal functions of the system, the impurities are, in general,
considered quenched.

Here, we review this assumption from an opposite
point of view: instead of studying the effects of impuri-
ties on the phonons properties, we draw attention to the
inhuence that the phonons might have on the equilibrium
properties of impurities. In particular, we ask whether
and under what conditions the phonons of the lattice can
induce positional correlations among impurities. Eventu-
ally then, "isotopic order" might be established in a way
that the system would present macroscopic regions en-
tirely constituted by a single isotopic species.

We consider a chain of harmonic oscillators, all with a
common force constant K between pairs of nearest-
neighbor isotopes of masses m, (host) and mt, (impurity).
We assume that this system can be driven into a region of
suKciently high temperatures where the particles can
freely interchange positions with each other. In this situ-
ation the phonons may be influential on determining the
equilibrium configurations of impurities on the host lat-
tice.

We also assume that whatever the dynamical processes
that provide the system with these change of positions,
they are very fast processes compared to the observation
time. We then examine the conditions for isotopic frac-
tionation of thermalized impurities.

This is accomplished by describing the system through
a model Hamiltonian H =H( I bq I, I b~ I, I a „]), defined

:-(P,p ) =Tr exp( PH )exp —
/3p g 0 „

where the trace of an operator A is defined to be

(1.2)

Here we sum over the spin configuration Itr„] and
over the phonon occupation number in the q mode, In
IM is a chemical potential that controls the density of im-
purities.

Integration over phonon variables allows us to write =

t35F( [ v„) ) Ppg„—o „e
Io„ I

y. (~n, ~)e-i'"iIn, ~)
In

EF(Ia„))= ——ln

g ( In I ~e In I )
In

1 Z= ——ln-
P Zo

(1.4)

is the effective interaction among impurities.
Here, Ho=+ co b~b is the part of H which is in-

dependent of the configurations j a„ I and Zo is a normal-
ization constant defined to set b F(0)=0.

by Eqs. (2.8)—(2.12), which is a function of a set of pho-
non creation (b ) and annihilation (b ) operators as well
as it is a function of a set of classical, site-dependent, spin
variables o.„ that assume values 0 or 1 depending on
whether the isotopic species at site n is a host or an im-
purity, respectively. At inverse temperature P the
grand-canonical partition function is given by
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1

Ei=g@2(r, r, +, )+—g (1—s+1)y, , (1.5)

-14++ p2(r, —r, +, )+ 8'i, (1.6)

where a term 8'I is distinguished from a bulk energy lN.
(ii) implies that Wi goes as lnl when 1~~. Hence W&

can compete with the cluster entropy SI which is also a
logarithm function of the cluster size I. This competition
becomes relevant to disclose thermodynamical properties
of the system provided that the bulk is depreciated rela-
tively to these logarithm terms. This is achieved through
a convenient choice of the chemical potential p. In this
case, when the energy becomes larger than the entropy at
a certain temperature T„condensation takes place. In
our model it means stabilization of large clusters of im-
purities, or isotopic order.

In Sec. II we describe the model. The evaluation of
AFi( [0.„I ) which is identified here as the cluster energy
EI is presented in Sec. III. We discuss our results and ap-
proximations in Sec. IV.

II. THE MODKI.

AF( [o „ I ) is the impurities contribution to the free en-

ergy of the phonon system at a given [a „I. An approxi-
mate expression for this quantity is derived here by sum-
ming Feynman diagrams of certain classes up to all or-
ders in phonon perturbation theory. In a regime of
sufficiently low impurity density, disjoint clusters of im-
purities are nearly noninteracting; under this condition,
AF( [0„ I ) is decomposed into a sum over energies b,Fi of

i

I, clusters, defined as a sequence of l, consecutive impuri-
ties. Besides, under a suitable resummation of the con-
sidered diagrams, each AI'i is expressed as a sum over

l

defined short-range many-body potential y, of infinite
great order, involving a sequence of s particles inside the
set I;. We found that in the range of physical values for
the model parameters for which mb (m, : (i) all y, are
negative (attractive potentials) and (ii) for large s,
Ig, I

—1/s'.
The computed (effective) energy b,F is then mapped

onto a one-dimensional (1D) model proposed and solved
exactly by Fisher in the context of the theory of conden-
sation of classical particles. Equivalently to 1D models
with long-range interactions, Fisher has shown that in
the class of short-range many-body potentials, (i) and (ii)
are necessary and su%cient conditions for the system to
display a phase transition at a finite temperature T, . In
his model, the energy of a l cluster is written as

so, for o.„=0(1),the site n is occupied by a host (impuri-
ty).

With the aid of (2.2), H is decomposed as H =Ho+Hi
where Ho is the homogeneous part describing a chain of
harmonic oscillators, all with equal mass m, :

N m,
Ho= g ' u„+—u„(u„—u„, )

n=1
(2.3)

and Hi describes the perturbations due to the presence of
impurities:

mb W N

Hi g un~ n
n=1

(2.4)

To quantize the normal modes we introduce the pho-
non creation (bt) and annihilation (b ) operators as fol-
lows:

1Qn-
2Nm, m

(b +bt )e'q" (2.5)

and

{i)
qu„=i g

q 0
(bq b t )e 'q"— (2.6)

(we have set fi and the lattice constant equal to the unity).
co is the dispersion relation for the free phonons de-

scribed by Ho, with periodic boundary conditions, i.e.,

coq =+2K(1—cosq )/m, ,

—(N —2)qrqE
—277 2'

7

(2.7)

With (2.5) and (2.6), Ho and H, are rewritten as

Ho =g coqbtb
q

(2.8)

q, q'
(2.9)

We consider the case of two isotopic species A (host)
and B (impurity) with masses m, and mb, respectively. It
is useful then to introduce site-dependent spinlike vari-
ables o.„assuming values 0 or 1 and write m„as

m„=m +(mb m )cT„

The model Hamiltonian describes a chain of X isotopic
particles interacting with first neighbors via harmonic po-
tentials. It is given by

where

B,=(bq b' q»—— (2.10)

N mn . 2 EH= g ' u„+—u„(u„—u„, )
n =1

(2.1)
1 ~ba=— —1
4 I, (2.11)

where u„and mn are, respectively, the displacement from
the equilibrium position and the mass of the particle at
site n. K is a common force constant.

is the coupling constant and

.—:~~ e'q
q

—q ~ n
n

(2.12)
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III. EFFECTIVE ENERGY FOR IMPURITIES

A. Perturbation theory

—PbF([o„))=g (
—tr) P

p N

Pb.F( I
—o „])

r. & [&qI ~e 'U[()'-1 0}'[~.l]~ t "qI &

I nq I= ln-

where

(3.1)

U[(P, O);Io„I]=exp —J e 'H, e 'dr .
0

At fixed temperature T and configuration Icr„[ the
difference bF( [o.„]) between the free energy of the full
system described by H and the free energy of the system
described by Ho (or equivalently, the effective energy of
impurities) is obtained via integration over the phonons
variables:

Xg G(q, , v) G(q~, v),

where

G(q, V) =co~ Go(q, v),

60 is the free-phonon temperature Green's function

Go(q, v)= —I e '"('T[&q(r)&q(0)])«

2coq

P(co +v )

and v are the Matsubara's frequencies

V= for v=0, +1,+2, . . . .277 v

(3.2)

(3.3)

(3.4)

(3.5)

and ~=it is the Euclidean time variable.
If the argument of the logarithm above is expanded ac-

cording to the usual perturbation theory for phonons, '

expression (3.1) simplifies to

B. Random-walk representation

To the following evaluation of AF, it shall be more
convenient to rewrite expression (3.2) in the direct space.
Using definition (2.12) it becomes

p=1
Pb F( I

o.„ I }= g—
P

o; o; gF;;(v) F, , (v),
i &,i2, . . . , i E I1,. . .NI V

(3.6)

where

COq

F,, = 1 ye'
co'+ v'

q q

(3.7)

2
1 oo . . . CO+iq(i —j)

2' 00 &2+V2
q

(3.8}

which can be evaluated by residues on the complex U

plane where v =—tan(q/2). The result is

In the limit of N~ ~ the sum above can be replaced
by the integral

of (3.6) can be represented by closed walks visiting impur-
ities sites only, as illustrated in Fig. 1.

From Eq. (3.9) we see that in the sum over (impurity)
sites, each F; contributes either with a diagonal (local)
term for i =j or with an off diagonal (nonlocal) term fori' Of co.urse, the total number of impurities that are
visited by each walk depends on p (the order of the term
in the perturbative series for the phonons) and on the
number of nonlocal contributions to the corresponding
product. To evaluate this sum, we have made the follow-
ing approximations:

(a) The fact that x(v) runs over discrete values such
that

1 x
F; =6; —x 1+x

where

(3.9) 0&x &1 (3.12)

and that for x =0, F; =5;, imply that the nondiagonal
term in (3.9) is an exponentially decaying function of

x =x(v)=
1/2

v

v+c (3.10)

4'
C

Pl a
(3.11)

It is useful at this point to think of F; as an arrow con-
necting the site i to j. Each term on the right-hand side

FIG. 1. W'alks representation for some terms in (3.6) for a
chosen configuration of impurities. e= impurity; 0= host.
The dashed line represents a walk visiting only two particles.
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~i
—j~. [Note that for x&0, (1—x)/(I+x)(1]. This

suggests us to include only contributions of F, for which

i —j~=0 or 1 (3.13)

and to neglect the remaining terms.
In terms of walks, this approximation means that only

adjacent impurities can be connected at time through a
single F;. step. An important consequence of this is that
the walks under consideration cannot cross to different
clusters of impurities, where by "cluster" we mean a se-
quence of consecutive impurities. In other words, under
(3.13) the clusters do not interact with each other via
phonon-induced interactions, provided they are separated
from each other by more than one unity lattice space.
Hence, from all walks depicted in Fig. 1, we account only

I

FIG. 2. Walks connecting adjacent impurities at each cluster.

for the ones shown in Fig. 2. Consequently, we have

b,F( [cr„}) = g b,F,(„), (3.14)

where AF, („) is the effective energy of an isolated cluster
(indexed by r) of size l'"'. It will then be sufficient to
focus only on the evaluation of i((.FI(„( given by [for the
sake of simplicity, we drop the index (r ) of l'"']

PhF, =—$ $ $(1—x)~F, , (v). F;; (v)( —2ct )i'

p=1 1,&2, . . . , r Cl
(3.15)

with

for

y=y(v)= x(v)
1+x(v)

F~(V) =5; —y5; .+, (3.16)

(3.17)

which a walk can be initialized (and ended) and its direc-
tion. This gives a factor of 2(s —1). (iii) the number of
ways that a given walk can be "decorated" by local terms
in each order p. By a local term we mean the diagonal
element of F; which can be inserted into any site in the
direct walk. All of such "decorations" shall be included.
From this resummation, it follows that

(b) The second approximation we shall make, now on
the sum over the I-cluster sites, is suggested by the fact
that

P&y & (3.18)

C. Walks classification

Under the above approximations we wish to classify
the terms appearing in the products in (3.15) according to
s, defined to be the number of sites visited by a single
walk. This is achieved by collecting in all orders p of the
phonon perturbation theory, all walks that visit any s
particles for fixed s.

The multiplicity arising from this arrangement has
various sources: (i) all positions that a sequence of s adja-
cent particles can assume in the l cluster. This gives a
factor of (l —s+ 1). (ii) the number of possible sites from

To the subsequent evaluation of that sum, we will ac-
count only for the leading contributions that come from
direct walks, i.e., closed walks visiting a fixed number of
sites inside l but passing through each of them at most
twice.

With this, from all walks in Fig. 2 we consider only the
ones depicted in Fig. 3.

where the prime to the summation symbo1 means that
v=0 is exc1uded.

Here, the sum over s replaces the sum over sites in
(3.15), as long as only direct walks are accounted for. S&

comes from the occurrences of only diagonal terms
(decorations) in all products,

S& =l g g (1—x)&= —l g 1n[1+2a(1—x)] .(
—2a )i'

p=l p

(3.20)

The coefficients I.y account for all possible ways of hav-
ing y+1 sites decorated with r decorations. These are
given by

Ly=
T' (3.21)

I

PbFI=2 g —(l —s+1)(s—1)
$=2

Xg' g ( —2a) L2(,
v p =2($ —1)

X(1—x)~y ' "+S, ,

(3.19)

I -o-o-~-o-o-
I

which satisfy the recurrence relation

I y+1 I y +Ly+1r+1 r+1 r (3.22)

FIG. 3. Direct walks.
with initial values L$ =1 and L„=l. Hence, L„~ are
identified with the Laguerre polynomials L„r(g) at /=0.
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Now, the following sum

X—: g l.„' " (1 —x )~
—2u P

p =2(s —1)

for large s
—c 1

4m(2 —A) s
(3.30)

where

p=0, 1,2,

—p+2(s —1)
L 2(s —1)

p +2(s —1)
(3.23)

which implies that

c
lnl .

4m(2 —A)
(3.31)

x = —2a(1 —x ) (3.24)

can be written as an integral over the generating function
of Laguerre polynomials

The cluster's energy EI can thus compete with its en-

tropy Sl = lnl. When the l-cluster free energy
F& =EI —P S&, for large I, is positive, the system exhibits
condensation. This happens at inverse temperature P„
where

f d i i2s —3 ~ L 2(s —1) rp
p0

p
—0

2$
(1—x')

l3 (3.25)

P, = (2—A)
C

E. Bulk contributions

(3.32)

2(s —1) 1 —x
(3.26)

Substituting this result into (3.19), and accounting also
for definitions (3.17) and (3.24), gives

I

I3bFi= g (l ——s+1)
$=2

2(s —1)

Changing the variable: u =x'/(1 —x') gives immedi-
ately

2(s —1)

As already mentioned, bulk contributions to the total
energy of the cluster have to be compensated by a chemi-
cal potential p controlling the density of impurities.
Moreover, it is an essential condition for the thermo-
dynamical stability of the model that these contributions
be finite. It is convenient then to write down these energy
terms.

According to the Fisher's analysis [see expression
(1.6)], a bulk contribution I@& to the total energy of the I
cluster is

X
2ax(1 —x )

(1+x )[(1+2a)—2ax ]
+S1 .

(3.27)

l@,=l g ( —y, ) .
s=2

For y, given by (3.30), it becomes

(3.33)

D. Comparison with Fisher's model

Comparing (1.5), which gives the energy of a l cluster
in the Fisher's model, with the corresponding expression
(3.27) for the present model, we are lead to identify
(phonon-induced) many-body interaction potentials y, as

2(s —1)
x(1—x)

(1+x )[A —x ]
s 2y 3y ~ ~ ~

1 /

4m'(2 —A), =z s 6 47'(2 —A)

(3.34)

Ip@2=S, = —Ip g —ln
1 A —x(v)
P A —1

(3.35)

In our model, there is an additional bulk term I+2 as
defined by (3.20). In fact,

where we define

(3.28)
The sum above converges since In[A —x(v)]/(A —1)

behaves as 1/v for
~
v~ ~ ~.

Then, the total bulk contribution N,

1+2a
2(x

mb+ ma

mb ma
(3.29)

I@= I ( 4&, +N2)

is finite, as expected.

(3.36)

To use Fisher's criteria on the existence of a phase
transition of condensation, it remains to show that
y, ——1/s for large s.

The function inside the summation sign above depends
on the parameter A. Of course, we shall expect different
behaviors of y, with respect to s for different ranges of A.
Here, in particular, we examine the region where A &0
or, equivalently, mb & m, .

The method used here to evaluate the right-hand side
of (3.28) is presented in the Appendix. The result is that,

IV. DISCUSSION

In this paper, we study the thermodynamical equilibri-
um state of a one-dimensional model describing a chain
of two isotopic species, interacting via harmonic poten-
tials. Species with mass m, is considered to be the host,
while species with mass mb is the impurity. Assuming
that there is a mechanism by which these two species can
interchange positions in the lattice (the nature of this
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mechanism being immaterial here), we ask whether
phonon-induced interactions are sufIicient to produce iso-
topic fractionation.

Induced interactions (or effective energy) among im-
purities are obtained by integrating out the phonon de-
grees of freedom. Under certain approximations, we per-
form a suitable resummation of the phonon perturbative
series, in such a way that the cluster energy is written as
a sum over defined many-body potentials y, . This allows
us to recognize isotopic order as a phase transition of
condensation, according to the analysis carried out by
Fisher.

The necessary and sufhcient condition for the system to
display such a phase transition is that

(4.1)

for large s. Here we restrict our analysis to a particular
range of the model parameters for which mb &m„and
show that in this region, y, satisfies (4.1).

Approximations that have been made in deriving ex-
pression (3.30), restrict the number of diagrams (walks) in
the series expansion (3.6). By these approximations, (i)
interactions among difFerent clusters are neglected and to
each cluster, (ii) only "direct path" diagrams are con-
sidered. Note, however, that all "decorations" to these
leading terms due to local terms, have been considered
and the calculations were performed exactly.

The first of these approximations is supported on the
basis that the density of impurities, which is controlled
by the chemical potential p, can be made su%ciently
small to a point where chances of having two or more
clusters very close to one another are correspondingly
small. Notice also that p should be appropriately tuned
to compensate bulk contributions. Concerning approxi-
mation (ii), the neglected diagrams are believed to be per-
turbatively small and their sum (after a complex com-
binatorial calculation) is expected to give O(1/s ) contri-
butions to the s-body potentials cp, . Such contributions
are asymptotically irrelevant for the energy-entropy com-
petition.

In this respect, we can say that, among all diagrams
contributing to phonon-induced interactions, we have ex-
tracted and performed an exact calculation of those
relevant for a mapping onto Fisher's model. Our treat-
ment is, nevertheless, not rigorous in the sense that we
have not addressed here questions concerning stability of
this picture against perturbations.

The range where condition mb &I, is satisfied in-
cludes the set of values for which the pair (m„mb ) has a
correspondence with masses of two natural isotopes. In
principle then, one should be able to observe long-range
order in a 1D crystal with respect to its isotopic com-
ponents. For realistic cases where difI'erences in isotopic
masses are very small, A is very large. A rough estima-
tion of T, in this case can be obtained by substituting for
example, m, =10 a.m.u. , m& =9 a.m.u. and E =4 eV/A
(for covalent bonds) for the parameters appearing in
(3.32). With these we get T, = 60 K. Although thermally
excited hopping to vacancies or interstitials in 1D (or

quasi-1D) systems is expected to be the dominant mecha-
nism for rearranging the constituting ions, it is interest-
ing to note that at low temperatures, quantum-
mechanical tunneling might also be important for provid-
ing positioning exchange among difterent isotopic species.
Note also that measurements of thermal conductivity, for
example, can be performed to check experimentally the
theoretical results obtained here. Calculations of this
quantity in the ordered phase are in progress.
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APPENDIX

Here we evaluate the sum over the Matsubara's fre-
quencies in the expression (3.28) for y,

2(s —1)

V

x 1 —x
A — 1+ (A 1)

where x(v)=[v /(v +c )]' and v=(27r/P)v, for
v=0, +1,+2, . . . .

As usual (see, e.g. , Ref. 6) it is convenient to make the
analytical continuation

lV=Z

Consequently,
2(s —1)

x(co+i 5) 1 x(co+i 5)—
lim

o+ A —x(co+i 5) 1+x(co+i5)
' 2(s —1)

+ ix(co) 1+ix(co)
4+ix(co) 1+ix(co)

(A3)

meaning that the analytical continuation of the function
I[x/(A —x)][(1—x)/(1+x)]I ' " has two Riemann
sheets (labeled in the following + and —), intercepting
each other at the real axis between [ —c,c ].

Since the sum is symmetric with respect to positive or
negative values for v, it is convenient to evaluate it from
contributions of the residues at the upper side of the
imaginary axis. For this, we introduce the function

z/~z
~

+ix(z )/~x(z )
~

2l et' —1
(A4)

whose poles are at z+ =2niv/p, for v=1,2, . . .. Here,
x(z)=[z /(z —c )]'~ .

to introduce a contour integral representation for the
sum above in the complex z plane.

Note that if we put z =co+i 5 with co
~
(c, and take the

two limits: 6~0+ and 6—+0, the corresponding limit
values of x(z) become

x~(co) —= lim x(co+i5)=+i t/co /(c co ) =—+ix(co) .
6~0~

(A2)



51 ISOTOPIC ORDER BY PHONON-INDUCED INTERACTIONS 12 367

JI
Imz

)(
I q(
I

)(
I

~ )(
I

I

~ )(
I

I(

I

I

I

I

I

I

'

C+
I

I

I

I

I

W

/
/

I
/

I
I

I
I
I
I

~ )(
I

' )(

I )(
I

~, )(

FIG. 4. Contour in the complex z plane.
FIG. 5. Deformed contour.

With this, the sum in (4.2) is replaced by
2($ —1 )

2/3
d f( )

x(z) 1 —x(z)
2vri c+ A —x (z ) 1+x (z)

(A5)
where

= ——f dc'
2($1 )A I 2($1 )A2+'

e~ —1
(A6)

where C+ is the contour depicted in Fig. (4).
Next, we deform contour C+ into C'+ as shown in Fig.

(5). For canceling the contributions of integrals on the
real axis in the intervals [c, ~ ] and [ —oo, —c], we add
to the integral on C'+ the contribution from the integral
on C' . Note that in the region of parameters for which
A(0, there are no singularities in these intervals. Also,
there are no poles inside C', and since the whole in-
tegrand gives no contributions at ~z ~ ~, the total con-
tribution coming from integrals on C'+ and C' equals to
the sum over residues at the upper side of imaginary axis
plus the integrals on the real axis in the interval [ —c,c ].
Accordingly, we rewrite (4.6) as

h1 =ln ix(co) 1 ix(co—)
A ix(—co) 1+ix(co)

(A7)

and

ix(a—)) 1+ix(cu)
4+ix(co) 1 ix(c—o)

(A8)

I I, +I2], (A9)

where

A convenient change of variables: ~=ccosO replaces
the above integral by

~/2 . exp[2(s —1)[2i9—ln(1+i A tan8)]]
dO sinO

0 p cosO
(A10)

I2= dOsinO
exp j

—2(s —1)[2i0+1n(1 i% tan&)—]]
0 P cosO

(A 1 1)

For obtaining the asymptotic behavior of I1 and I2
with respect to s, we apply the method of stationary
phase. Since the argument of exponentials in the in-
tegrands have no turning points in 0 ~ O ~ m/2, the con-
tribution to each of these integrals come from the end
point O=O and is expressed by a series in powers of 1/s.
The first nonzero contribution to this series is of order
1/

—1 1

[2(s —1)[2—A]] e~' —1
(A13)

+O(1/s ) .C 1

[2(s —1)[2—A] ]

In the limit of s ~ ~ it becomes

(A14)

for AWO.
Substituting (4.13) and (4.14) into (4.10), we obtain the

dominant behavior of y, with respect to s:

and

—1 1I1=
[2(s —1)[2—A]]2 e ~' —1

(A12) —c 1

4m [2—A] s2

which is result (3.30).
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