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Low-frequency suppression of random-telegraph-noise spectra in high-temperature superconductors
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Interaction of the random-telegraph-noise signals with pinned Abrikosov vortices in granular high-
temperature superconductors is investigated. It is shown that the low-frequency part of random-noise
spectra is suppressed due to interaction of Abrikosov vortices with pinning centers at low magnetic fields

and/or due to mutual interactions of vortices in an Abrikosov lattice at high magnetic fields. Values of
characteristic frequencies below which spectra are suppressed are evaluated for various experimental
configurations including a typical experimental thin-film strip geometry. It is shown that characteristic
frequencies and the functional dependence of the low-frequency part of the noise spectra strongly de-

pend on the external magnetic field.

I. INTRODUCTION

High-T, superconductors (HTSC) are characterized by
strong manifestations of low-frequency noise in the form
of 1/f fluctuations and pronounced random-telegraph-
noise (RTN) signals. ' For recent reviews, see Ref. 1

for flux noise and Ref. 2 for voltage noise. Although the
detailed physical mechanism responsible for these fluc-
tuations is still not fully known, it is generally recognized
that a high level of low-frequency noise in HTSC materi-
als is due to the high temperature of operation, strong an-
isotropy, and low pinning energies, resulting in relatively
easy movements of flux vortices. Flux noise converts into
voltage noise observed in thin HTSC films biased with the
current flow exceeding the critical current of the sample.

1/f flicker noise in solid-state systems is claimed to re-
sult from an incoherent superposition of many RTN sig-
nals generated by microscopic elementary two-level fluc-
tuator (TLF's) possessing proper distribution of cutoff
frequencies of their Lorentzian spectra. ' This mecha-
nism was confirmed by several experiments performed
with submicron size samples containing only few, or even
just a single TLF.' "" However, in high-T, materials,
along with 1/f noise and elementary fluctuators, we deal
with yet another type of random-telegraph-noise signal.
This particular RTN manifests itself in large samples, not
of subrnicron dimensions, and is therefore claimed to be
generated by the macroscopic two-level fluctuator
(MTLF). The characteristic feature of macroscopic RTN
in HTSC is strong dependence of its power spectra on
bias current, applied magnetic field, and temperature, as

well as its appearance only within the limited "noisy win-
dow" range of bias parameters. The duty cycle of the
macroscopic RTN, defined as the ratio of the average
lifetime of the system in the high-voltage state ("up"
state) to the sum of average lifetimes in the low-voltage
state ("down" state) and in the high-voltage states of the
RTN, strongly depends on bias conditions and tempera-
ture. The most pronounced macroscopic RTN were
detected in granular HTSC films where extremely fast
switching rates may extend the measurable noise spectra
far into MHz frequencies.

The shape of RTN Lorentzian power spectrum is fully
determined by the amplitude of the signal, i.e., by the
difference between the high and low signal levels, by the
average lifetimes in both voltage levels, and by the back-
ground noise. ' In particular the cutoff frequency of a
RTN Lorentzian spectrum is determined by the sum of
inverse of lifetimes in both levels. Usually, a symmetric
RTN shows out close to the center of the noisy window
and any deviation of the bias current and/or the rnagnet-
ic field from the center of the noisy window causes the
RTN to become asymmetric.

The origin of macroscopic RTN in oriented or epitaxi-
al HTSC films is most likely associated with random, ac-
tivated changes in number of vortices participating in
flux-flow or flux-creep dissipation processes. In granular
films the generation of macroscopic RTN involves possi-
bly two mechanisms: the fluctuator mechanism, responsi-
ble for activated random jumps of flux lines, and the
detector action that couples flux noise to the observable
voltages. There is strong experimental evidence that
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direct conversion by intrinsic quantum interferometers
constitutes the detector mechanism in granular HTSC
films. Another intriguing possibility is an integrated
Auctuator-detector action predicted for serial-parallel ar-
rangement of Josephson junction constituting intrinsic in-
terferometer loops. ' '

Regardless of the mechanism laying behind the Auctua-
tions, the RTN signal always causes random currents to
How in the HTSC sample. The random currents cause
random Lorentz forces to act on vortices created inside
the sample, either by the external magnetic field or by the
self-field of the dc bias current. Moreover, in granular
samples Lorentz force, apart from the random com-
ponent in time, will possess a random component in
space. Space randomness is due to the distribution of
current density in the sample and to the distribution of
magnetic induction in the grains.

Motion of vortices, caused by the interaction with ran-
dom components of the Lorentz force, generates addi-
tional voltage across the sample that changes the power
spectrum of RTN signal. The vortex-vortex interaction
in the pinned Abrikosov lattice and/or interaction of vor-
tices with bulk and surface pinning sites, opposes random
force. As a result the power spectrum of the RTN signal
will be suppressed at low frequencies. The extent and the
frequency boundaries of this effect should depend on the
elastic properties of the vortex lattice and on the struc-
ture and strength of the pinning potential. ' In this paper
we investigate the phenomenon of attenuation of low fre-
quencies in random signal spectra for different values of
the external magnetic field.

II. THEORETICAL MODEL

Let us consider a superconducting film composed of
many grains linked by intrinsic Josephson junctions. The
film is immersed in an external magnetic field, applied
perpendicular to the film surface, and biased with a dc
current Qow. Abrikosov vortices created in the film by
the self-field of the bias current and/or by the external
magnetic field are pinned on natural pinning centers asso-
ciated with film inhomogeneities. On the basis of experi-
mental findings' we assume that in a Y-Ba-Cu-0 thin
film we deal with two different types of pinning centers:
strong pinning centers which are trapping the major part
of vortices and shallow ones. The shape of pinning po-
tential depends on the space coordinate in the film and on
the values of magnetic field and dc current Aow. For
current How below the depinning current, Abrikosov vor-
tices in the strong pinning centers undergo only small dis-
placements from their equilibrium positions. Due to the
action of the effective Lorentz force imposed by the bias
current and magnetic screening current, the pinning po-
tential will be stressed. For certain bias conditions, noisy
window, we may arrive to the situation in which two
adjacent shallow pinning centers form a two-level Auctua-
tor (TLF) consisting of two almost equal potential wells
separated by an energy barrier and a Aux line undergoing
thermally activated jumps between the wells. ' ' As it
has been shown earlier, see the Introduction and refer-
ences quoted therein, such jumps result in magnetic-Aux

random-telegraph signal. Flux noise may get converted
into the voltage noise in the presence of Josephson dissi-
pation in the film. In our model we assume that random
telegraph signal, generated by flux jumps, interacts with
the remaining relatively strongly pinned Abrikosov vor-
tices. Viscous relaxation of these vortices attenuates low
frequencies of the random signal spectra. In order to ac-
count for this effect, in the following we will calculate a
response of the system of strongly pinned vortices, in
various experimental configurations, to the action of the
external random force due to the Aux jumps.

A. Basic equations

where t is the time. J(p, t) contains all information about
the vortex dynamic. Total voltage due to the vortex
motion is

V(t)= fd'pg(p)J(p, t) . (3)

The noise component of the voltage V(t) can be
represented in the form

5V(t) = V(t) (V(t) ),=f—d'pg(p)5J(p, t), (4)

where 5J(p, t)=J(p, t) (J(p, t)), and—( ), stands for
the time average. The voltage autocorrelation function is

(r) —(5V(t)5V(t +7 ) )
= f d p f d p'gg (p)gtt(p')K tt(p, p', r),

aP

where

K p(p, p', r)= (5J (p, t)5Jt3(p', t +r)),
is the vortex-fiow correlation function, a and P are Carte-
sian coordinates. Observe that the voltage (3) and its au-
tocorrelation function (5) depend both on the measuring
circuit geometry and on the vortex dynamics. In the fol-
lowing we shall assume that function E & describing the

For a sample containing a number of vortices, the total
voltage due to the vortex motion results from a superpo-
sition of contributions from individual vortices. The rela-
tion between voltage V, produced by the ith vortex and
the vortex velocity for a uniform thickness film is deter-
mined by the resolution function g(p; ), where p,. is the ith
vortex radius vector. ' The form of this function depends
on the geometry of the sample and on the voltage
measuring circuit.

V; =g(p;).v;,

g(p)= [b,(p) —b b(p)] .0o

rn

Here v; is the vortex velocity, b, and b b are the values
of b on the top and on the bottom of a slab, and b is
the magnetic induction due to the current How I in the
measuring circuit. A vortex-Aux density can be
represented in the form'

J(p, t)=g v, (t)&,[p —p, (t)],
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vortex dynamics is independent from the measuring cir-
cuit geometry.

Let us consider superconducting thin film containing
rigid vortices. Positions of vortices in the slab are de-
scribed by two-dimensional vectors p, . ' For a vortex
with equilibrium position a,.o in the Abrikosov lattice
frame (ALF) we write

where

Fz&=no J d pg(p}E(qA, )exp(iqp) .

and

G„i = no f—d pg(p)voexp(iqp)(iqe(qi, )} .

(16)

(17)

U(u(a;0, t) ) = —,
' g G ( i, j)u(a;0, t)u(a 0, t),

lj

where G(i,j) is the elastic matrix. Vortex deviations
u(a;O, t) can be expanded in the basis of polarization vec-
tors c,(q, A, ) diagonalizing dynamic matrix D (q;k):

D (q)e(qA, ) =D &E(qA, ),
where

D(q)=g G(h)exp(iqh), h=a, o
—a 0,

h

(10)

u(a;0, t) =QE(qA)exp(, iqa;0)Qqi

where Qqi(t) are the normal-mode amplitudes, q and A.

are the wave vector and polarization, respectively.
According to Eq. (5) voltage noise can be expressed in

the terms of vortex-Aow correlation function. If the di-
mensions of the measuring circuit are large with respect
to the intervortex spacing, we can treat the vortex lattice
as a continuum. Within the first-order approximation,
assuming small displacements of vortices from their equi-
librium positions, the change in the vortex-How density is

p,. =a;0+u(a;0, t),
where u(a;O, t) is the deviation of a vortex from the point
+io'

The energy of interaction between vortices can be writ-
ten in the harmonic approximation:

Observe that there are two components in Eq. (15)
describing the voltage noise. The first one is proportional
to the velocity fluctuations, i.e., to dQq&„/dt, while the
second term is proportional to the vortex density Auctua-
tions, i.e., to Q i . Let us consider two difFerent
configurations of the sample and voltage measuring cir-
cuit.

1. Infinite jllm with parallel vertical
voltage measuring leads

The considered geometry is illustrated in Fig. 1(a).
Thin infinitely long parallel vertical leads are attached to
the superconductor at the points a and b. In this case we
rewrite Eq. (1) as'

g(p) = — [b (p)+b, (p)],

nX(p —p, .b)
(p) =+2

clP —P. , b
I'

(19)

where n=B/ B~ is the unitary vector of magnetic induc-
tion in the film. Putting Eq. (18) into (16) and (17) we ob-

where p is the vortex position on the top of the slab. As-
suming that ~p p, b~ is l—arger. than the voltage lead ra-
dius R one can write for b (p)

5J(p, t)=n05v(p vot, t)+v05n(—p vot t), —(12)

where no is the equilibrium vortex density, 5J and p are
vectors in the laboratory reference frame, and 6v and 6n
are measured in the ALF system moving with a velocity
vo. Identifying 5v as du/dt and 5n as [ noVu], w—e get
from Eqs. (9)—(12)

dQq~.
5J(p, t)=no+ e(qA, ) —ivoq E(qA, )Qqi(t)

qA,
dt

X exp[iq(p —vot ) ] . (13)

Putting 5J from Eq. (13) into Eq. (4) we obtain for the
noise voltage

5V(t) =+5V,~(t),
qA,

with

(14)

D

5V (t)=[F dQ (t)/dt+G „Q (t)]

X exp( i qvot), — (15)
FIG. 1. Geometry of the considered problem: (a) finite film,

and I,'b) thin-film strip.
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tain the following expressions for F & and G &..

Fq~ =B[e(qA ) X [exp( iqp, )
—exp(iqpb ) ]

q
Jo(qR )5~.„

X
i/q/c

displacements, we obtain

d +Dq~Qq~(t) =5fq~(t)dQqA, (t)
dt

where

5f z =—g exp( —iqa o)E(qi, )5f(a o, t),=1
q

(27)

(28)

~

Xvo [exp(iqp. ) —exp(iqpb)]
q

Jo(qR )5~.„
X (21)

2. Infinite strip with voltage measuring leads
far away from the surface

where Jo is the Bessel function of the first kind, 5&.„and
5&.&, are the Kroneckers symbols for the transverse and
longitudinal polarizations, respectively.

and X is the number of vortices. The solution of Eq. (27)
1S

dco
Qq~

= crq(q, co)5f g(co)exp( iso—t ),2'
o ~(q, c0) = —

[incog
—Dqg]

(29)

(30)

Knowing the Auctuating component of the external force,
5f, we can calculate Q & and dQ z/dt, and thus the re-
sulting noise voltage.

For a strip possessing length I. in the x direction,
width 8' in the y direction, and thickness D in the z
direction, such that I.»8'»D and having measuring
leads attached at points [x„0] and [xb,0] such that
x, —xb=s»8', see Fig. 1(b), the resolution function

) is20

4o
g(p) = y

—1 /2

ey (22)

where e is the unit vector in the y direction. Equation
(22) holds for vortices moving between the leads far away
from the contacts. A more complicated expression would
arise if a vortex position would fall within a distance less
than 8' from the contacts. Nevertheless, the condition
s » 8'allows us to neglect contributions of such vortices.
Proceeding as in the previous case we obtain for Fq& and

qYW
qA, 2 0 &q o&~i. (23)

q, W
G q= (q vo)Jo

2c 2 &q o&~~. . (24)

3. Vortex motion

The phenomenological equation of force balance for a
moving ith vortex is

dpi = —g G(j, i)u( j,t)+ f,„,(p, , t),dt J.

(25)

where g is the vortex viscosity per unit length, f,„,(p;, t)
is the linear density of the external force, while the
vortex-vortex interaction term is accounted for according
to Eq. (8). Taking the time average of Eq. (25), we obtain
for vortices displacements from equilibrium positions

du(a;o, t)
+QG(i j )u(ajo, t) =5f(a;o, t), (26)

dt

where 5f=f,„,—( f). Expanding Eq. (26) by the normal

B. Random-telegraph noise in granular 61m

According to the assumptions of our model we divide
the system of vortices into two subsystems. Weakly
pinned vortices generate random-telegraph signals at ap-
propriate bias conditions, while strongly pinned ones
behave differently in different experimental situations.
We account for the telegraph signal by introducing an
external force into Eq. (25) in the form of a random force
providing a random-telegraph correlation function in the
time domain.

=Z(t, t')exp( —
q&~p

—p'~) . (31)

The quantity q& is determined by [1/1, 1/1], where 1 is the
correlation length. It is reasonable to assume that in a
granular sample l will be of the order of the characteristic
size of the grains. For RTN-induced random force one
should write Z(t, t') in the form

1. Dense Abrikosou lattice in grains

In the following we shall consider a thin granular su-
perconducting film with an average grain size d. The
Abrikosov vortex lattice is created in each grain by a
sufficiently strong magnetic field applied perpendicular to
the film surface. Let us assume the presence of RTN
voltage in the sample. RTN voltage results in additional
random currents Rowing along the grains and conse-
quently in a random Lorentz force acting on Abrikosov
vortex lattice inside the grains. Observe that the Lorentz
force due to RTN is a random function depending both
on time and on space coordinates. Spatial dependence is
due to the inhomogeneity of the considered system, in
particular to the distribution of magnetic induction in the
grains and to the spatial distribution of current density.
One can separate time and coordinate dependent com-
ponents of the force-force correlators, assuming that they
are independent. The spatially dependent factor can be
written, for the simplicity sake, in the exponential form.
Time randomness of the signal is included in the time-
dependent part of the correlator Z(t, t')

Z (p, p', t, t') = (5f(p, t)5 f(p', t') )
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Z(t t ):Zpexp
7

(32) Z(q, co) =—JZ(r, t )exp(icot+iqr)d rdt,1
(34)

XZ(q, co')!cr(q, co')! (33)

where Zo is the mean square of the Lorentz force Auctua-
tions.

Spectral density of fiuctuations, using Eqs. (5) and
(15)—(17), can be represented in the form

where co'=co —qvo and S is the surface of the sample.
Assuming that all Abrikosov vortices are pinned inside

the grains, vo=0, we obtain from (21) and (24) that
Gqi =0. Performing a Fourier transform of (31) and (32)
and putting them into (33), one can obtain an expression
for P„(co) due to the action of an external RTN. Now, as
in Sec. IIA, we shall consider two different types of
measuring circuit.

a. Infinite Plm with parallel Uertical leads. For this
configuration of the measuring circuit we derive from Eq.
(33) using Eq. (20)

4C co sin'(q R,s/2)Jo(qR)qocos Ip
P, (co)=

2 qdq dy z zl (cor) +1 q [q cos q&+qo][q sin y+qo][D „+(gco) ]

Zo~B l
Dqt. =koq C6e/»

C

(35)

where qo= 1/1, tp is the angle between q and vo (x axis).
C« is the shear modulus of Abrikosov lattice, and B
stands for !B!.The integration in (35) is performed over
the first Brillouin zone of the reciprocal lattice of Abriko-
sov vortices. For sufficiently dense lattice the shear
modulus is

(36)

therefore, the magnitude of spectral density depends on
magnetic field as P„(co)~ B .

Let us have a closer look at the spectral density func-
tion at various frequency ranges:

(i) For extremely small frequencies, co«co„, where
characteristic frequency co„=PoCs6/B rtR, &, one gets
from the integral (35)

For the opposite case of large diameter voltage leads,
R ))l, the formulas remain valid if the characteristic fre-
quency co, will be substituted by cog =PpC66/B'gR

The overall shape of power spectrum for a dense Abri-
kosov lattice interacting with a random-telegraph signal
in an infinite film is schematically presented in Fig. 2(a).

4 Pv(&)

23& C co

16' [(cor) +1] co„
(37)

4g [(cor) +1] (38)

(iii) For large frequencies, co»co„ the vortex lattice
cannot damp the random-telegraph signal because the in-
tegral (35) does not depend on the shear modulus at all.
As a result we get, assuming again that l »R,

4 CP, (co)=
2 2 z If(qo);

l ri [(cor) +1]
sin2(q. R,b/2) Jo(qR)qocos pI (q )= qdq dq)

q q cos y+qo q sin y+qo

(39)

Observe that at low frequencies power spectrum (35) de-
creases linearly with decreasing frequency and ap-
proaches zero when frequency co—+0.

(ii) For intermediate frequencies, co„«co«co„where
the characteristic frequency co, =PoCs6/Brtl, we obtain
an asymptotic result valid for I »R,

&c P (ca)

I

I

I

I

I

I

I

I

I

!
I

~w

FICi. 2. Qualitative behavior of power spectrum for an
infinite film geometry (a), and for an infinite thin-film strip (b)
for high magnetic fields (dense Abrikosov lattice) and for medi-
um magnetic fields (soft, low density lattice).
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CS co Jo(q W/2)qo
P„( )= dq

41 (cow) +1 [Dq&0+rl co ][q +qo]

ZO~B l
Dqio=goq C»/8, and C=

C

(40)

Note the appearance of the maximum in the spectrum at
a frequency of the order of co, (co„). Since the shear
modulus of Abrikosov vortex lattice is proportional to B,
see Eq. (36), all characteristic frequencies do not depend
on magnetic field. Evidently, the shape of P, (co) depends
on the relation between the correlation length I and pa-
rameters of the measuring system R,b and R, i.e., eventu-
ally on the sample microstructure.

b. Infinite strip, leads kept far from the surface. For
the infinite strip with leads placed far away from the sur-
face we derive from Eq. (33) using Eq. (23),

C $ co
P, (co) =

4W 1 (cor)2+ 1

sin (qW/2) Jo(qW/2)
X dq

(D,o+rl co )q
(43)

For small and large frequency range we get, respectively,

Zoos B 8' 1/2
P„(co)= co 4(co~'

16(2$0ci, )' 7J c [(co1 ) +1]$1
P„(co)cc

& 2, co ))co~
4iP [(cor) +1]

(44)

At low frequencies the dependence P, (co) is identical to
that given by Eq. (41), assuming that the correlation
length 1 = I /qo extends to the entire width of the strip W.
At high frequencies we observe an unperturbed Lorentzi-
an shape with a geometry-dependent magnitude.

Observe that in this case, according to Eq. (23), random
external signal interacts with longitudinal displacements
of Abrikosov lattice only. Elastic constant corresponding
to these displacements is proportional to the bulk
compressive modulus of the Abrikosov lattice C». '

Therefore, we have only one characteristic frequency co

which depends on the strip width co =poC»/Brlw .
For limiting frequency ranges we have:

(i) At extremely small frequencies co « co

(2co/co )
P„(co)=

Sil lW [(cor) +1] (41)

the power spectrum goes to zero with decreasing frequen-
cy as co' . For sufficiently strong magnetic fields the
modulus C», in a long-wave limit, can be expressed as
C» =B /4m. . ' The characteristic frequency co becomes
thus field dependent, co„=$08/4mgW, while the spec-
trum magnitude P, (co) cc 8 ~ .

(ii) For large frequencies co)&co we find

$2 C
P, (co)=

2 2 2 I, (qo),
41 g [(cor) +1]

I,(qo)= f dq Jo(qW/2),(q'+q,') '
(42)

and the power spectrum is undisturbed by the vortex sys-
tem. The magnitude of the power spectrum is simply
proportional to B . The schematic shape of the power
spectrum for an infinite strip is shown in Fig. 2(b). In a
marked difference to the infinite film case, the broad max-
imum is substituted now by a peak centered at a charac-
teristic frequency co„.

Let us underline that due to a finite width of the strip
the effect of suppression of the low-frequency part of
power spectra will exist even for a uniform distribution of
the current How density in the strip. In this case only the
time-dependent part of Eq. (31) is important. Evaluating
the integral in Eq. (34) we obtain for P, (co)

where so is the vortex energy. Putting (45) into Eqs. (37),
(38), and (41) we find that the power spectrum P„(co) de-
pends on the magnetic field in a nontrivial way. For par-
ticular setups we have:

(a) Infinite film with parallel vertical leads.
(i) Extremely small frequencies co « co„;

P, (co)=aB" exp(PB '
)

where

(46)

and

3Z~lmR, Xa=
16rtgoc Eo(~/6P)' [(cor) + 1]

p=Qy, n, ' .

(ii) Intermediate frequencies co„«co « co„(co+ );

P„(co)=aiB (a2+ —,'lnB+PB ' ),
where

(47)

Zo~l ~
4c g [(cor) +1]

Q)'QA, R~b

c,opo(m. /6p) '

(iii) Very high frequencies co»co, (co+); At high fre-
quencies, as was in the case of a dense Abrikosov lattice,
the power spectrum does not depend on C«and
P„(co)~B .

Note that in a marked difference to a dense lattice for a
soft Abrikosov lattice in an infinite film the characteristic
frequencies are magnetic-field dependent. Indeed, taking

2. Lour density Abrikosov lattice in grains

If the intervortex distance do=($0/8)'~ exceeds the
magnetic penetration length A, the vortex lattice becomes
smoother, the elastic modulus C«changes dramatically
and becomes

3C66=C» =(3m/2)' Eo/A, (A/do)' exp( —do/A, ),
(45)
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into account (45) we have

Noc66

BgRab

(m /6i eed exp( do/A )

9 ab
(48)

n co depend on B in an analogousThe frequencies co, and co+ epen

face For extremely small frequencies e ow a
teristic frequency cu

PeCi i (3ir/2 i Ee ed exp( —de //L. )

3/2 2N Bg W

the power spectrum takes the form

(49)

PB i/2
P„(co)=yB exp19/8 (50)

where

1/2

i/4 i/2 3/2 2 [( )2+ 1 ]4 (3m.ge/2
(51)

gp

»co, as in a11 previous cases,For frequencies co »m

P, (co) ~B .2

rendu (pe)/dt +Ecru,.(pe) =5f(pe+i Po (52)

alon the y axis,
and U p is vortex potential energy in a

d
'

ill i 1 o
tnd ' tot}1 t' 1p

0
ihk=0, hing in eth sum only the term wit

trum is

2
2

CO
2

e . [(cov') +1][co +co ]
( )d'

4'oi)'

(53)

where co& =K/g ist ec ah h racteristic pinning frequency.
heNote that in the case of singe vor i

b th surface barriers ofma besetbyt esu
undaries (surface pinning .the grain boundaries

. (22) and obtaingeometry we take g(p ) from Eq.

B s ZQT g 2

4c2il [(cor) +1][co~+co ]
(54)

ccoiding to Eq. (54) is presented in Fig.
h 'o 1 di d3. In a mar e i

V
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TABLE I. Estimation of the ro11-on frequency below which RTN power spectra might get
suppressed due to the relaxation of pinned vortices in a narrow (0.01 cm width) thin-film strip.

Configuration:
magnetic field:

on

Abrikosov lattice
strong field B—10 Gs

10 Hz

Abrikosov lattice
low field B—50 Gs

10 Hz

Single vortices
very low field

10 —10" Hz

magnetic fields Eq. (45), while in strong fields approxi-
mating it by C» =B /4m, ' we obtain the results shown
in Table I. For the case of single pinned vortices the
roll-on frequency co,„corresponds to the pinning frequen-
cy co =I(. /il. Values quoted for co in Table I are taken
from the recent experimental evaluations. I.et us un-
derline that in the case of vortices pinned inside the
grains by means of the surface pinning the equivalent pin-
ning frequency, set by the size of the grain, may be of or-
ders of magnitude lower.

In real experimental situations the macroscopic RTN
signals are usually accompanied by the background fluc-
tuations frequently taking a form of 1/f noise. The 1/f
noise influences the shape of power spectra and in partic-
ular changes the values of characteristic frequencies, thus
changes the position of the maximum. This problem will
be discussed by us elsewhere.

Although the present paper deals with RTN spectra we
would like to underline that the described effect of
suppression should be observed for an arbitrary external
signal, random or deterministic, applied to the supercon-
ducting system. The physical mechanism of the suppres-
sion is generally associated with the action of the pinned
vortex system opposing the external force. In fact, there
are experimental data in the literature clearly demon-
strating spectra with suppressed low-frequency

parts. Nevertheless, most of the hitherto reported
spectra are free from the low-frequency suppression
effect. According to the presented model the suppression
should not be observed in infinite nongranular films at
low magnetic fields at which vortex-vortex interactions
can be neglected. The latter case has been investigated by
some of us in a recent experiment performed with an epi-
taxial BSCCO film at 77 K and indeed, no anomalies
were detected in the RTN voltage power spectra. The
effect should also vanish for flux-flow dissipation at high
velocities of flowing vortices. We are currently investi-
gating this problem.

In the present paper we have restricted ourselves to the
investigation of pinned vortex systems with mean velocity
equal to zero. It is easy to imagine that the effect should
not vanish abruptly when vortices start to flow with
sufficiently low velocities, as is probably the case of
several spectra reported in Refs. 27 and 28.
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