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We present a systematic analytical study of the soliton excitations in a one-dimensional diatomic lat-
tice with nonlinear on-site potential and a quartic interaction between nearest neighbors. We show that
(1}the decoupling ansatz widely used in literature for the motion of two difterent masses is unncessary
and can be naturally derived in our approach; (2) the system may support some new types of gap solitons
and resonant kinks, two of which have been observed recently in a nonlinear diatomic pendulum lattice
experiment; (3) for nonlinear on-site potential when the wave number of carrier waves is near the edge of
the Brillouin zone and the diff'erence of mass between two kinds of atoms becomes small, the results
coincide with that of Kivshar and Flytzanis about the gap solitons in diatomic lattices; and (4) the
theoretical results, being without any divergence, are valid in the whole Brillouin zone and can be ap-
plied to other nonlinear lattices.

I. INTRODUCTION

The pioneering works of Fermi, Pasta, and Ulam' and
of Zabusky and Kruskal have stimulated a great variety
of research on dynamics of nonlinear lattices especially
lattice solitons. Most of the work in this area has focused
on models of one-dimensional (1D) monatomic chains,
the prototype of which is the Toda lattice. The non-
linear excitations in diatomic lattices have also received
much attention due to their applications to some
physical systems. Models of diatomic lattices have been
used as prototypes to approach the transport of energy, '

the proton conductivity in hydrogen-bonded chains, "
and the structural phase transition and associated soft-
mode and central-peak phenomena which occur in ma-
terials like ferroelectric perovskites which present a
quasi-1D diatomic structure along certain crystallograph-
ic directions. '

On the other hand, the so-called intrinsic localized
modes in anharmonic lattices proposed by Sievers and
Takeno' have been greatly studied. ' ' Since these
modes are localized in only a few particles, they can be
viewed as strong localized nonpropagating envelope soli-
tons. ' Recently the interest has turned to the gap soli-
tons in nonlinear diatomic lattices. ' The concept of
gap solitons was introduced by Chen and Mills when they
investigated the nonlinear optical response of superlat-
tices. For a diatomic lattice, the phonon spectrum of
the system consists of two branches (acoustic and opti-
cal). If nonlinearity is introduced, the gap solitons may
appear as localized excitations when the nonlinear fre-
quency is shifted into the linear-spectrum gap induced by
the mass or force-constant difference of two kinds of
atoms.

There are several theoretical methods to study the non-
linear excitations in 1D diatomic lattices. The first one
proposed by Buttner and Bilz is using the so-called
"decoupling ansatz" plus a continuum approximation for

the motion of the two different sublattices. Because this
ansatz is based on some relations previously assumed be-
tween the displacement of light and heavy atoms, it is not
satisfactory in theory. The second method was intro-
duced by Yajima and Satsuma. They discussed the dy-
namics of the lattices in terms of normal-mode coordi-
nates whose relation with the actual displacements, as
pointed out by Dash and Patnaik, is very complicated
and it is di%cult to visualize the solitonlike behavior of
the displacements. The third one is the so-called "sem-
icontinuum approximation" employed by Collins. In
this treatment the decoupling ansatz has also been used
[see Eq. (3.19) in Ref. 9], and the method can only be ap-
plied to acoustic excitations. The fourth method is due
to Kivshar and Flytzanis. They considered nonlinear
coupled modes in a Klein-Gordon-type diatomic lattice,
analyzing soliton solutions in the vicinity of the gap of
the linear spectrum. In the above approaches, the first
three methods were used by those authors to investigate
the soliton excitations at q =0 (q is the wave number of
the carrier waves) and the fourth one is only valid at
q =q~ [where q~ is the edge of the Brillouin zone (BZ) of
linear spectrum] and small mass difference. ' Pnevma-
tikos, Flytzanis, and Romoissenet considered the soliton
dynamics in nonlinear diatomic lattices in the quasi-
discrete approximation (see Sec. IV in Ref. 8), but the
decoupling ansatz was also used and the results obtained
are divergent when q is near q~ [see Eqs. (4.5), (4.6), and
(A5) —(AS) in the Appendix of Ref. 8].

Recently, some interesting gap soliton patterns have
been observed in a nonlinear diatomic pendulum lattice
based on the experiment of Denardo. These excitations
are localized in the lattice in which the heavy atoms are
at rest and the light ones form a nonpropagating envelope
soliton (or kink) with opposite phase phase between the
nearest neighbors. The lattice vibratory patterns are
shown in Fig. 1. They cannot be explained by previous
theoretical approaches. In this paper we try to introduce
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FIG. 1. The lattice patterns of (a) the gap soliton and (b) the
resonant kink observed recently in a diatomic pendulum chain
(Ref. 24).

m u)
—K2(u, +, +u. ,

—2u )
dt

—K4[(u, +, —u, )'+(u, ,
—u, )']+co02m, u, —m, au, '. =0 .

(2)

For a diatomic lattice we can assume that u2k =v, and
m 2k

=m for j =2k (even particles) and u 2k + i
=w„and

m2k+, =M (M) m) for j =2k+ 1 (odd particles). n is
the index of the nth unit cell with a spacing of a =2ao
(see Fig. 2). By these notations the equations of motion
for the even and the odd particles can be written sepa-
rately as

2

v„—Iz( w„+w„,—2u„)+clou„—au„

—I4[(w„—u„) +(w„,—u„) ]=—0,
2

2
w„—Jz ( v„+u„+,—2w„)+coow„—a w„

a systematic method to study the nonlinear excitations in
nonlinear diatomic lattices under a quasidiscreteness ap-
proximation. We show that the decoupling ansatz widely
used in the literature is unnecessary and can be derived
naturally by our approach. Some new types of gap soli-
tons and kinks are proposed and when q =qz the results
coincide with that of Kivshar and Flytzanis if the
difference of mass of the two kinds of atoms becomes
small. Our method is valid in the whole BZ and without
any divergence. It can be used to explain the recent ex-
perimental observation about the gap solitons and kinks
in the nonlinear diatomic pendulum lattice. A simple
result for the nonlinear on-site potential has been ob-
tained recently. The paper is organized as follows. In
Sec. II we present our model and its asymptotic expan-
sion. In Sec. III we discuss the acoustic-mode excitations
and in Sec. IV the optical-mode excitations. A long-
wave approximation is given in Sec. V. Section VI
presents the gap solitons. A discussion and summary is
given in the last section.

II. MODEL AND ASYMPTOTIC EXPANSION

The Hamiltonian of 1D nonlinear lattices of atoms
with nearest-neighbor interactions and on-site potential is
given by

—J4[(v„—w„) +(v„+,—w„) ]=0,
where I, =K, /m and J, =K, /M (i =2,4). In order to in-
clude the efI'ects of anharmonicity and discreteness of the
system, we employ the method of multiple scales com-
bined with a quasidiscreteness approximation introduced
by Tsuyui and developed and simplified recently in
Refs. 17 and 28. In this treatment one sets

2 ~ "nn
v=1

where e is a small but finite parameter denoting the rela-
tive amplitude of the excitations and u„'„' —= u' '(g„,r;P„),
i.e., the first (second) subscript n represents the variable
g„(P„). g„and r are "slow" variables defined by
g„=e(na —

A, t) and r=e t, respectively They .are called
the multiple-scales variables. A, is a parameter to be
determined by a solvability condition. The "fast" vari-
able, P„=qna cot, representin—g the phase of the carrier
wave, is taken to be completely discrete. Here q and co

are the wave number and frequency of the carrier wave,
respectively. In terms of these notations, by substituting
(5) into (3) and (4) and comparing the powers of e, we can
obtain the following equations:

d+iH= g —,'m;
dt

2

+ —,'K2(u;+, —u; )
I
—@0+ 'Wu Un+1

+ ,'IC4(u;+, —u; ) + —,'—m;co()u; ——,'au,
m M

I

m M
I J

n, —1

m M m M m
L I I I I

n+ 1

where u; =u;(r) is the displacement of the ith particle
with mass I; from its equilibrium position. K2 and K4
are harmonic and quartic force constants, respectively.
coo and a are on-site potential parameters. The equation
of motion satisfied by the u 's is given by

FIG. 2. A diatomic lattice chain in which u2I, =U„and
m2& =m for even particles and u2k+& =w„and m, k+& =M for
odd particles. n is the index of the unit cell, a =2ao is the spac-
ing of the unit cell, and ao is the spacing between two nearest-
neighbor atoms.
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(6)

with

m„"„)=o,
2

M(2) 2g
~ (1) I (1)

n, n g gp n, n 2a gp ~n, n —1

and

2
)

+coo+2J2 w„"„' —J,(U„"„'+U„"„'+,) =N„"„', j=1,2, 3. . . (10)

with

2

N„„=2k, m„„+J2a V„„+, ,
(1) ~ (1)

ata . n

(3) — (2) 2
2 2 2

n, n gtgg. n, n

n

2 2
(1) (1) a () (1)Wnn+ J2, a - Un, n+ 1 +

2 Vn, n+1

(12)

(13)

~ ~

In deriving the above equations we have used the Taylor
expansion' *

a2
(16)

u„+1(t)= g e"u(")(g„+@a,~, (t)„+))
v= 1

1 + '0
( )aE' Q~ ng1

o P
(14)

The asymptotic expansions (6)—(13) for controlling Eqs.
(3) and (4) have some symmetries which can be used to
simplify the calculation in each order approximation. a2

2 +601
at2

2
2

at 2 +~2 nn

with J =1,2, 3. . ., and co1=coo+2J2, co2=coo+2I2. We
can solve the displacement of the heavy atoms, m„(J„), from
(15) and then get the displacement of light atoms, U„(~„)

from (16) step by step.
(1) Let j =1. Since M„('„)=N„"„'=0 we have the linear

wave equations

III. ACOUSTIC-MODE EXCITATIONS

First we investigate the low-frequency ("acoustic")
mode excitations of the system. In this case we rewrite
(6) and (10) into the form

a2

at2

—I2J2(w„„1+w„„+1+2w„„)=0, (17)

B2

2 +CO1
Bt

2
2 (j)+602 l8~ ~

Bt

From (17) it is easy to get the solution

w„"„'= 3 (g„,r) e p(xi/„)+cc.
—I2J2(w„' „',+w„' „'+, +2w„' „' )

82

Bt

where A (g„,r) is an envelope function to be deter-
mined later, and

(co —cg))(co2 —co2) —2I2J2[1+ cos(qa)] =0, (19)
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—(~+)
—COO+I2+ J2

+ (Iz+ Jz ) —4Iz Jzsinz
2

(20)

For the acoustic mode we should take co=co (q). Solv-

ing (18) to get v„"„',we have

We note that the term proportional to exp(iP„) on the
right-hand side of (25) is a secular term that must be elim-
inated in order for the theory to be valid (solvability con
rIition) .Hence we must set

2IzJz(1+ cosqa)
2 2

+~' —
CO2

CO CO2

+IzJzsin(qa) =0 . (28)

w„"„'= A (g„,r)e " +c.c. ,
iPn

Iz(1+e '~')

CO CO2

(21)

(22)

From (19) (for co=co ) it is easy to show that the above
condition means that

IzJza sin(qa)

co (co~+ci)z 2co )

a'
2

2 +CO)
at2

2
2 (2)

at 2 +CO2 Wnn

—I,J,(w„"„' ] +w„"„'+]+2w„"„')

with P„=qna co —(q)t
(2) By letting j =2 in (15) and (16) we have the

second-order approximation equations

w„' „' =B (g„,r)e " +c.c.'&n
(30)

i.e., the parameter A, (= V ) is the group velocity of car-
rier waves of the acoustic mode. In the following we
write g„=g„.

Solving (25) and (26) we obtain

2
2 (2)

2 +CO2 Vn n
Bt

a2
(23)

(24)

V(2)—
f1, n

' Iz(1+e '~')B
CO CO2

I ( 1+ —iqa)

CO CO2

Using (21) and (22) we can calculate M„' „', M„' „'+„and
X„I „'. Then (23) and (24) become

BA—I ae2
'e " +c c. , (31)

I"w(2) =2i X~
2IzJz [ I + cos( qa ) j +CO CO2

CO CO2

aw
+IzJza sin(qa) ' e " +c.c. ,

1!

(25)

where B (g„,r) is another undetermined function. In
fact we can let 8 =0 because it can be transferred to the
lowest-order solution (21) and (22) and the transferred
quantity can then be regarded as a new quantity for
A (f„,r). So one has

a'
, Bt

—J ae2

aw
e +C.C.

a ~

J (1+ lqo)

+ 2l A, CO

CO CO2

(26)

w(2) =0
n, n

V(2)—
Vn, n

CO CO2
2 2

I (1+e '~')

CO CO2

aa
X e " +c.c.

Bg„

—I ae2

(33)

(3) When j =3 we have the third-order approximation
equations

where c.c. represents complex conjugate. The operator I.
in (25) is defined by

2

(34)

L,u(&) = +CO2
n, n

~ 2 1

2
(j)

at 2 +CO2 &nn a2
(35)

—I,J,(u„'~„', +u„'~& „+2u„'~„'), (27)

where u„'~„'(j =1,2, 3, . . . ) is a set of arbitrary functions.
I

Using (21), (22), (32), and (33), we can obtain M„' „',
M + &

and N„' „'. By a detailed calculation we get

Lw„' „' =2' (co&+coz —2' ) i +—I A +6
~
A

~
A e " +c.c. + higher harmonics,

Bg'„Bg'„
(36)
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where

CO CO
~

2 2 I21+
J2 CO CO2

L

d'co 2(co', +co', —4'' )(Vg )' —a'[(~ —mf)(~ —~', ) —2I~J2]r =
dq 2' (2' —co

~
—

F02 )

2 2 2
1 I2 CO CO~

3a(co —co2) 1+
2co (2') co~ ~p) J2

2 2
2 2

CO CO
~—6J4(a) —co~) 1+ 1+

2

(37)

2 2
2 — 2

CO CO2

6I4(—co —ro, ) 1+
2

CO CO~
2 2 I21+

CO CO2

(38)

In order to simplify the expressions of I and 5, (19)
(for co=co ) has been used. Again, for eliminating the
secular term in m„' „', we must require that the coeKcient
proportional to exp(iP„) on the right-hand side of (36)
vanishes. This then gives the closed equation for
A (g„,r)

(39)

J,(1+ e '&'), ~+

CO+ CO
~

(44)

where P„+=qna co+(q)—t and A+(g„,r) is an envelope
function to be determined in later approximations.
co+(q) is the linear dispersion relation of the optical mode
de6ned by

co+(q) =coo+I2+ J2

The solutions of (39) will be given in later sections. +Q(I2+ Jz) —4I2Jzsin (qa/2) . (45)

IV. OPTICAL-MODE EXCITATIONS

For the higher-frequency optical-mode excitations we
recast (6) and (10) into the form

A diagrammatic representation for co (q) and co+(q) is
shown in Fig. 3(a). There exist frequency gaps at q =0
and +m/a.

(2) j =2. The condition for eliminating the secular
term in U„' „' gives

a2
(40)

d CO+
A, = V+=

dq

I2Jza sin(qa)
2 2 2co+ ( co
~
+co2 2'+ )

(46)

82
(41)

i.e., A, = V+ is the group velocity of the carrier waves of
the optical mode. Thus in this case we have

with j =1,2, 3. . . . We can solve them order by order by
the procedure used in solving the acoustic mode in the
last section. However, we should notice that there is use-
ful symmetry between (7)—(10) and (11)—(14). In fact, if
we let

a~ —a,
I2~~, Iq. J4,

(j) (j) (j)
~n, n Un, n~ ~n, n+1 Un, n+ 1

(42)

v„"„'=A+(g„,r)e " +c.c. ,
'&n (43)

then (7)—(10) transform into (11)—(14) [under (42),

property results from the symmetry between (3) and (4).
By use of this and the results obtained for the acoustic
mode in the last section, we can immediately write the
solution of tv„'~„' and v„'~„' (j =1,2, 3, . . . ) in the optical
mode as the following:

(1) j =1. We have
FIG. 3. The linear dispersion curves of the diatomic lattice.

co (q) and co+(q) represent the "acoustic" (the lower branch)
and "optical" (the upper branch) modes, respectively. (a) coo=0;
(b) ~,AO.
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g„=g„=e(na —Vg+t). The solution in this order is

'&n
v„' „'=B+(g„+,r)e " +c.c. , (47)

B+ =0. Hence we have

U(2) —0n, n (49)

LO
(2)
n, n

' J2(1+e'~')B ~
CO+

—
CO&

N (2)—
n, n

1 ~ +2i V CO+
CO~ CO)

J2 (1+e '~')
+J2ae' '

+ 2i V+CO
J2(1+e'~')

CO ~ CO~
2 2

aa
X e " +c.c.

~km
(50)

aw,+J2ae' ' .e " +c.c. ,
c)g„+

(48)

where B+(g„+,r) is another undetermined function. By'

the same reason stated in the last section, we can set with

BA~
+-,'r, , ~, +a+I ~+ I'~+ ——O (Sl)

ay+ ay+

(3) j=3. The solvability condition for v„' „' yields the
controlling equation for 3+ ..

2 2
CO21+

2

d co+ 2(co/+co& —4co+)( Vg+)
—a [(co+ —co&)(co+ —co2) —2I2J2]

2co+(2co+ col co2)

2 2 2
1 J2 CO ~ CO2

3a(co ~ —co, ) 1+

2 2
2 2 CO2—6I4(co~ —co, ) 1+

2

J21+
CO~ CO)

2 2
2 2 CO~ CO)—6J4(co+ —co2) 1+

2
1+ 1+

I2 CO~ CO)

The correctness of the above equations can be checked by
solving (40) and (41) directly.

From (39) and (51) we can see that the envelope func-
tions A (g„,r) (for the acoustic mode) and 3+(g„+,r)
(for the optical mode) evolve according to the nonlinear
Schrodinger (NLS) equation in a unified form

-+,'r w +a la l'w =o.BA~
' -ag„-+ ag„*

The NI S equation is a completely integrable system and
can be solved exactly by the inverse scattering transform
(IST). ' In order to return to the original variables
we let 3+(g„,r) = (1/e)F+ (x—„—,t) and noting that
g„=e(na —V*t)=ex„—and r=e t we have

Q+ cr+ x and p p are constants. If
0

V +cT+I + =0, it is a nonpropagating localized solution.
The two-soliton bound state can be given as

X [r)—, sech[r)*, (x„+—+x„+—) ] exp(i —,'(ri) ) 1 ~t]

+riz sech[r)2—(x„——x„—)] exp[i —,'(r)2~) I t]I,

with

Q =(g,+)'—(g +—

, )'
. ~++, a ai +—,'I ~ ~ ~ F~+bJFJl F~=0 .

Bx„—Bx„-
(55) —2'+—, g2~ [ tanh[ri —, (x„—+x„—+) ]tanh[r)2 (x„+——x„—) ]

Whether the solution is soliton or kink ("dark" soliton)
depends on the sign of I +6+. For sgn(I +b,+))0, we
have the single-soliton solution

—sech[re —, (x„—+x„—) ]sech[rial (x„——x„—) ]

1/2 X cos( —,
' [(gz ) —( ri, ) ]I + t )], (58)

r)~sech[r)~[x„— o~I ~t —x„+—]j—
X exp[io ~x„— i ,'(cT~ —ri~)—l ~—t i/„], — —(56)

where q&, gz, and x„—are constants.+ + +

For sgn(I +b,+) (0, one has the kink ("dark" soliton)
solution:
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1/2

g+tanh I g+[x„+— —cr+I +t —x„+—]]
where u' ' "=(u' '")*. For the acoustic mode at q =0
we have co=co (0)=0 when coo=0. Thus the phase
P„(t)=qna co—(q)t =0 in this case. Then (60) becomes

X exp ti o+x„+ ——i )(—o++2g+)I +t i—P+„—] . (59)

The multikink solutions also can obtained by the IST.
We must point out that the approach developed above

has many advantages. It is valid in the whole BZ if a)o&0
(the case coo=0 will be treated in the next section). The
method is systematic and without any divergence in each
order approximation. Also it allows us to use the symme-
try between the acoustic and the optical modes which
may simplify the calculations considerably.

V. LONG-WAVE APPROXIMATION

From (20) we can see that the frequency of the acoustic
mode, co (q), will be zero at q =0 for the nearest-
neighbor potential (coo=0 and a=O). Because in this
case I and b. are divergent [see (37) and (38) in Sec.
III], the nonlinear modulational equation for A (g„,r),
the NLS equation (39), is invalid. In fact, when coo=0,
the linear dispersion curve of the system will change from
Fig. 3(a) into Fig. 3(b). q =0 corresponds to the acoustic
mode with long wavelength. We should apply the so-
called long-wave approximation to study the nonlinear
excitations of the system.

For the nearest-neighbor potential, the acoustic mode
of long wavelength represents the motion of the mass
center of unit cells of the lattice. The excitation is a pure
"direct current, " i.e., it is independent of the fast vari-
ables P„(t) [=qna co (q)t]. This—may be best seen
from the general expression for the displacement of the
nth atom

u„(t)= g e g u' '"(g„,r)= g e'u "(g„,r), (61)

where

u'"'(g„, r)=—g u' '"(g„,r) .
1

Obviously (61) is a "direct current" type excitation being
independent of the "fast" variables P„(t).

In the following we consider the nonlinear excitations
in the acoustic mode for the nearest-neighbor potential at
q =0 by using a "discrete" long-wave approximation.
We choose the slow variables g„=e(na ct) a—nd r=@ t,
where c is a constant to be determined later, and use the
Taylor expansion

u„+,(t)= g e'u( )(g„+„r)
v=p

e u "(g„+@a,r)
v=p

QO

+a u' ")(g„,r) . (62)
p Bg„

The Eqs. (3) and (4) for coo=a=O, by comparing the
powers of e, can be expanded as

u„(t)= g e g u' '"(g„,r)
v=p 1 = —oo

X exp Iil [qna co(q)t] ], (60)—

~(j) U(j) —M(j)

with j = 1,2, 3, . . . , and

(63)

M( )=0 (64)

M(&) — (o)
2 Bg„

M(2) a 0 ( )+ C 0 Q
2 2 2 2

2 B(„2I,gg' 4 gg'
3

(65)

(66)

M( ) a '8
( )+ c '0

( ) a 0 ( )+ a Q ( ) 0 Q ( )
2 2 2 2 3 3 4 4

2 dg„2I, ()g' 4 gg' 12 ()g3 48 gg4
'2

(~()) U())p(~(2) U(2))+ ~()) U()) a (0)

C 8 (p)
2

I, ag„ar'
a2

(3g„2

(67)

(68)
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and

v(j) w(j) —~(j)
9

with j =1,2, 3, . . . , and

(69)

(7O)

X = —— v
2 ag„

2 2 2 2
+(2) Q 8 (I)+ c 8 (p) a

2 ()$„2J, ()g'

3

(71)

(72)

2 2 2 2 3 3 4 4 2~(4)— a ~ (3)+ C ~ (2) + ~ ( ) ~ ~ (&) + ~ (p) C ~ (p)
2 ()(„2J,(3q'„4 ()g' l2 ()g' 48 (3g4 J, Bg„()&

(~()) ~()))2(U(2) ~(2))+ U()) ~())+~ U(0)
2 a2v(2) w(2) ~ v(&)+ + U(P)B(„2 (74)

~(j)+x(j)=o,
(j)—(j)+~(j)

(75)

(76)

j = 1,2, 3, . . . . Then one can solve them order by order.
(1) Let j =0 in (75) and (76); we get

v' '=w = 2 (g„,r), (77)

where Ap is an arbitrary function to be determined later.
(2). If setting j=1 in (75) and (76), one can obtain

U"'=Bo(g„,r) and w"'=Bo+(a/2)(B/B(„)AO. In fact
we can let Bp=0 because it can be incorporated into the
lowest-order solution (77) by defining Ao. Thus one has

U(&) —0 9

g BAp
W

2 ()g„

(3) When j=2, we have

M '+1V' '=0
W( =U( )+M( )

(78)

Also there is a symmetry between (63)—(68) and
(69)—(74). In fact, if we let w'~' —v'J' (j =1,2, 3,4, . . . ),
a~ —a, I~~z, and I~~4, then (63)—(68) transform
into (69)—(74). We recast (63) and (69) into

(83)

8 Ap

2I,

(4) By letting j=3 we have the third-order approxima-
tion equation

m")+X")=O,
W( )=U( )+M( )

(85)

In terms of the lower-order solutions we can calculate
M' ' and N' '. Substituting them into (85) still yields
(82). By (86) we obtain the solution v' ) =Do(g„,r),

Q C Q
W =Dp+ Ap,4 I~ 6 ()g~

where Dp is an arbitrary function. Again by letting
Dp=0 we have

U(3) —O (87)

CW(2)=C + '
2I~ ()g~

In fact we can set Cp=0 because it can be incorporated
into the lowest-order solution Ap. So one has

By using (77)—(79) we can calculate M' ' and N( '. Then
(78) gives the equation determining the parameters c (the
speed of sound) as

r

Q C Q

4 I2 6 Qg3

az I2J2 a' 2&z
C

2 Iz+Jz 4 I +M
(5) In the fourth-order approximation we have the

equations

And by (81) one can get the solution U
(~) = Co(g„r) and m("+X")=O, (89)
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(4) —(4) +M(4) (90)

3a4I2J4

16c(I2+Jz)
a' 2I2~2h=
16 I2+J2

3a 3 E4 2%2

16 K2 M+m
1/2

1

3

I2J2

(I2+J2)

' 1/2

(92)

2K2

16 M+m

' 1/2
1 mM

(M+m)
(93)

From (90) we can obtain

v
(4) —E0 ~ (94)

w =Ep(4)—
I, ag„

o 1 I4a c+-
ar 8 I, ag„

(95)

Again by setting ED=0 and using (91) they can be

simplified into

v'4'=0 (96)

Using the lower-order solutions we can obtain M'4' and
N' '. By (89) we get the equation for Ao(g„, r}

BA BA BA
Ao+q +h =0, (91}

Bg2 8/4

with

1/2

~o=+ 6h
tan sinh 2~ x„—

q

4v pt —x„

Equation (98) also admits the breather solution
1/2

6h
Q —+2

q

p sin[2ax„+(5/h)t —Po]
X ~ tanBx„aacosh[2px„+ (y lb )t +go]

(101)

p sin[2ax„+(5/h)t —$0]
X tan a cosh[2px„+(y/h)t +$0]

(103)

Obviously it becomes an envelope soliton of the NLS
equation when (p/a) is small. Unlike the single-kink
solution (101), the breather can be localized at some lat-
tice sites when 2pc =5/h, and has an internal vibration
with the frequency c —5/(2ah).

(102)

with y =8p(3a —p ) and 5=8a(a —3p ), where a, p po,
and $0 are constants. Hence one has

1/2
6h

q

4
(4) C a AO

w = — h
I3 A(4

(97) VI. GAP SOLITONS, RESONANT KINKS,
AND INTRINSIC LOCALIZED MODES

Making the transformation u =eBAO/Bg„=BAD/Bx„
and noting that g„=e(na tot) =ex„a—nd r=e t, we can
recast (91) into

3

+ 8 +h
at

'"
ax„

(98)

with x„=na ct. (94) is the m—odified Korteweg —de
Vries (MKdV) equation, also being a completely integral
system and can be solved exactly by the IST. ' The
single-soliton solution is given by

u (x„,t) =+ 6h

q

1/2

2~sech 2K x„—4v pt —x„

(99)

6h

q

1/2
—1 4v p

2

sin tan h 2~ x — t —xn h
n

(100)

The integration constant has been suppressed. (100) also
can be rewritten as

where ~ and x„are constants. Thus we have the kink
solution for Ao

Ao= Ju(x„,t)dx„

X exp[i( —,
' I got —Po)], (104)

where go, x„, and $0 are constants. Thus we have the lat-

For a diatomic lattice, the phonon spectrum of the sys-
tem consists of two parts —the acoustic [co (q)] and op-
tical [co+(q)] branches. In addition to the bottom gap
(the width bco=too) below the dispersion curve of the
acoustic mode (when too&0), there exists a frequency gap
( hco =co2

—co, ) between the acoustic and the optical
branches. The system also has an upper cutoff frequency
co3 [ =to+ (q =0)]. In the linear case, a spectrum gap or a
cutoff means that waves of certain wavelengths are for-
bidden. However, for the nonlinear lattice one may allow
such waves to exist in the form of gap solitons ' or so-
called intrinsic localized modes. ' Since the results ob-
tained in the previous sections are valid in the whole BZ,
they can give the solutions of the gap solitons and the in-

trinsic localized modes of the system in a simple way.
These solutions may be obtained by solving (55) at q =0
or +m. /a. In the following, without loss of generality, we

only write down the explicit expressions of nonpropagat-
ing solutions for a&0 and K4) 0 in the first-order ap-
proximation.

(1) For the acoustic mode at q =0, we have co =coo,

Vz =0, x„=na —=x„, I =Kza /[coo(M+m)], and
=3a/(2coo). Equation (55) for F gives the single-

soliton solution

F (x„,t)=(I /b, )'~ gosech[go(x„—x„)]
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tice configuration

w„(t)=2(I /b, )'~ gpsech[rip(n —np)a]

phase between their nearest neighbors, forming a nonpro-
pagating gap soli ton.

For M )m„(55) for F has the kink solution

X cos(Opt —Pp),

u„(t)=2(I /3, )
' gpsech[gp(n —n p )a]

X cos( Apt Pp—) =w „(t),
where n p is an arbitrary integer, and

Op= cop 2
I 'gp

] 2

(105)

(107)

(x„,r)=(II I/4 )' 'ri tanh[g (x„—x„)]
X exp[i(II fript —Pp}] .

Then the system has the configuration

w„(t) =(—1)"2( I I/6 )'~ gptanh[rip(n —np)a]

X cos(O", t —Pp),

(113}

(114)

being within the bottom gap of the dispersion curve of
the acoustic mode. Hence this type of excitation may be
called a bottom gap soliton of the system. The wave pat-
tern in the lattice is shown in Fig. 4. (105) and (106) show
that the heavy atoms and the light ones vibrate in phase.
We should note that the nearest-neighbor interaction has
no contribution to the formation of the bottom gap soli-
ton because in this case 5 is independent of K4.

(2) In the case of the acoustic mode at q =+~/a, one
has co =co„V =0, I = —X a /[2', (M —m)], and

(a —2J4) = (M —m, ),= 3 3'
(108)

2 2M'(

where m, =2IC4/a. Because b, changes its sign at
M=m„ the solution of (55) for E will occur as a
"phase transition" from soliton to kink. Thus m, plays
the role of a "critical mass. " When M & m„we have the
soliton solution

u„(t)=0,
with

II", =co, —fr fey', ,

(115)

(116}

being within the frequency band of the acoustic mode.
So it is a resonant kink of the system. The lattice pattern
is like Fig. 1(b) but in the present case all the light atoms
are at rest.

(3) For the optical mode at q =+~/a, we have
co =co, V =0, I =IC a /[2' (M —m)], and

30.'
(m —m, ),

m

3
b+ = (a —2I4) =

2co2 2 c02
(117)

i.e., 6+ also will change its sign at m =m, . For m ) rn„
Eq. (55) for F+ in this case has the single-soliton solution

E+ (x„,t) = (I + /4+ )' gpsech[qp(x„—x„)]

F (x„,t) = ( I

I"
I /I 5

I

)'~ qpsech[gp(x„—x„)]

X exP[i( —,
' ll —Igpr Wp}1 .

The lattice configuration has the form

X exp[i( —,'I +gpt —Pp)] .

(109) The lattice displacement has the form

u„(t)=( —1)"2(I +/b, + )'~ gpsech[gp(n np)a]—

(118)

w„(r) =( 1)"2(Il I/I ~
I

)'"g epsc[hr( ipn—n p)a]

X cos(Q', r —pp),

X cos( Q2i Pp )

w„(t) =0,
(119)

(120)

u„(t)=0,
with the vibratory frequency

(111) with the vibratory frequency

+2 ~2 2 ~+ 9p (121)

0;=co,+ —,
' II fqp, (112)

II II

~ ~ j j
II

~ ~ ~

FIG. 4. The bottom gap soliton pattern for the acoustic
mode at q =0.

being within the frequency gap between the dispersion
curves of the acoustic and optical modes. The lattice pat-
tern is like Fig. 1(a) but in this case all the light particles
are at rest and the heavy ones oscillate with opposite

being within the frequency gap between the acoustic and
optical modes. It is a typical gap soliton in which all the
heavy atoms are at rest and the light ones oscillate with
opposite phase between their nearest neighbors. The vi-
brating pattern of the lattice is just as that shown in Fig.
1(a), which has been observed recently in a diatomic pen-
dulum lattice experiment by Lou et al. It is easy to
show that Eqs. (3) and (4) can be used to describe the dy-
namics of the diatomic pendulum lattice in Ref. 24,
where u„(w„) represents the displacement of the light
(heavy) particles at the nth unit cell, cop is the linear fre-
quency of an uncoupled pendulum, a is the nonlinear
coeKcient resulting from the gravitational potential, and
E4 is the anharmonic force constant by the nearest-
neighbor interaction.

When m (m„ the system will undergo a transition
from soliton to kink. Equation (55) for F+ in this case
yields the kink solution
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F+(x„,t)=(I +/Id+I )' rtotanh[go(x„—x„)]
X exp[ —i ( I +got —$0) ] .

The lattice displacement is

(122)

v„(t)=( —1)"2(I +/lh+ I

)' gotanh[qo(n n—o)a]

w„(t)=0,
with

X cos(Azt —$0), (123)

(124) ~ ~ ~
lI

t «
02=~2+I +go,k 2 (125)

being within the frequency band of the optical mode.
Thus (123) and (124) is a resonant kink, in which all the
heavy atoms are at rest and the light ones oscillate with
opposite phase. The vibrating pattern of the lattice is just
as that shown in Fig. 1(b), which also has been observed
experimentally. So in our approach the experimental re-
sults of Ref. 24 about the gap solitons and the resonant
kinks can be well explained qualitatively.

(4) For the optical mode at q =0, one has
&+ M3 —+coo+2(I2 +J2 ), V+ =0, I + = —Kza /
[2cv3(M +m ) ], and

F+(x., t)=(lr /I& I)'"q.sech[g.(x. —x.')]
X exp[ —i( —,'lI Irl t+p )] .

The lattice configuration yields

v„(t)=2(
I r+ I /I 5+ I

)' 'qosech[q, (n no )a ]—

(132)

FIG. 5. The lattice patterns of (a) the resonant kink and (b)
the intrinsic localized mode for the optical mode at q =0.

2co3

2E4

m [(1—m/M) +m/M]
1+

M

2

(126) X cos( Q3t $0 )

w„(t) = — 2( I
I + I /I b, + I

)' gosech[go(n —no)a]M

X cos(03t —$0)= — u„(t),

(133)

(134)

+ 3+
M M

(127)
with the vibrating frequency

For a )5, 6+ )0, Eq. (55) for F+ has the kink solution n;=~, +-,'Ir, lg,', (135)

F+ (x„,t) =(
I
I + I /6+ )' gotanh[go(x x

X exp[i(ll +lgot —$0)] .

The lattice displacement in this case is

u„(t)=2(
I
I + I /b, + )' qotanh[go(n no)a]—

(128)

being above the frequency band of the optical mode. So
(133) and (134) is an intrinsic localized mode of the sys-
tem. The lattice pattern is shown in Fig. 5(b).

VII. DECOUPLING ANSATZ
AND THK GAP SOLITON THEORY OF KF

A. Decoupling ansatz
X cos(03t —$0), (129)

w„(t) = — 2(l I + I
/b+)'~ qotanh[go(n no)a]—

X cos(Q3t —$0)= — v„(t), (130)

with

(131)

being within the frequency band of the optical mode.
Thus (129) and (130) is also a resonant kink in which the
light atoms and heavy ones vibrate with opposite phase,
satisfying mv„(t)+Mw„(t) =0. The lattice pattern is
shown in Fig. 5(a).

When a &5, 5+ &0, a transition from kink to soliton
occurs. Equation (55) for F+ admits the soliton solution

a Qo
Wn =~i Un +bi ]ao Un +bi 2 2 Un

()x„2
ao3 ao a4" 6 ()~„3

" '"24 g~4
(136)

For a nonlinear diatomic lattice, the displacements of
the light and heavy atoms are controlled by two coupling
nonlinear equations. The theoretical approach to this set
of equations, even though in the weak nonlinear approxi-
mation, is not tractable. In their study of the soliton ex-
citations in a diatomic lattice for quartic nearest-neighbor
anharmonicity (i.e., coo=a=0), Biittner and Bilz intro-
duced a decoupling ansatz in the continuum limit (i.e., at
q =0) for relating the displacement of the light atoms to
that of the heavy atoms, which in our notation has the
form
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where x„=na and constants A, , and b, (j =1,2, 3,4, . . . )

are determined so that the two equations satisfied by the
light and heavy atoms are identical. The index i means
the acoustic mode (for i =1) or the optical mode (for
i =2). Later this ansatz was widely used by Dash and
Patnaik, Pnevmatikos and co-workers, ' and Collins
among others in the continuum approximation. Obvious-
ly, the use of the decoupling ansatz cannot avoid some
guesses in solving the equations of motion. In this sec-
tion we show that this ansatz may be derived naturally by
our approach at q =0. In the following we let ~0=+=0
in order to compare our results with that under the
decoupling ansatz.

(1) For the acoustic mode at q =0, from Sec. V we
have

a ao
Un + bl lao vn +b1,2 2 Un

Bx„ ' 2

ao g3 ao g43 4

+b1'3 6 3 Un bl 4 4 Un+ (139)

with

Since g'„=e(na —ct), one has eB/Bg„=8/Bx„. Thus
from (137) and (138) we have

r

a c2 c)2 a c2 a2
Wn

—Un+ Un+ Un+- Un
2 Bx„" 2I &~2 " 4 I 6

c a4+ A Un+
aX4 "

vn =v"'= W p

W(0)+FW 1~+62W +6 W +64W +wn —w

a 2
Q

2

=~o+&— ~o+&', ~o2B „2I2
2 2 3+3a c a

4 I2 6 (A/3

4

+E h Ao+
I2 c}

(137) 2m
~l 1~ b1 1 1~ b1 2

2m —M
M+m (140)

m 1b14= M+m 3

Mm

(M+m)

This result is just the same as that of Refs. 4, 6, and 7 us-
ing the decoupling ansatz.

(2) For the optical mode at q =0, from Sec. IV we
have

iPn 1 c03tU„=ev„"„'=e2+(g„,r)e " +c.c. =F+(x„,t)e '+c.c. ,

w =ew'"+e 'w' '+e w' '+ .
(141)

—2J2,P+
3+e " +c.c. +e

C01

—J2a g;p+3+e "+c.c. +. . .
2 ~2 Qg+

[F+e ' +c.c.]+—— [F+eM + 2 Bx„
tco3t' +c.c. ]+ (142)

So we have

a ao
Wn ~2 n+ 21 0 Un+b22 2Vn+

Bx„ ' 2

B. Comparison with the gap soliton theory
of Kivshar and Flytzanis

with

, b =1, b = '
2 ~& 21 & 22

(143)

(144)

where b2 2 can be obtained from the third-order approxi-
mation solution of the optical mode at q =0. The rela-
tions (143) and (144) are also the same as the decoupling
ansatz for the optical mode used in Refs. 4 and 7.

From (139) and (143) we conclude that the decoupling
ansatz widely used in the literature is unnecessary and
may be naturally derived by our present approach at
q

—0 33

In 1992, a gap soliton theory for the nonlinear diatom-
ic lattice in the case of %4 =0 and q =m. /2 was proposed
by Kivshar and Flytzanis (KF). In the case of M =m,
KF's theory can give a successful explanation for the
self-induced gap solitons observed by Denardo et aI. It
seems that there exist some relations between the ap-
proach of KF and ours given above. To see this we write
down our solutions to the second-order approximation
for q =+a/a in the following (for comparison we set
K4=0).

(1) By using (21), (22), (32), (33), and (113), the lattice
displacement for the acoustic mode at q =+a./a may be
written as
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u (t)=Eu(~)+Ezu(2
n n, n n, n

=( —1)"2f,(x„)cos(Qzt —Po),

w„(t) =ew„"„'+e~w' '

=( —I)"2fz(x„)cos(Azt —Po),

with

(149)

(150)

/0

/
/

f~(&)

f, (x)=
1/2

gosech[r)p(x —xp )], (151)

' 1/2

r)osech[r)o(x xo)]
Ma I+fz(x)=—

2(M —m) b, +

X tanh['gp(x xo ) ] (152)
FIG. 6. A diagrammatic representation of f;(x) (i =1,2) in

(147) and (148).

u„(t)=eu„"„'+e'u„"„'

A diagrammatic representation of f, (x) and fz(x) is
given in Fig. 7.

In (147), (148), (151), and (152), go and xo are arbitrary
constants. qo can be taken as the small expansion param-
eter used in (5), i.e., rip=0 (e). We note that when

=( —1)"2fi(x„)cos(Aft —Pp), (145)
1 —m/M =O(e), (153)

w„(t)=ew„"„'+e w' '

=( —1)"2fz(x„)cos(Q", t —Po),

with x„=na and

(146)

ft(x) =
2(M —m)

gpsech [rtp(x —xo)],

(147)

fz(x) = gotanh[gp(x xp) ] (148)

o X
/

/

FIG. 7. A diagrammatic representation of f, (x) (i =1,2) in
(151)and (152).

A diagrammatic representation of f, (x ) and fz (x ) is
given in Fig. 6.

(2) For the optical mode at q =+sr/a, using (43), (44),
(49), (50), and (118),one has the lattice configuration

i.e., the mass difference of the atoms of different kind,
M —m, has the same order as e, the order of f, (x) in
(147) and fz(x) in (152) will increase by 1. Thus f&(x)
and f&(x) in (147), (148), (151), and (152) will have the
same order under the condition (153). In this case, the
diagrams of f, (x) and fz(x) shown in Figs. 7 and 6 quali-
tatively transform into Figs. 3 and 5 of Ref. 20. In fact,
we can show that the solutions of KF, Eqs. (24) and (25)
of Ref. 20, can have the form of (151) and (152) when the
nonlinear shift of the soliton frequency is much smaller
than the spectrum gap. Thus KF's theoretical approach
and ours have different applicability regions at g =++/a,
which coincide provided the nonlinearity of the system is
not too big and the mass difference between atoms be-
comes small.

VIII. SUMMARY AND CONCLUSIONS

In this paper we have investigated the nonlinear excita-
tions in a 1D diatomic lattice model with a nonlinear on-
site potential and a quartic anharmonicity between
nearest neighbors. The method is systematic and has
many advantages for the analysis of the soliton excita-
tions in diatomic even multiatomic lattice systems in the
whole BZ.

We first introduced an asymptotic expansion for the
displacements of particles under a quasidiscreteness ap-
proximation. The original nonlinear controlling equa-
tions were transformed into a set of inhomogeneous
linear equations, which can be solved order by order.
The expansion procedure is quite general and can be ap-
plied to other nonlinear lattice systems. In Secs. III
and IV we have solved the acoustic and the optical
modes, respectively. When coo%0, the dynamics of the
diatomic lattice was transformed into the NLS equation
on —m/a (q ~ m /a. The symmetry between the
acoustic- and the optical-mode equations allowed us to
simplify the calculations considerably. In the case of the
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nearest-neighbor interaction, we introduced a quasi-
discrete long-wave approximation in Sec. V for the acous-
tic mode at q =0 and obtained the MKdV equation. The
single soliton, kink, breather, and the two-soliton bound
state can be readily written down, all of which are the
typical nonlinear excitations of the system. We must
point out that the results obtained in Secs. III—V are
without any divergence for each order approximation
solution.

Gap solitons are interesting nonlinear excitations in di-
atomic lattice systems. Since the authors of Refs. 4—9
only studied the soliton dynamics in the continuum limit,
i.e., the soliton excitations at q =0, the phenomenon of
the gap solitons could not be considered. Because our ap-
proach is valid in the whole BZ, we can easily get the gap
solitons as well as resonant kinks at q =0 or +sr/a.
Especially the gap soliton and the resonant kink observed
recently are well explained qualitatively. In addition,
bottom gap solitons, upper cutoff solitons (the intrinsic
localized modes), and some resonant kinks are also pre-
dicted.

The decoupling ansatz is an assumption widely used
for studying the soliton excitations in diatomic lattices.
We have shown in Sec. VII that this ansatz is completely
unnecessary and may be naturally derived in our ap-
proach. The gap soliton theory proposed by KF, which
is successful for the explanation of the self-induced gap
solitons, coincides with our treatment when q =++/a
and the mass di6'erence of the two kinds of atoms be-
cornes small.
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