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Molecular-dynamics simulation of hydrogen difFusion in niobium
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Molecular-dynamics simulations of H dift'usion in Nb are performed for a system consisting of
432 Nb atoms and 8 H atoms at two difFerent temperatures: T= 450 and 580 K. For the interatomic
interactions we use a description proposed by Finnis, Sinclair, and Gillan. We compare our results
with quasielastic-neutron-scattering data and our model reproduces quite well both the distinct
deviation from simple jump-diftusion behavior and the "anomalous" Debye-Wailer factor. To reveal
the details of the H motion the residence-time distribution at the stable sites (T sites) as well as
the correlation character among consecutive "jumps" are evaluated. We find that the residence-
time distribution is composed of two distinct contributions; one narrow component with a short
residence time of the order 35 fs, and one broad component with roughly exponential decay. The
narrow component corresponds to that the H atom moves rapidly among two or more sites belonging
to what has been called a 4T configuration. The typical decay time of the broad component is
found to be of the order 160 fs and 300 fs in the time intervals 60 & t & 300 fs and 300 & t &
600 fs, respectively, which should be compared with the mean residence time derived from the
diffusion constant, r„, = av/48D, = 324 fs. We also find substantial contributions of second-
nearest-neighboring jumps, but the division between nearest- and second-nearest-neighboring jumps
is ambiguous. The diffusive and the vibrational motion of the H atom cannot be clearly separated
and the time spent and the spatial excursion performed in the "jump phase" are not negligible.

I. INTRODUCTION

Hydrogen motion in bcc metals has been a subject of
great interest, both experimentally and theoretically. '

The main experimental tool for studying the microscopic
motion of hydrogen is inelastic neutron scattering. De-
spite extensive experimental investigations during the
last 25 years features still remain unclear for the details
of the migration mechanism operating in real systems, as
for instance for H in Nb above room temperature.

Several diferent contributions of the hydrogen motion
have been identified in the incoherent neutron-scattering
spectrum. ' At high frequencies, 100 —200 meV, local-
ized vibrational modes are manifest and well separated
from these are the so-called band modes, visible in the
range & 30 meV. These modes correspond to the fact
that hydrogen follows the vibrations of the host metal
atoms. Besides these vibrational contributions the spec-
trum contains a quasielastic peak, centered at zero fre-
quency, which includes information on the difFusive mo-
tion. Both the integrated. intensity of this peak and its
shape have been investigated intensively.

Anomalies in the wave vector dependence of the inte-
grated intensity of the quasielastic peak for H in Nb have
been identified at elevated temperatures and are referred
to as the anomalous Debye-Wailer factor. Gissler et al.
observed a marked deviation from a simple Debye-Wailer
factor at high temperatures. They discussed the possi-
bility of the importance of taking the finite jump time
into account but concluded that at least a free jumping

particle model for that motion could be excluded. Wak-
abayashi et al. interpreted the anomalous Debye-Wailer
factor in terms of a temperature-dependent delocaliza-
tion of the hydrogen vibrational motion extending as
far as nearest-neighboring sites of the interstitial lattice.
Later, Lottner et at. made a more careful fitting proce-
dure of the quasielastic peak using jump-diffusion models
containing correlated jumps and claimed that no serious
deviation from the normal Debye-Wailer factor could be
identified. More recently, Dosch et al. reinvestigated. the
intensity and stated that a proper interpretation of the
intensity has to include a rapid-diffusion mechanism, on
a time scale significantly faster than conventional long-
range difFusion.

The wave vector dependence of the width also shows
nontrivial features. Above room temperature distinct
deviations from simple jump-dift'usion behavior are ob-
tained. A double-jump model and a two-state model,
with a mobile and an immobile state, respectively, have
been used to successfully fit the data. The physical im-
plications are not, however, very clear. In the double-
jump model the probability of a direct jump to a topolog-
ical second nearest neighbor is considerably larger than
a jump to a nearest neighboring site at high tempera-
tures, and in the two-state model the mean occupancy
of the mobile state is nearly temperature independent,
which challenges the interpretation of the mobile state
as a thermally activated state.

The aim of the present study is to show that molecular-
dynamics (MD) simulations, based on classical mechan-
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ics, together with realistic potentials can give additional
detailed microscopic information and deepen our under-
standing of H diffusion in bcc metals at high tempera-
tures. The necessary input in a MD simulation is a model
for the interatomic interactions. We use the Finnis-
Sinclair model for the Nb-Nb interaction and a H-Nb
potential proposed by Gillan. The former is semiem-
pirical in nature and invokes some many-atom interac-
tions, present in metallic systems. The latter is given
as a simple pair potential with two parameters fitted to
the two lowest localized vibrational modes for hydrogen.
The obtained numerical value for the diffusion constant
well above room temperature is about a factor 2 too large
which shows that the potential is reasonable but not ac-
curate. Improvements are certainly feasible and desirable
but rather demanding.

We will show that our model reproduces the two key
experimental observations: the anomalous Debye-Wailer
factor and the distinct deviations from simple jump-
diffusion behavior. These results are a clear indication
that our model for the potential is sufFiciently accurate.

The use of a single adiabatic potential-energy surface,
describing the interatomic interactions, is based on the
Born-Oppenheimer approximation for the separation of
the nuclear and electronic degrees of freedom. We have
shown in a previous study ' that for light interstitials
in metals nonadiabatic effects (excitations of low-lying
electron-hole pairs) may become important for the details
of the diffusive motion of the interstitial. This effect can
be included approximately by adding a friction term and
a stochastic force to Newton's equation of motion. We
will also consider these effects here but for H in Nb they
turned out to be of less importance.

A more critical assumption is the neglect of quantum
effects for the hydrogen motion. Unfortunately, there is
no powerful molecular-dynamics technique available for
solving quantum dynamics in many dimensions. The jus-
tification of the neglect of quantum effects has to be ac-
complished in a more indirect way.

In Sec. II we describe the model for the interaction,
both the adiabatic potential-energy surface and how the
nonadiabatic corrections are included. Section III gives
some information and details on the simulation procedure
and in Sec. IV we have collected our results for various
quantities, which will be used to establish the validity
of our model by comparing directly with experimental
data. We also compare our results with the ones ob-
tained using the Chudley-Elliott (CE) model for the dif-
fusive motion. In Sec. V we make use of the exhaustive
information contained in the output from the MD sim-
ulation and interpret the details of the diffusive motion.
Finally, our results and main conclusions are summarized
in Sec. VI. Preliminary results of the present study have
been presented in Ref. 13.

II. INTERACTION POTKNTIAI.

A. Adiabatic potential-energy surface

In the molecular-dynamics simulation a potential-
energy surface is required. We invoke the usual Born-

Oppenheimer approximation and introduce an adiabatic
potential-energy surface E((Kj). For each configuration
(K) of the nuclei the total energy E((K)) of the sys-
tem is given by electronic ground state for that nuclear
configuration.

The Nb-Nb interaction is described by a semiempirical
model of Finnis and Sinclair (FS). The physical basis of
this model is described in Ref. 8 and a more thorough
discussion can be found in Refs. 14 and 15. The energy
for the metal is expressed as

~-((R)) = ):~(')+—,):~(R., ),

where the indices i and j are used to denote the different
Nb atoms. The first term, I"(p;), is a many-atom inter-
action term and is bonding in character. It is written in
the form

I'(p, ) = —A~p;,

where p, is given by a sum over neighboring atoms and
the square-root dependence is used to mimic the results
of tight-binding theory within the second moment ap-
proximation. The parameter p; is then given by the sum
of squares of overlap integrals between atom i and its
neighbors. The second term, P(R;z), is a conventional
pairwise potential and represents the core-core repulsive
interaction between atom i and j separated by a distance
R,~

= ~R; —K~~. Finnis and Sinclair parametrized p,
and P(R;~) according to

~* =) (Rv —d)' Bj &d

P(R,, ) = (R;, —c) (co+ ciR;, + c2R;,.), R,, ( c,
(4)

where the expressions are equal to zero for distances
larger than d and c, respectively. All parameters ap-
pearing in the above formulas are determined purely em-
pirically by Gtting the predicted results of the model to
experimental ones for the following bulk properties: lat-
tice constant, cohesive energy, and elastic moduli. For a
more detailed description of the procedure see the orig-
inal paper and for certain deficiencies of the model we
refer to a recent paper.

All the sums appearing in Eq. (1) are pairwise sums
and applying the FS model requires roughly the same
computational effort as compared with a simple pair-
potential model. Two deficiencies of the model, however,
have already been noticed. The erst problem is that the
frequency for the short-wavelength phonons given by the
model is about 30% too low, resulting in a too low mean
phonon frequency. This is corrected by Gillan by mul-
tiplying the energy ENb by a factor 1.9. ' The second
problem is that the short-range core-core interactions are
too soft and the model suffers from an instability at very
small distances. This problem is cured by replacing the
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polynomial function P(R;z) inside the nearest-neighbor
distance by an exponential form Be+Bi exp( —R,~/dNN),
where Bo, B~, and dNN are determined to ensure the con-
tinuity of P(R;~.) and its first two derivatives. s i~

For the H-Nb interaction we use the same model as
Gillans i and apply the exponential form Zo exp( —R/n).
The two parameters Zo and o. are determined by using
the two well-separated frequencies for the local vibration
of H in Nb: 110 meV and 180 meV. ' The resulting val-
ues for Zo and n are 25 716 eV and 0.162 A, respectively.
This H-Nb interaction does not reproduce the experi-
mentally determined force-dipole tensor. However, the
conventional interpretation of the experiments in terms
of static forces has been challenged and we stick to the
form suggested by Gillan. Recent calculations by Elsasser
et al. , based on density functional theory within the
local density approximation, indicates, however, a more
long-ranged H-Nb interaction and they conclude that the
observed force-dipole tensor can be explained by static
forces only.

An accurate description of the H —H interaction, is not
important, since the H concentration we consider is low,
NbHO 02. Nevertheless, the H—H interaction is assumed
to be the same as the Nb —H interaction in order to take
into account the repulsion the H atoms experience at
short distances.

The above model for NbH has been applied exten-
sively by Gillan and co-workers. ' Both the quan-
tum vibrational states and the diffusive motion of
hydrogen ' have been studied and reasonable results
have been obtained. Throughout the present study we
use exactly the same model as Gillan for the adiabatic
potential-energy surface and no further modifications are
made.

B. Nonadiabatic corrections

In a previous study ' we have shown that nonadi-
abatic effects are important for describing the details of
H diffusion in Pd, a fcc metal. It is of interest to study
the same effect for H in Nb. We will therefore perform
two different sets of simulations: One set is denoted by
A, where only the adiabatic potential-energy surface de-
scribed in the previous subsection is used; while in the
other set, denoted by B, nonadiabatic corrections are in-
cluded. These corrections take into account the effects of
low-lying electron-hole-pair excitations among the con-
duction electrons. In this case, not only the adiabatic
potential-energy surface but also nonadiabatic ones, close
and nearly parallel to it, are relevant. Instead of the sin-
gle potential-energy surface in case A, we consider in case
B a thin potential-energy "shell, " including all possible
combinations of low-lying electron-hole-pair excitations.

The effects of these excitations can be incorporated
in an approximate but reasonable way by introducing a
friction term and a stochastic force to the equation of mo-
tion, provided the H motion can be treated classically.
As a result, Newton's equation of motion is replaced by
the equation

(5)

where VH = 0/ORH and mH and H,H are the mass and
the position vector for the H atom, respectively. The
friction coeFicient g is related to the stochastic force
F' (t) through the fluctuation-dissipation theorem,

where k~ is the Boltzmann constant and (. ) denotes a
thermal average. The stochastic force has a white noise
spectrum and we assume further that they are Gaussian-
type random variables.

In the general case the friction coeKcient 'g is a tensor
and it can be expressed in terms of the density correlation
function for the electrons. As a first approximation we
consider a hydrogen moving in a homogeneous electron
gas and use g values obtained from 6rst-principles calcu-
lations for this system. The friction coeKcient will then
be a scalar quantity and it depends on a single variable,
the electron density n. The functional dependence q(n),
obtained from Ref. 23, is reproduced in Ref. 11. In the
case of hydrogen in Pd we used a potential-energy de-
scription (the embedded-atom method) which provides
a reasonable local electron density for the metal and
the density-dependent friction coefficient q(n) could be
used. In the present case that is not the situation
and we will use a constant value for g, hg = 2.5 meV,
corresponding to an electron density being equal to the
average electron density n = 5.56 x 10 cm in Nb.
The local electron density which the H atom experiences,
on average, should not be too different from the average
electron density in Nb. Our experience from the study of
H in Pd is that using the constant value q(n) or a density-
dependent q(n) gives almost the same results. ' Our
main concern here is to study qualitative changes due to
the inclusion of the nonadiabatic effects and a more ac-
curate description is not warranted. Technical details on
the inclusion of the nonadiabatic effects can be found in
Ref. 11.

III. SIMULATION DETAILS

The simulations are carried out for a system with con-
stant total energy, particle number, and volume. It con-
sists of 432 Nb atoms, forming m (with m = 6) conven-
tional bcc unit cells, and 8 H atoms, distributed randomly
in the metal host. The hydrogen number concentration
x is therefore very low, x = 1.85%. We have checked
the infIuence of the system size, varying from m = 4 to
m = 7, and it turns out that m = 6 is suKciently large.
The lattice constant is equal to 3.3008 A. and periodic
boundary conditions are applied.

Our simulations are performed at two difFerent tem-
peratures T = 450 K and T = 580 K. The reason for
this will become clear in the following section. For each
temperature, two cases are considered: with and without
including the nonadiabatic effects. The time step in all
simulations is equal to 0.5 fs and choosing such a com-
paratively short time step is because of the rapid motion
of the hydrogen atoms. A typical "production run" is of
the order t~, d ——100 ps.
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Although the results contain also contributions from the
diffusive motion, it is clear that the vibrational motion of
hydrogen around the T sites dominates. The anisotropic
feature of the vibrational amplitude with the stretching
along the tetragonal directions is caused by the smaller
curvature of the potential well in that direction.

B. DifFusion constant

The diffusivity of hydrogen is directly related to the
long-time behavior of the displacement of that particle,
ARH(t)—:RH(t) —RH(0). For large times the averaged
value of the squared displacement increases linearly with
time,

TABLE I. The tracer-diffusion constant D, at two different
temperatures obtained from the simulation without nonadia-
batic corrections (hg = 0.0 meV) and with nonadiabatic cor-
rections included (hg = 2.5 meV), respectively. T, the simu-
lation temperature; g, the friction coeKcient; t „, the length
of the production run; w„„ the mean residence time obtained
from the relation 7„, = ao/48D, [the CE model (Ref. 12)].
The corresponding experimental values are D, = 0.33 x 10
cm s and D, = 0.60@10 cm s at T = 450K and 580
K, respectively (Ref. 31).

T (K) hrI (meV) t „(ps) D, (10 cm s ) r„,(fs)
450 0.0 100 0.66 345

2.5 100 0.70 324
580 0.0 100 1.02 223

2.5 100 1.15 198

([ARH(t)] ) = 6D,t+ 0, t large,

0.08

A

0.04
V

{a) For Nb

C:

g 0.00
c5

4.0

where D, is the so-called tracer-diffusion constant and
C is a constant. One example is given in Fig. 4. We
deduce the value for D, &om the slope of the linear part
of ([ARH(t)] ). The same quantity for Nb atoms is also
shown in Fig. 4. Clearly, the Nb atoms do not diffuse
and ([KRNb(t)] ) approaches a constant value of about
0.034 A. . (The oscillations for long times are an arti-
fact caused by the periodic boundary conditions. ) This
corresponds to the mean squared displacement (u2Nb) =
0.0056 A2 for the Nb atoms at 450 K, which is about
a factor 1.3 too small compared with the experimental
value. Gillan "corrected" the potential by Finnis
and Sinclair by multiplying the energy by a factor of
1.9 to obtain an accurate mean phonon frequency and it
is this "corrected" version we are using. However, the
elastic moduli then became too small and in evaluating
(u2Nb) the contributions from the low-frequency phonons
are important.

Table I summarizes our results for D, at two different
temperatures and for simulations of both set A and. set
B.As already noticed by Gillan, the D, value is slightly
higher, about a factor of 2 too large, compared with the
experimental result, which is not surprising. In determin-

ing the Nb —H interaction only experimental information
on the two vibrational frequencies was used and no data
on the diffusive motion were taken into account. The ex-
perimental data can be well represented by the Arrhenius
law Do exp( —E /k~T), with Do = 5.0 x 10 cm 2s

and E = 0.106 eV (for T ) 300 K). In the same ta-
ble we also give the mean residence time w„, determined
by assuming the Chudley-Elliott (CE) model for the
difFusive motion, r„, = ao/48D, .

To check the seriousness of the deficiency in our model
in describing the absolute magnitude of the diffusion con-
stant we have performed simulations at two different tem-
peratures 580 K and 450 K, the higher one being the
same as used in the experiment by Bosch et al. and the
lower one reproducing roughly the same D, as obtained
experimentally at the higher temperature.

C. Comparison with neutron-scattering results

F, (q, t) = (exp ( i q [RH(t) ——RH(0)])) (8)

is directly accessible from the MD trajectories (cf. Fig.
8, below) and we have determined both the intensity and
width of the quasielastic peak directly from F, (q, t).

The intensity IqE(q) is obtained by integrating over a
fixed frequency window [

—wo, +uo],

In incoherent neutron scattering from NbH the details
of the diffusive motion of hydrogen can be studied by ex-
amining the quasielastic peak. Both the q dependence of
the linewidth and intensity of this peak show nontrivial
behavior. The incoherent intermediate scattering func-
tion

2 sin wpt
I@E(q) = d~ S, (q, cu) = — dt F.(q, t),

7C p

0.0
400 800 1200

Time t {fs)

FIG. 4. Mean squared displacements ([AR(t)] ) for (a)
metal atoms and (b) the hydrogen atom, both at T=450 K.

where S,(q, cu) is the dynamic structure factor, the time-
Fourier transform of F,(q, t). In Fig. 5 we show the result
using three difFerent windows together with the experi-
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FIG. 5. The logarithm of the integrated intensity of the
quasielastic peak, ln [Iqp(q)], as a function of q aud with the
direction of q along [100]. The MD data (~, , &&) are taken
from the simulation at 580 K and with nonadiabatic effects
included. Three different energy windows have been used in
the integration, as indicated in the figure, and for comparison
the experimental data from Ref. 3 are also shown. The dashed
line gives the slope corresponding to the contribution from the
localized vibrations only.

mental data from Ref. 3. The experimental data have
been obtained by fitting the quasielastic peak with a sin-
gle Lorentzian. In our case, the most narrow window,
+2.5 meV, corresponds most closely to what is done ex-
perimentally (the maximum value for the half width at
half maximum in the [100]direction is equal to 1.1 meV at
580 K), but we also show the result using a 2 times larger
window, +5.0 meV. We notice that our MD results are in
qualitative or even semiquantitative agreement with the
experimental facts, indicated by crosses in Fig. 5.

In the conventional interpretation of the hydrogen mo-
tion in terms of harmonic vibrational motion uncorre-
lated with the diffusive jumps, which are assumed to
be instantaneous compared with the residence time, we
would have the relation ln[IqE(q)] = —(u~)q, where

(u~) is the mean squared displacement for the vibra-
tional motion. The important finding here is that the
slope in a "Debye-Wailer plot" (ln[IclE(q)] versus q )
changes as function of q and is considerable larger than
expected for small q values. By taking only the localized
vibrations into account, with energies Ru = 100 me V and
he@ = 180 meV, we obtain the averaged value (uH) = 0.01
A. at 580 K. The corresponding slope is indicated in Fig.
5 by a dashed line. The mean squared displacement also
gets a contribution from the so-called band modes, where
the hydrogen is moving in phase with the metal atoms.
The magnitude of this part is about the same and by in-
cluding that part the slope would increase by a factor of
2 only.

For large q vectors, q ) 4 A, the slope is consistent
with the one obtained from the localized vibrations only,
but for smaller q vectors the slope is considerable larger.
This efFect has been called the anomalous Debye-Wailer
factor and it has been observed in several experimen-
tal studies. ' Several authors have stressed that
the assumption about instantaneous jumps is question-
able when the difFusion rate becomes high. The time

G
I'(q) = ——ln [I', (q, t)], 1 ps ( t ( 2 ps, (10)

is identified with the half width at half maximum of the
quasielastic peak. For all data points in Fig. 6 we ob-
tained a clear exponential decay within this time window
but for larger q vectors that is not the case.

In Fig. 6 we have added the result using the CE
model with jumps between nearest-neighboring sites
only. To be consistent we have determined the width in
the same way as for the MD data. Only one parameter
enters the CE model, the mean residence time w„„and
we show the result for the normalized and dimensionless
quantity I'(q)r„, . The same normalization is performed
for the MD as well as for the experimental data using the
appropriate value for r,„in each case (cf. Table I). In
this way the q dependence of the width is most clearly
revealed and by construction all results will agree for suf-

for the actual jump cannot be neglected compared with
the residence time at a site. By taking this efFect into
account the quasielastic peak is changed considerable.
Wakabayashi et al. explained the behavior in terms of a
temperature-dependent delocalization of the hydrogen.
The q dependence of the integrated intensity was fit-
ted with a phenomenological model containing two mean
squared displacements, one corresponding to the vibra-
tional motion and one with magnitude comparable to the
distance between T sites. With increasing temperature
the relative weight of the latter component was found to
increase and by assuming an Arrhenius dependence the
activation energy 0.1 eV was obtained. Lottner et al.
made a more careful fit of the line shape of the quasielas-
tic peak. They concluded that for H in Nb no serious
deviation from a "normal" Debye-Wailer factor occurs
and the magnitude of the mean squared displacement was
consistent with contributions obtained from the localized
and the band modes. However, they had to use more
complicated jump-difFusion models in their fitting proce-
dure and they also considered only wave vectors less than
2.4 A for H in Nb. More recently, Dosch et a/. have
made further interpretations of the quasielastic intensity
and they stated that a part of the anomalous decrease
should be associated with a rapid-diffusion mechanism,
on a time scale significantly faster than the conventional
long-range difFusion.

We have also used a considerably larger energy win-
dow, + 30 meV. In this case also the energy range for
the band modes [cf. Fig. 9(b), below) is included in the
integration and we obtain a "normal" Debye-Wailer be-
havior with the slope roughly corresponding to the local-
ized vibrations only. The key issue will be to characterize
correctly the motion which shows up in the energy win-
dow 6 30 meV.

Next we consider the width of the quasielastic peak.
Considerable attention has been directed to this quantity
and a clear deviation from simple jump-diffusion behav-
ior has been identified. ' ' ' ' We have determined the
width by plotting 1n[E'(q, t)] as a function of time. For
long times the slope is linear and the decay is exponen-
tial, exp[ —I'(q)t]. The decay rate in the time window, 1
ps(t(2ps,
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In Ref. 13 (Fig. 4) the quantity 47rr G, (r, t) is shown,
which is equal to the probability at time t to find the
hydrogen atom at the distance r from its location at t =
0. Three difFerent times are shown, which correspond
roughly to the vibrational period, half the mean residence
time, and the mean residence time, respectively. The
arrows in Fig. 4 in Ref. 13 indicate the distance to the
nearest- and to the second-nearest-neighboring T sites,
assuming a T site to be located at r = 0. The large
amplitudes in between the sites show that the hydrogen
atom spends considerable time in these regions.

We have also determined the integrated quantity

FIG. 6. The half width I'(q) at half maximum of the
quasielastic peak in units of 7;, The appropriate numbers
for ~, , can be found in Table I and for the experimental data
we have used r„, = 389 fs. In the Chudley-Elliott (CE) model
the quantity I'(q)7;,. is independent of 7;„. The solid sym-
bols show the MD result with nonadiabatic effects included
(hr1=2. 5 meV) and the open symbols show the corresponding
result in the absence of nonadiabatic effects (her=0. 0 meV).
The results along three different directions are shown, as in-
dicated in the figure.

ficiently small q vectors.
The large deviation from the simple jump-difFusion be-

havior (the CE model), seen particularly in the [ill] di-
rection, is reproduced surprisingly well by our MD data.
The effect of adding the nonadiabatic efFects (the solid
symbols in Fig. 6) is not pronounced; the normalized de-
cay of 5', (q, t) only becomes slightly faster for large q
vectors.

We conclude that our model reproduces quite well two
key experimental observations on the difFusive motion:
the anomalous Debye-Wailer factor and the strong devi-
ation from simple jump-difFusion behavior.

T'T T

Po(t) = 4~r'G, (r, t)dr,
0

(12)

B. Spatially averaged MD trajectory

The Van Hove self-correlation function G, (r, t) does
not give any direct information on the location of the H

where the magnitude for the radius of the sphere is cho-
sen equal to half the distance between T sites, rT T ——

dT T/2 = 0.58 A. . Provided the H atom does not spend
too much time in the actual jumping process, the "jump
phase, " we can interpret Po(t) as the occupancy of the
initial site. Assuming the CE model to be valid, the
short time decay of Po(t) is exponential, exp( —t/w„, ),
while for longer times the decay is slowed down due to
the probability that the H atom can return to the initial
site. In Fig. 7 we show our results together with the re-
sult obtained from the CE model. Already at t = 150
fs the occupancy of the initial site is reduced to 5370.
This should be compared with the CE model where the
corresponding number is 65%%.ss The difFerence between
these two numbers reveals the existence of a rapid motion
where the hydrogen atom is moving between difFerent T
sites and which is not accounted for in the CE model.

V. INTERPRETATION

The next step is to make use of the very detailed in-
formation contained in the output from the MD simu-
lation. To reveal the details of the diffusive motion we
will concentrate on properties that directly show the spa-
tial dependences of the hydrogen motion. In this section
we show results only from the simulation at 450 K and
with nonadiabatic efFects included. The results obtained
at the higher temperature, T = 580 K, are qualitatively
the same. The corresponding mean residence time deter-
mined &om the difFusion constant is r„, = ao/48D, =
324 fs, which will be used as the single parameter in the
CE model.
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A. Van Hove self-correlation function

The first function that has been determined is the Van
Hove self-correlation function

FIG. 7. The Van Hove self-correlation function at 450 K
with nonadiabatic effects included. The quantity Po(t) is
shown, which is equal to G, (r, t) integrated over a sphere with
radius rT & = 0.58 A. The result using the Chudley-Elliott
(CE) model is also shown, as well as an exponential with the
decay constant v, , = 324 fs.
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atom with respect to the metal atoms. We expect hy-
drogen to move between different T sites but to obtain
information on that kind of motion more directly we have
to define when the hydrogen atom is located at a partic-
ular T site.

We fix the location of the T sites with respect to the
undistorted lattice positions of the Nb atoms. The hy-
drogen atom is then defined to be located at a certain T
site whenever it is within the distance rp from that site.
Hydrogen can then move between different T sites and
for simplicity we call this motion "jumps" even if the
actual motion is not "jumplike. " If the hydrogen exits
one sphere of radius rp and enters the same sphere with-
out being visiting some other sphere in the mean time
("a large vibration" ), this is not counted as a jump. On
the other hand, if it exits one sphere and enters another
sphere, we count this as a jump and the change of site lo-
cation is assumed to take place when the hydrogen atom
enters the new site. We will show results using rp = 0.3
A and ro ——0.4 A, both values less than half the distance
between two T sites, rT 7 = dT T/2 = 0.58 A. . The rea-
son for choosing a sphere radius rp which is considerably
less than rT T is that we would like to reduce the contri-
bution from the type of motion that we do not interpret
as jumps; for instance, we want to exclude the possibility
that if the hydrogen atom only makes a large vibrational
type of motion, that is counted as a jump.

In this way we can now introduce a spatially averaged
MD trajectory for the hydrogen atom, RH(t), which is
equal to the location of the corresponding T site. In con-
trast to the true MD trajectory RH(t) the averaged tra-
jectory R~&(t) changes discontinuously. The trajectory
R~z(t) contains the motion of the hydrogen atom when
it is moving between different T sites but not the local
vibrational type of motion at the different T sites. We
will now make use of these two difFerent trajectories and
elucidate the H motion in more detail.

In Fig. 8 we show the intermediate scattering func-
tion I",(q, t) evaluated using both the true MD trajectory
RH(t) as well as the averaged MD trajectory RH(t). In
the same figure we also show the result obtained using
the CE model. The long time decay is the same which
implies that the half width shown in Fig. 6 would be the
same using either RH(t) or RH(t). The short time decay,
however, is difFerent. Spatially localized motion is more
apparent for large wave vectors which explains the more
pronounced difference in Fig. 8(b). The substantial de-
cay of E, (q, t) for times t ( 200 fs in Fig. 8(b) is caused
by vibrational type of motion of the H atom. Oscillations
with the period of a few hundred femtoseconds are also
visible in Fig. 8(b), which shows that the H atom follows
the Nb motion to some extent. We have verified this by
artificially changing the time scale for the Nb motion by
increasing its mass. The period for the oscillations then
becomes longer and is proportional to the square root of
the mass.

We have also determined the dynamic structure fac-
tor S,(q, w), the time-Fourier transform of the scattering
function I",(q, t), which is directly accessible in neutron-
scattering studies. Our results are reproduced in Fig. 9.
The spectrum obtained by using the true MD trajectories
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FIG. 8. The intermediate scattering function F, (q, t) at 450
K with nonadiabatic effects included and for two different
wave vectors: (a) q = [2,0,0] A and (b) q = [5,0,0] A . The
result from the MD simulation (solid lines) is compared with
the Chudley-Elliott (CE) model (dotted lines). The averaged
MD trajectory (dashed lines) does not contain the vibrational
motion and the parameter value ro ——0.3 A has been used (for
more details, see the text).
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shows a broad peak around 110 meV which corresponds
to the localized vibration of the hydrogen atom. There
is a also an increased intensity in the frequency range
& 20 meV for the larger q vector. If we compare this
spectrum with the one obtained using the averaged MD
trajectories, we notice that both these features disappear,
which directly shows that they are connected to spatially
localized motion. The frequency range & 20 meV co-
incides with the phonon spectrum for the metal host
and this feature in the spectrum corresponds to the so-
called band modes where the hydrogen atom is vibrating
in phase with the surrounding metal atoms.

The identity F'(g, t = 0)—:1 implies that the total
intensity obtained from the two different spectra is the
same. For the averaged trajectory the intensity for the
vibrational motion disappears but that intensity has to
reappear at other places. The quasielastic peak becomes
larger but the half width at half maximum of that peak
is the same. Therefore one has to be a little careful and
not compare the absolute intensities directly.

C. Residence-time distribution

The trajectory RH(t) contains information on the resi-
dence time at the different sites. We define the residence
time as the time difference between the moment when
the H atom first enters a site until it enters another site.
In Fig. 10 we show the result for the distribution of the
residence times using two different values for ro. 0.4 A.

and 0.3 A. . The integral of the distributions gives the to-
tal number of jumps which are found to be 4230 and
3519, respectively. The time extension of the simulation
is t =125 ps and we have nH ——8 H atoms in the simu-
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lation cell. Assuming the CE model to be valid we would
have an exponential distribution for the residence times,
exp (—t/w„, ), and the total number of jumps would have
been K~E = nIrt „/r„, = 3086. This is less than found
in the simulation and for comparison we also show the
result from the CE model in Fig. 10, properly normalized.

The distribution, found in the MD simulation, is corn-
posed of two distinct contributions: one narrow compo-
nent with a short residence time of the order 35 fs and
one broad component extending to longer times. The for-
mer corresponds to the "Hight" motion during which a H
atom moves through a sphere of radius ro surrounding a
T site, instead of being trapped therein. The magnitude
of the narrow component depends on the chosen value for
ro, it becomes larger for larger values of ro. The reason is
that more portions of the trajectories will be counted as
jumps. We can compare the time scale 35 fs with the time
it takes a H atom with thermal velocity to move from one
T site to another which is. equal to dT T/gk&T/mH =
60 fs at T = 450 K.

The latter contribution in the residence-time distribu-
tion can roughly be approximated with an exponential
decay. This contribution is found to be independent of
the chosen value for ro, in contrast to the narrow compo-
nent. The H atom is trapped within a T site and vibrates
locally which implies that the residence time will be in-
dependent on the particular value for ro. For short times
the decay is faster compared with longer times. A Bt in
the time window 60 fs & t & 300 fs leads to the typical de-
cay time 160 fs while in the time window 300 fs & t & 600
fs the decay time is closer to 300 fs. For longer times the
decay is even slower but due to the statistical uncertain-
ties it is diKcult to estimate a numerical value. These
numbers should be compared with the mean residence
time derived from the diffusion constant, 7„,= a2o/48D,
= 324 fs, and we And that the decay rate in the time
window 60 fs & t & 300 fs is faster than expected from a
simplified description.

We have also determined the mean residence time. The
following numbers are obtained: 229 fs and 275 fs for ro
= 0.4 A and 0.3 A, respectively. The difference is due to
the different magnitudes of the narrow component. By
removing that peak we obtain the value 296 fs. This
is done by artificially assigning the number 12 to the
distribution function in the time window 20 & t & 50
fs. The value 296 fs is rather close the the CE value
r„, = no2/48D, = 324 fs.

Next we will consider the correlation in direction be-
tween consecutive jumps and decompose the residence-
time distribution into different cases.

0
0 100 200 300 400

Time t (fs)
500 600

D. Jump-angle distribution

FIG. 10. The distribution of the residence times for the hy-
drogen to be located at a T site, taken from the simulation
at 450 K and with nonadiabatic effects included. The precise
definition of the residence time is given in the text and we have
used two different values for the parameter ro, as indicated
in the figure. The MD data are compared with the Chud-
ley-Elliott (CE) model using r„,=324 fs and the appropriate
number of jumps.

Two consecutive jumps de6ne a jump angle 0. In
Fig. 11 we show the most common cases, found in the
simulation. Cases (a)—(c) correspond to two consecu-
tive nearest-neighboring jumps and in cases d and e a
nearest-neighboring jump is followed by a second-nearest-
neighboring jump. The last two angles are also obtained
if the second-nearest-neighboring-jump is followed by the
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FIG. 11. Illustration of different jump angles. Jump angle 8

nearest-neighboring jump. In the simulation we have also
found a few cases with 0 = 0. In the CE model only the
jump angles in cases (a)—(c) are present and the proba-
bility for case (c) is twice as large as for the other two.

In Fig. 12 we show the occurrence of different jump an-
gles obtained from the simulation using rp ——0.4 A. For
comparison we also show in Fig. 13 the corresponding
result using the CE model. The CE model gives a rather
poor description of the true behavior. In particular, we
find a high probability of direct backward jumps and
a substantial contribution of second-nearest-neighboring
jumps.

In order to extract more information we have also di-
vided the jump angles into three different categories, de-
pending on the magnitude of the residence time at the
site between the two consecutive jumps. Three time in-
tervals have been considered: t & 60 fs, 60 fs ( t ( 300
fs, and t ) 300 fs. For comparison we have made the
same division for the CE model in Fig. 13.

We obtain a large portion with residence times shorter
than 60 fs, in direct accordance with the distribution
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FIG. 12. The jump-angle distribution, taken from the sim-
ulation at 450 K and with nonadiabatic effects included. The
parameter value rp ——0.4 A is used and the different jump an-
gles are illustrated in Fig. 11. For a given 8 value the distri-
bution is divided into three different categories: 0( t (60 fs,
60 fs( t (300 fs, and t &300 f, depending on the magnitude
of the residence time t at the site between the two consecutive
jumps which de6ne the jump angle.

FIG. 13. The same as in Fig. 12 but assuming the
Chudley-Elliott model to be valid with an exponential resi-
dence-time distribution (v;„=324 fs) and with uncorrelated
jumps to nearest-neighboring sites only.

function in Fig. 10. The difference between the MD data
and the CE model is manifest. The cases with short res-
idence times are found predominantly for jump angles
specified by cases (a), (b), and (d). These angles de-
fine the so-called 4T configuration and we can directly
conclude that this rapid motion, with residence times
less than 60 fs, is confined to that type of configuration.
The 6T or 3T configuration, which involvess case (c)
(0 = ir/3) only, is considerably less involved. Many
of the above events correspond to the fact that the H
atom vibrates locally around one T site, makes a large,
but short-in-time detour to a nearest-neighboring T site,
and then reenters back to the original T site [cf. Fig.
14(b)]. Others correspond to a more complicated jump
with large detours to nearby T sites [cf. Figs 14(c) and
14(d)]. These kinds of motions give rise to an anomalous
q dependence of the intensity of the quasielastic peak, a
fast initial decay followed by a slower decay for larger q
values (cf. Fig. 5).

For longer times, t & 60 fs, the occurrence of jump
angles defined by cases (a)—(c) is roughly the same as
within the CE model with slightly fewer for case (a),
0=sr. In the time window 60 fs ( t ( 300 fs jumps with
O=vr/3, case (c), is somewhat more likely compared with
cases (a) and (b). Substantial contributions are also ob-
tained from second-nearest-neighboring jumps [cases (d)
and (e)] which are absent in the CE model. We have
determined the total number of nearest- and second-
nearest-neighboring jumps and about 10/o is found to
be of the latter category. More precisely, for rp = 0.4
A we obtained 3832 nearest-neighboring jumps and 398
second-nearest-neighboring jumps while for rp = 0.3 A.

the corresponding numbers are 3179 and 340, respec-
tively. One should also have in mind that a more compli-
cated event, as, for instance, the one shown in Fig. 14(c),
is here counted not as a single second-nearest-neighboring
jump but as two nearest-neighboring jumps (in that par-
ticular case). The conclusion is that the diffusive mo-
tion is considerably more complicated than within the
CE model. This is apparent in the q dependence of the
width of the quasielastic peak (cf. Fig. 6).
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E. Trajectories

In Fig. 14 we have collected some typical H trajectories,
projected onto the (100) surface of the bcc unit cell. Each
panel shows the time evolution of the H position for 500
fs. The solid circles denote the lattice positions of the
Nb atoms and the open circles the positions of the T
sites assuming the parameter value ro ——0.4 A. . In (a) the
H atom makes a "difFusive" jump between two nearest-
neighboring T sites while in (b) it vibrates locally and
only makes a large detour to a nearest-neighboring T
site. The motion in (b) will be counted as two nearest-
neighboring jumps with angle 0=m (cf. Fig. 11) and the
residence time at the site between the two consecutive
jumps is very short, of the order 20 fs. In (c) and (d)
the H atom performs a more complicated motion. The
motion in (c) will be counted as two nearest-neighboring
jumps with angle H=vr/2 and residence time 100 fs. In
(d) a nearest-neighboring jump is followed by a second-
nearest-neighboring jump, the jump angle is 8=3vr/4, and
the residence time 30 fs.

The trajectories in Fig. 14 are shown for illustrative
purpose only. To get a quantitative measure of the rela-
tive importance of difFerent kinds of motion statistically
averaged quantities, as presented in the previous subsec-
tions, have to be determined.
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FIG. 15. The potential energy as function of the H position
along the straight line from one T site to another T site (e.g. ,
positions 2 and 3 in Fig. 1). The Nb positions are kept fixed
in three different arrangements, denoted as 1T, 4T, and 6T.
1T corresponds to the distortion caused by a fixed H atom at
one T site (position 2) while 4T and 6T correspond to a "de-
localized" H atom, located at 4T and 6T sites, respectively.
For more details, see the text.

F. Potential-energy surfaces

We have also tried to obtain some information on the
probability for the occurrence of difFerent configurations

(a)

FIG. 14. Illustration of different kinds of H trajectories,
projected onto the (100) surface of the bcc unit cell. Each
panel shows the time evolution of the H position for 500 fs.
The solid circles denote the lattice positions of Nb atoms and
the open circles the positions of the T sites assuming the
parameter value r 0.4oA.

by investigating the potential-energy surface. In Fig. 2
we have shown the potential energy for the total system
as function of the hydrogen position. For each position of
the hydrogen atom the system is allowed to relax to the
configuration with minimum potential energy. Another
function can be obtained by first relaxing the system in
the presence of a fixed hydrogen atom, and then deter-
mine the potential energy as function of the hydrogen
position with frozen configuration for the Nb atoms.

We have considered three such cases; denoted as 1T,
4T, and 6T. The 1T arrangement has been derived by
first locating the hydrogen atom at one T site (position 2
in Fig. 1). The system is then allowed to relax and with
frozen Nb positions the potential energy as function of
the H position is obtained and shown in Fig. 15 (solid
line) .44

The 4T arrangement corresponds to the situation
where the influence of the hydrogen atom is divided
equally between four different T sites (positions 2, 4, 1,
and 3 in Fig. 1). Technically this is done by locating four
"H atoms" at the difFerent T sites and then reducing the
H-Nb interaction strength by a factor of 4. In this way we
obtain a distorted configuration which is symmetric with
respect to these four difFerent T sites. In the same way,
the 6T arrangement is obtained by dividing the influence
of the hydrogen atom equally on six T sites; denoted by
2, 3, 6', 1', 4', and 5 in Fig. 1. Figure 15 shows the
potential energy obtained by moving the hydrogen atom
from one T site (position 2) to the nearest-neighboring
T site (position 3) in a straight line. In all cases the Nb
configurations are frozen.

First we notice that the energy required to create a
4T arrangement, with the hydrogen located at one T site
equal to LE=0.10 eV. At an elevated temperature there



YINGGANG LI AND GORAN %'AHNSTROM

is therefore a finite probability to obtain such a fluctua-
tion. The energy barrier, however, in that configuration
is substantial and the configuration is not at all "Hat."
We find no direct evidence for the formation of a "cage,"
a region extended over several T sites with roughly con-
stant potential energy for the H atom, where that atom
could move rather freely and rapidly back and forth sev-
eral times. The motion is highly cooperative in nature
and only from the time-dependent MD calculation can
the proper behavior be deduced.

VI. SUMMARY AND CONCLUSIC)NS

In this paper results from a molecular-dynamics (MD)
simulation of H diffusion in Nb have been presented. The
system consists of 432 Nb atoms and 8 H atoms, giving
the hydrogen number concentration x = 0.0185. Two
different temperatures are considered: T= 450 K and
T = 580 K. For the interatomic interactions we have
used a potential-energy surface proposed by Finnis and
Sinclair, and Gillan.

Our model reproduces quite well two key experimen-
tal observations on the quasielastic peak: the distinct
deviation from simple jump-diffusion behavior for the
wave-vector dependence of the width of the peak and
the anomalous wave-vector dependence of the integrated
intensity of the same peak, the Debye-Wailer factor. We
also identify in the spectrum localized vibrational modes
and band modes, where the H atom is moving in phase
with the metal atoms. These findings confirm that our
rather crude model for the potential-energy surface is suf-
ficiently accurate for our purposes.

To reveal the details of the hydrogen motion we have
considered quantities that directly describe the time de-
pendence of the spatial location of the H atom with re-
spect to the surrounding metal atoms. We define the H
atom to be located at a particular T site whenever it is
within the distance ro kom that site, with ro in the range
0.3 A. ( re ( 0.4 A. Both the distribution of the residence
times at the T sites and the correlation character among
consecutive jumps have been determined.

We find that the residence-time distribution is com-
posed of two distinct contributions: one narrow compo-
nent with a short residence time of the order 35 fs and
one broad component with roughly exponential decay.

The former corresponds to the fact that the H atom
moves rapidly through a T site and one may interpret
this as the jump phase. This rapid motion, with short
residence time, is found predominantly for jump angles
specified by cases (a), (b), and (d) in Fig. 12, which define
the so-called 4T configuration. However, we have found
no evidence for the formation of a long-lived "cage" ex-
tended over a 4T con6guration where the H atom could
move rapidly and repeatedly back and forth. Many of
the rapid events are simply motions where the H atom
vibrates locally, makes a large detour, and then reenters
back to the original site [cf. Fig. 14(b)]. These findings

are quite consistent with the physical picture proposed
by Wakabayashi et al. in order to explain the anoma-
lous Debye-Wailer factor. We have also identified this
with the "rapid local difFusion, " discussed recently by
Dosch et al.

The broad component in the residence-time distribu-
tion is found to be independent of the chosen value for
ro, in contrast to the narrow component. The typical
decay time is found to be of the order 160 fs and 300 fs
in the time intervals 60 fs & t & 300 fs and 300 fs & t &
600 fs, respectively. This should be compared with the
mean residence time derived &om the diffusion constant,
r„, = oe/48D, = 324 fs, and, therefore, the decay rate
in the time window 60 fs & t & 300 fs is faster than
expected from a simplified description.

A conclusion one can draw from our simulation results
is that the difFusive motion of H at high temperatures
in bcc metals is quite complicated. If we view the type
of motions shown in Figs. 14(c) and 14(d) as single-
jump events, it is clear that in order to characterize that
motion correctly the time spent and the spatial excur-
sion performed in the jump phase cannot be neglected.
We also find substantial contributions of second-nearest-
neighboring jumps and we stress that the division be-
tween nearest- and second-nearest-neighboring jumps is
ambiguous. The diffusive and the vibrational motion of
the H atom cannot be clearly separated, which implies
that the description of the difFusive motion in terms of
simplified phenomenological models becomes difBcult.

The quantum aspects of the hydrogen motion have
been neglected. Using the path-integral simulation tech-
nique Gillan has shown that around 500 K the hydrogen
atom is rather well localized in space and it is therefore
reasonable to assume that the dynamics of the hydrogen
motion can be approximated by classical mechanics. The
discrete nature of the energy levels would more show up
as an implicit temperature- and isotope-dependent shift
in the potential-energy surface. These effects are not neg-
ligible even at 500 K (Ref. 45) and care has to be taken
if data &om first-principle calculations of the potential
are used as input in a MD simulation based on classical
mechanics. The fact that our results reproduce experi-
mental observations quite well provides a further indica-
tion of the credibility of assuming classical dynamics at
the present temperatures.
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