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Ergodic versus nonergodic behavior in oxygen-deficient high-T, superconductors
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The oxygen-defect-induced phase transition from nonergodic to ergodic state in superconductors with
intragrain granularity is considered within the superconductive-glass model. The model predictions are
found to be in qualitative agreement with some experimental observations in deoxygenated high-T, sin-
gle crystals.

I. INTRODUCTION

According to recent findings (see, e.g., Refs. 1 —8 and
references therein), high-T, superconductors (HTS) ex-
hibit an anomalous (nonclassical ) magnetic-field
behavior, which has been attributed to the field-induced
intragrain granularity in oxygen-deficient samples and in-
terpreted in terms of the field-induced decoupling of re-
gions of oxygen-rich material by boundaries of oxygen-
poor material. A phase diagram H (5, T), that demar-
cates the multigrain onset as a function of temperature
and oxygen deficiency 5, was found to confirm that
oxygen-deficient single crystals exhibit behavior charac-
teristic of homogeneous superconductors for H (H and
inhomogeneous superconductors for H )K . The
granular behavior for H )H has been related to the
clusters of oxygen defects (within the CuO plane) that re-
strict supercurrent Row and allow excess Aux to enter the
crystal. The observed H (5, T) data were described by a
two-dimensional (2D) percolation model for oxygen de-
fects. It means that there exists a critical oxygen
deficiency 5, above which there are no continuous
current paths. For 5 greater than 5„oxygen-rich super-
conducting grains are separated by oxygen-poor insulat-
ing boundaries so that there is no superconducting path
through a sample. For 5 less than 5„acomplete current
path spans the sample and resistance measurements show
metallic behavior with a super conducting transition.
Since H (5, T) signals the onset of granularity, a sample
with H (5, T)=0 implies that the crystal has so many
oxygen defects that it never exhibits single-grain
behavior.
The aim of the present paper is to show how the lack of
oxygen in HTS materials inspires the phase transition
from the nonergodic (in nearly fully oxygenated crystals)
to the ergodic (in highly oxygen-depleted crystals) state
within the so-called superconductive-glass (SG) model
(see, e.g., Refs. 9—15 and references therein), and to com-
pare the model predictions with some experimental data
for deoxygenated HTS single crystals. More specifically,
the nonergodic (phase-coherent) state is attributed to
nontrivial equilibrium (long-time) behavior of the defect-
free crystal (with 5=0) [which is characterized by a non-
trivial order parameter L(5, T,H)%0; see below], while
the ergodic (paracoherent) phase corresponds to the equi-

librium state of the defected crystal (when 5=5, ) [with
L (5, T,H, ) =0].

II. THE MODEL

The SG model is based on the well-known Hamiltonian
of a granular superconductor which in the so-called pseu-
dospin representation has the form

N N
&o= —g J(5, T)cosg; (H)—:—Re g J; S;+S . , (1)

/J lJ

where

J; (5, T, H)=J(5, T)exp[i'; (H)],
P;t(H) =P; P~

—A;—(H),

A, (H)= (HXR, )r,",
40

r,, =r, —r, R,"=(r,+r. )/2 .

This model describes the infinite-range interaction be-
tween oxygen-rich superconducting grains [with phase
P;(t) or Josephson pseudospins S;+=exp(+i/; )], ar-
ranged in a random two-dimensional lattice (modeling
the CuO plane of oxygen-depleted Yaa2Cu307 &, where
a glasslike picture is established' ) with coordinates
r; =(x;,y;, 0). The grains are separated by oxygen-poor
insulating boundaries producing Josephson coupling with
energy J(5, T). The system is under the influence of a
frustrating applied magnetic field 8, which is assumed to
be normal to the CuO plane of HTS's. The increase of
the oxygen deficiency 5, leads to the decrease of the
Josephson energy (via the increase of the insulating layer
between oxygen-rich grains). For small 5 (such that
5«1) we can approximate the 5 dependence of the
Joseph son energy by a linear law, namely
J(5, T)=J(0, T)(1—5). The superconducting current
through the Josephson junction (JJ) between grains i and
J~

I,'(H)= sing, (H)= Im[J,. S,+S,

induces a diamagnetic moment of the weak-link net-
work
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p=m QI,'(H)(r;. XR;. ) . (5)
1J

To study dynamic (relaxation) behavior of the model
(1), let us assume that in addition to the constant frustrat-
ing field H, the superconducting grains are under the
infiuence of a small time-varying field H, (t) « H, so that

D;, (t) = (&;+(t)&, (0) ) . (12)

III. DISCUSSION

As is well-known, ' there can be many types of long-
time behavior of D(t). Two of them are of particular in-
terest:

cos[P,. —P.—A,"[H+Hi(t)]]
-=cosP,"(H)+ A; [Hi(t)]sing, "(H) .

In view of Eqs. (1)—(5), the total (perturbed) Hamiltonian
can be cast into the form

and

lim D (t) =L( T, H)WO (I)
f~oo

lim D (t) ~ exp( t/~) —(II) .
g~ ao

(13)

(14)

&(t)=HO(H) —pH, (t) . (6)

If the perturbation is applied continuously from t = —~
up to t =0 and is cut off at t =0, then the linear [with
respect to the small perturbation field H, (t)=H, 9( —t)]
response M (t) = (p, ) /V will relax to its equilibrium
value M, —= lim, „M(t}according to the formula'

M(t) M, =—J dt'G(t t')H, (t—')= f dt'G(t')H, .
Oo

According to the fluctuation-dissipation theorem, ' the
response function G(t) is related to the relaxation func-
tion N(t) as follows: G(t)= —(i}/Bt)@(t). Thus the
above equation reads

where'

4(t) =P(p, (t)p, ,(0) ) .

Here P=1/kiiT, the bar denotes the configurational
averaging over the randomly distributed grain coordi-
nates (see Appendix A), ( . ) means the thermodynam-
ic averaging with the Hamiltonian &0(H), and we have
assumed that H=(O, O, H) and H, =(O, O, H, ). Therefore
the function N(t) describes the relaxation of magnetiza-
tion M(t) after removal of the outer disturbance. As a
result of configurational averaging, the relaxation of mag-
netization can be approximated by the formula (see Ap-
pendix A)

M(t)=M(5, T,H, H, )iD(t) ',
M(5, T,H, H, ) =y(5, T,H)Hi,

where

16e s N J (5, T) H

k~ TV%

H
—4

1+
Ho2

(10)

Here Ho=go/s is a characteristic Josephson field with
s =~d an average JJ projection area, and N is the num-
ber of grains. Thus, all information about the dynamic
(relaxation) properties of the system is contained in the
time-dependent correlator D(t) —= (1/N)g, D,"(t) which"
is defined as follows (see Appendix A): '

L(T,H)=

At the same time, the presence inside a sample of a few
scattering centers (which are characterized by a mean
free path l, /) a} inspires the transition of the system
from the nonergodic (class I) to the ergodic (class II) state
with the (inverse) relaxation time (v~ is the Fermi veloci-
ty)

2
1 +Ha—=(vFa)

4po
(16)

Turning to the HTS single crystals, let us consider dy-
namic (relaxation) and equilibrium properties of the mag-
netization versus oxygen defect concentration within the
SG model. By analogy with the case of slightly defected
thin films, considered by de Gennes and Tinkham, ' we
assume that up to some critical value of oxygen
deficiency, 5g, HTS single crystals exhibit nonergodic
(phase-coherent) behavior, while for oxygen-defect con-
centration greater than 5g, the above-mentioned coher-
ence (within the CuO plane) is destroyed and the crystal
undergoes a phase transition to the ergodic
(paracoherent) state where oxygen-rich superconducting
grains are separated by oxygen-poor insulating boun-
daries so that there is no superconducting path through
the sample. It is worthwhile to mention that the related
problem of the annealed Ising magnet on percolation
clusters has been recently considered by Kaufman and
Touma. Using the renormalization group method,
three phases on the corresponding phase diagram have
been identified: percolating ferromagnetic, percolating
paramagnetic, and nonpercolating paramagnetic.

In view of Eqs. (10)—(13), the equilibrium magnetiza-
tion M, (5, T,H;Hi ) is the limit

A simple example of a system belonging to class I (the
so-called nonergodic state) has been discussed by de
Gennes and Tinkham. ' They considered the long-time
behavior of D(t) for a superconducting thin film (of
thickness a ) with diffuse refiection on the boundaries, in a
parallel magnetic field. When no volume defects are tak-
en into account (pure limit), the system was found to ex-
hibit a nonergodic behavior with field-dependent noner-
godicity parameter L ( T,H), namely,

1 (~Ha /—3$o), H &&($0/a ),
(2$,/~Ha')', H»($0/a') .
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Here L (5, T,H) is the order parameter of the SG model,
which is defined via the correlator D (t) according to Eq.
(13). To find the long-time (low-frequency} behavior of
the correlator D (t) [and thus of the magnetization M (t) ],
we need the equation of motion for the Josephson pseu-
dospins S, (t) A.n approximate (valid for N »1) equa-
tion of motion reads ' ' (see Appendix B)

N
S;+=pQ g J;~.SJ+ . (18)

J

Here Q =2e R /PA N is a characteristic frequency of the
JJ network with R being the resistance between grains in
their normal state. In the so-called mode-coupling ap-
proximation, ' D (t) obeys the self-consistent master
equation (see Appendix B)

"'D'"+Q2D(t)+ 'dt K(t )" "'—=0
dt2 0 dt' (19)

with K(t)—:(I/N)g; K; (t) be.ing a memory (feedback)
kernel. When there is no temporal correlation between
grains (paracoherent state) the memory kernel has a
white noise form K(t) =K„(t)=2Q5(t), where 5(t) is the
Dirac delta function. In this case the master equation re-
sults in a Debye-like decay of the uncorr elated
paracoherent state, namely, D ( t ) =exp( t /~), wh—ere
I/r=Q Such a .situation is realized above some critical
(phase-locking) temperature T~ when the coherent state
within the JJ network is destroyed completely, so that the
order parameter I.=0. Below T, the situation changes
drastically due to the superconducting correlations
occurring between grains. For N )&1, the coherent part
of the memory kernel, K (t), can be approximated by the

current-current correlator K (t) —= (S,+(t)SJ. (0.) ). Tak-
ing into account the equation of motion (18), the memory
kernel below Tg can be presented in the form (see Appen-
dix B)

N

K(t) =K„(t)+——g K,'. (t) =2Q5(t)+Q,',h(5, T H)D (t) .
EJ

(20)

Here Q„h(5, T,H) =PQJ(5, T,H) and the field depen-
dence of the Josephson energy is defined as follows (see
Appendix A):

H2
J(5, T,H) —=J)(5,T,H) =J(5, T) 1+

00
(21)

In view of Eq. (13), a zero-frequency (t~~ ) solution of
the master Eq. (19) with the memory kernel (20) results in
the nontrivial order parameter for the intragranular JJ

k~T
L(5, T,H)=1-

J(5, T,H )

2

(22)

M, (5, T,H, H, ) = lim M(t) =M(5, T,H, H& )L (5, T,H) .
f —+ oo

(17)

we get finally T~(5,H)=J(5, 0,H)/k~. As a result, the
order parameter L =1—[T/T (5,H)] gradually changes
from 0 at T & T (5,H) to 1 at T=O, thus describing a
continuous phase transition.

By analogy with the critical (phase-locking) tempera-
ture T~(5,H), we can introduce the critical field Hg(5, T)
as the solution of the equation L (5, T,Hg }=0. In view of
the field dependence of the order parameter [see Eqs. (21)
and (22)], the critical field reads

Hg(5, T) =Ho+1 —T/Tg (5,0) . (23)

Taking into account the 6 dependence of the phase-
locking temperature, T~(5,H) = Tg(O, H)(1 —5), Eq. (23)
results in the following oxygen-deficiency behavior of the
critical field:

H (5, T) =Ho+5 ( T, O) 5. — (24)

Here we have introduced the critical oxygen deficiency
5g(T, H), which is defined as the solution of the equation
L(5, T,H)=0 and has the form 5 (T,H)=1
—T/Tg(O, H). The physical meaning of this critical pa-
rameter is as follows. For 5&5 (T,H) oxygen-rich su-
perconducting grains are separated by oxygen-poor insu-
lating boundaries so that there is no percolative path
through the sample. Notice that, within the SG model,
Hg(5, T) in fact plays the role of the phase-boundary field
H (5, T) discussed by Osofsky et al. 3

It is important to mention that the correlator D(t) fol-
lows a simple Debye-like decay law only above Tg(5, H),
i.e., when the system of grains is in the ergodic state (see
above). Below Tg (where the order parameter LAO), re-
laxation of D ( t ) [with Im [D ( t ) ] =0] can be presented in
the form'

D(t)=L+(1—L)C(t) . (25)

The relaxation function 4(t) is supposed to be normal-
ized, viz.

—f dt 4&(t) =1,
7 0

and obeys the following boundary conditions: 4(0)=1
and 4( ao ) =0, i.e., D (0)= 1. Of course, in principle, one
can find D (t) as a numerical solution of the master equa-
tion. But it seems more interesting to try and get some
analytical results concerning the time behavior of D(t).
It is natural then to consider a simple generalization of
the Debye law in the form of the so-called Kohlrausch

The phase-locking temperature Tg(5, H), below which
the ensemble of grains undergoes the phase transition
into the coherent state, is defined by the equation
L(5, Tg, H)=0, which, due to Eq. (22), gives rise to an
implicit equation, viz. T (5,H) =J(5, Tg, H)/k&. The
Josephson energy depends on the temperature through
the Ambegaokar-Baratoff relation, which near the
single-grain superconducting temperature T, reads
J(T)=J(0)(1—T/T, ). Assuming that for high magnetic
fields (when frustration is strong enough)

J(5,0,H) «k~T, ~ J(5,0,0),
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stretched exponential law
a

N(t) =exp
'T

(27)

where a(5, T,H) & 1. Substitution of Eqs. (25)—(27) into
Eq. (19) with the kernel (20) results in an implicit equa-
tion on the power exponent a(5, T,H)

(i.e., U~O) as 5—+5s(T,H). To make our discussion
more quantitative, let us consider some estimates of the
model parameters. Using the experimental results for the
phase-boundary field Hg (5, T) obtained by Osofsky et al.
for fixed values of 5 and T, namely,

Hg(5=0. 06, T=60 K)=1.5 T,
Hg(5=0. 13, T=60 K)=1 T,

I 1+—=1+1 L
a 2(1 L)— (28) and

Here I is the Cxamma function. Near Ts(5, H) the ap-
proximate solution of Eq. (28) gives

a(5, T,H) = 1 L(5,—T,H) . (29)

It is worthwhile to mention that for the short-time lim-
it, when (t/2. ) « 1, the above Kohlrausch law (27) leads
to the nonlogarithmic relaxation law for magnetization
(see Appendix B)

M(t)=M, [1—2s 1n(t/2. )+s ln (t/~)] . (30)

In this approximation, the a-relaxation rate s (5, T,H) is
expressed via the Kohlrausch exponent a(5, T,H) and the
order parameter L (5, T,H)

1 —L
s (5, T,H)= a. (31)

In turn, s (5, T,H) is related to the activation energy
U(5, T,H) as follows: s =k~T/U. Thus, in view of Eqs.
(29)—(31) the 5, temperature, and field dependencies of
the activation energy in the JJ network are effective via
the corresponding dependencies of the order parameter
L(5, T,H); namely, near Ts(5, H) the activation energy
reads U(5, T,H) =ks TL(5, T,H). That is,

U(5, T,H)/2k' T= 1 —T/T (5,H) =5 ( T,H) —5

=1 H/H (5, T)—,
in at least qualitative agreement with what have been
really observed in oxygen-depleted HTS single crystals. '

It is interesting to notice that an expression similar to our
Eq. (30) has been used by Sengupta et al. to describe a
nonlogarithmic relaxation in HTS single crystals.

In view of the explicit dependence of the order parame-
ter on the oxygen deficiency, namely, L (5, T,H)
=2[5g(T,H) —5], Eq. (29) describes the restoration of
the ergodic state in the system under study when the oxy-
gen deficiency 5 reaches its critical value 5s ( T,H).
Indeed, when 5~5s(T, H), the order parameter L~0,
and the Kohlrausch exponent a~ 1 [see Eq. (29)] which
means that relaxation becomes faster [formally, accord-
ing to Eq. (31) the logarithmic relaxation rate s ~ ~]
and follows the ordinary Debye law [see Eq. (27)]. At the
same time, the activation energy between grains declines

I

H (5=0.13, T=70 K)=0.4 T,
Eqs. (23) and (24) allow us to get estimates for the phase-
locking temperature T~(5,H) and the critical value
of the oxygen deficiency 5 ( T,H). The result is

Tg(5=0, H=O)=75 K, Tz(5=0. 13, H=O)=72 K, and
5 (sT=60 K, H=O)=0. 21. Finally, using the above re-
sults, Eq. (24) brings about an estimate for the charac-
teristic Josephson field of H0 =$0/s =5 T which gives a
reasonable value of oxygen-ion scattering cross section
s=4X10 ' m . On the other hand, making use of the
above-obtained estimates we can estimate the value of the
activation energy

U(5, T,H ) =2ktt T(1 H /Hg (5,—T) ) .

For H= 1 T, 5=0.06, and T=60 K, we get U/ks =40
K, which reasonably agrees with the value deduced by
Ossandon et al. from YBa2Cu307 & single-crystal mea-
surements.

In summary, the oxygen-defect-induced phase transi-
tion from the nonergodic (in nearly fully oxygenated crys-
tals) to the ergodic (in highly deoxygenated crystals) state
in HTS oxygen-depleted crystals has been considered
within the superconductive-glass model. Both dynamic
(relaxation) and equilibrium properties of the model mag-
netization were found to correlate quite reasonably with
some experimental data on deoxygenated HTS's.

ACKNOWLEDGMENTS

The valuable discussions with Marcel Ausloos, Ted
Geballe, Jorge Jose, and James Thompson are highly ap-
preciated.

APPENDIX A

To get Eqs. (10) and (11) for the relaxation of magneti-
zation, we have to calculate the relaxation function C&(t)
Using the so-called random-field approximation for
quenched disordered systems, ' ' ' which allows to
decouple the averaging of the grain distribution
(represented by the scattering potentials J; ) froin the car-
riers (or Josephson pseudospins), i.e., assuming that
A(r; )B(r )-=A(r, )B(rj), we obtain from Eqs. (2)—(4) and
(9)

2 2 J2 N N
@(t)-=— g g [exp[i( A,"+Aki )](xiy; x/y')(xky& —xiyk )(—S;+(t)S (t)Sk+(0)$1 (0) )

ij kl

exp[i( A,—. —Aki)](xyj. —xjy,. )(xkyi xiyk )(S;+(t)S (t—)Sk (0)S|+(0)) ]+H.c. (A1)
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To proceed further, we have to calculate the four-spin
correlators appearing in the right-hand side of the above
equation. Taking into account only pair correlations,
namely, assuming that (within the mean-field approxima-
tion''' whenN»1), e.g. ,

conducting current I~ is given by Eq. (4) and

I~ =(~'/2eR)(dg;J'/dt) is a normal current with R being
the resistance between grains in their normal state, the
approximate (valid for N &&1) equation of motion for the
superconducting phase reads' '

&s,+(t)s,-(t)s„(o)s;(o)&

= &s,+(t)s;(o) & &s,-(t)s„+(o)&,

we can rewrite Eq. (Al) as follows:

fiN d0(+ 2eJ~
2eR dt J

Taking into account that

(Bl)

$2e2PJ2 x x
N(t) = — g g exp(iA, ) exp(i Akt)

+H. c.
X {D,i(t)D k(t)+D, k(t)D i(t)]

(A2)

D,, (t)=&S, (t)S, (0)&, Im{D,,(t)]=0,
and made use of the fact that due to Eq. (3)

(A3)

Here we have introduced the spin-spin correlator [cf. Eq.
(12)]

(d/dt)exp(+i/;) =i(dP, /dt)exp(+i/, ),.

the pseudospin representation [with S;+=exp(+i/;)]
brings about the approximate equation of motion (18) for
Josephson pseudospins.

In the so-called mode-coupling approximation, ' which
is based on a Mori-like projection technique, ' the self-
consistent master equation on the isothermal correlation
function D(t) can be constructed. Let us introduce the
Laplace transform

D;, (z)=i f dt e"'D; (t) . (B2)

(x;yj. —xjy;)exp(i A;i) = iso
exp(i A,") .8

BH
(A4)

Then the continued fraction expansion for D;, (z) leads .to
the expression' ' '

1 XP(x)= exp
&2~d'

(A5)

Using the above distribution function, we can calculate
the configurational averages appearing in Eq. (A2). In
particular, the average value of the Josephson energy [see
Eq. (2)] reads

J(5, T,H):JJ(5, T,H) =J—(5, T)exp(i A,~),
where

(A6)

H1+
Ho

(A7)

Here dr; =dx,.dy, and Ho=go/~d . Finally, taking into
account Eqs. (A3) —(A7), we arrive at Eqs. (10) and (11)
for the magnetization M(t).

APPENDIX B

By accounting for the KirchhofF law, g;I,, =0, for the
total Josephson currents, Iij Ij +Ij where the super-

The frustration-field dependence of the magnetization
essentially depends on the choice of a random distribu-
tion function P(r, ) as well as on the type of disorder.
To obtain the explicit form of the field dependence of
magnetization given by Eq. (11), we have assumed, for
simplicity, a site-type positional disorder allowing
for weak displacements of the grain sites from their
positions on the original 2D lattice, i.e., within a radius
d the new position is chosen randomly according to the
normalized separable Gaussian distribution function
P(r;) =P(x, )P(y;), where

(B3)

where

N

Dq(z) =—g e'~'J "'Djk(z) . (B4)
N

Here Q=2e k~TR/A N is a characteristic frequency of
the JJ network. Alternatively, using the inverse Laplace
transform, Eq. (B3) can be cast into the self-consistent
master equation [Eq. (19)]. Using the mode-coupling ap-
proximation scheme ' ' the coherent part of the
memory kernel can be represented by a set of current-
current correlators

K,', (t) = &s,+(t)s, (o) &+n'&s, +(t)s, (o) &+o(n') .

(B5)

Since S,+ ~0 [see Eq. (18)],due to a rather strong depen-
dence of the characteristic frequency 0 on the number of
grains (0 ~1/N), we can restrict ourselves to a linear ap-
proximation, K (t)—= &S;+(t)S (0)&, assuming that
N&) 1. Taking into account the equation of motion (18),
K, (t) —= (1/N)g, j'KJ'(t) can be presented in the form

2~2 N 1U

K, (t) —= g g J'k J'i&S~+(t)si (0) &

ij kl

=P2O2J2(5, T,H)D(t) . (B6)

To obtain the above equation, we have used Eqs. (A3),
(A6), and (A7) together with the decoupling approxima-
tions discussed in Appendix A. Using Eq. (B6), we finally
arrive at Eq. (20) for the total memory kernel below T.

To get the nonlogarithmic relaxation law (30) for the
magnetization, let us rewrite Eq. (10) taking into account
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Eqs. (25) and (27) as follows:

ln(1 —Z) = ln 1 —exp

Here

'a
(B7)

of Eq. (B7) and get in the linear approximation

PM(t) i/—M, =——(QMo —QM, q)aln(tlat) .

Finally, taking into account that M,q=MOL [see Eq.
(17)],we find [cf. Eq. (30)]

Z—:[&M(t) l/—M, ]/[QMO —QM,q],
Mo:M(—5, T,H, H, ); M, and M(5, T,H, H, ) are given by
Eqs. (17) and (10), respectively. For the short-time limit,
when (tlat) «1, and Z «1, we can expand both sides

M(t)=M, „[1—s ln(tlat)]

where

s =a(QM —QM, )/QM, =a(l L)/—L .
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