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Determination of internal strain by optical measurements
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Strain-induced atomic displacements can be determined by diffraction experiments only in the case of
extraordinarily favorable conditions. I propose optical measurements as an alternative method for deter-

mining components of internal strain. Based on the bond-charge model, optical and structural quantities
are related by bond parameters. They are obtained from the optical constants of selected materials.
Then, internal displacernents are determined by piezo-optical measurements. The method is demonstrat-

ed with the bonds Ge—0 and Si—0 and its reliability is tested. Its sensitivity is six orders of magnitude

higher than the sensitivity obtained in diffraction experiments.

I. INTRGDUCTIQN

In a crystal a macroscopic strain e; causes two kinds
of atomic displacements u, . If the atomic positions with
respect to the edges of the unit cell do not change during
the deformation the displacements are homogeneous.
They are given by

(A, ) (A. )
i ij j (la)

where r' '=x' 'a' ' is the position of the atom labeled
"A," in the unit ce11. Obviously the homogeneous dis-
placements defined in Eq. (la) can be calculated by using
the relative coordinates x; and the lattice constants a;. If
atoms do not occupy a center of symmetry additional u s
are induced. ' This phenomenon, called "internal strain, "
is associated with the change of relative coordinates
which cannot be calculated in a simple way. Such inter-
nal displacements are involved in elasticity, piezoelectri-
city, different spectroscopic effects, and in theories con-
sidering lattice vibrations. Thus, a quantitative under-
standing of various phenomena on an atomistic level
needs the knowledge of internal strain. The additional
displacements are described by the tensor 3 which is
defined by the second term in

(&)— (&}+ g (~)
1 1J J 1jk 6jk (lb)

The nonvanishing components 2;Jk are given by the site
symmetry of the atoms in the unit cell. In a complex
crystal each sublattice may have its own tensor A. For
some structures 3 has been considered theoretically.
We have derived the components of 3 in the following
way. At first all symmetry operations which are not de-

stroyed by the strain are determined by direct inspection.
They specify the space group of the strained crystal. In a
second step the atomic positions in the old and in the new

space group are inspected using the International Tables
for Crystallography. ' This comparison reveals the rela-
tive coordinates which are changed by e;J.

An appropriate experimental technique for determin-
ing internal strain seems to be a measurement of the in-

tensity of x rays diffracted by an uniaxially stressed crys-
tal. "' However, in the past this method worked only

dg
P(d) =P 1+f (2a)

with Si (Refs. 4, 13, and 14) and Ge, ' both showing the
diamond structure. In these materials the uniaxial stress
creates a Bragg reAection which is forbidden otherwise.
Therefore, it can be detected rather easily. For GaAs re-
ported results are contradictory. ' ' Cousins' found
that the impact of uniaxial stresses on extinction effects
dominates the changes of diffracted intensities and
prevents a determination of internal strain. In general
the relative change of difFracted intensity is smaller than
in GaAs. Thus, in spite of its fundamental importance,
the experimental determination of internal strain is an
unsolved problem and techniques which are alternative to
x-ray diffraction are needed.

In the present work we propose piezo-optical measure-
ments as a sensitive tool for the determination of internal
strain. We use Phillips' and Van Vechten's bond-
charge model to connect the optical susceptibility y to
structural parameters. In the past it was successfully ap-
plied in theories on nonlinear optical ' and electro-optica1
effects. The most important idea of the dielectric
theory is to describe g in terms of the bond polarizabili-
ties p. The p's are empirical parameters. For
birefringent crystals Chemla suggested the use of two
different bond parameters, the longitudinal polarizability
p and the transverse polarizability p . It is more con-
venient to use average and anisotropic quantities which
are defined by P=(P +2P )/3 and bP=2(P —P )/3.
Chemla has also stressed the importance of the loca1
field factor F and Shih and Yariv have pointed out the
dependence of bond polarizabilities on the bond length d.
In a birefringent crystal the difFerence of two susceptibili-
ties can be as small as 10 . To relate optical and
structural quantities on such a high level of sensitivity de-
tails of the used model get important. In the past we
have considered the bond charge model in various dielec-
tric materials. The experiences made in these stud-
ies are summarized in the following list which specifies
the model in some detail.

(1) Each bond is characterized by the two parameters p
and bp and their dependence on the bond length d:
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dR
bP(d)=EP

1+elf

where dj, is the bond length to which P and EP are re-
ferred.

(2) Assuming that the total bond charge is the same for
difFerent coordination numbers N, the dependence of P ( f3
as well as hP) on N can be expressed by

ZA ZB
CC + (3)

where Zz and ZB are the bond charge contributions of
the cation 3 and of the anion 8, respectively.

(3) The local field factor is approximated by the
Lorentz term

F=1+—,x
3

' (4)

II. RELATIONS BET%'KEN OPTICAL
AND STRUCTURAL QUANTITIKS

The optical susceptibilities g and Ay(;) =y;; —y are re-
lated to the bond parameters and structural quantities

26, 27

(5a)

where g=(g»+g11+g33)/3 is the average optical sus-
ceptibility.

(4) The model works well only for vanishing photon
energies.

Assuming that the macroscopic polarization of a crys-
tal is the density of the microscopic dipoles induced by a
light wave, P and AP connect optical and structural quan-
tities in a rather simple way as will be shown in Sec. II.

The idea is to evaluate the four parameters P, b,P, f,
and b,f of a bond from the refractive indices of selected
crystals. Then, internal strain parameters are determined
by piezo-optical measurements. In the present work we
want to demonstrate that this procedure is reliable. One
precondition is the universal character of the bond pa-
rameters. This is tested by considering an excess of ex-
perimental data in crystals which differ in structural and
physical properties as strongly as possible. The method is
demonstrated with the example of the Ge—0 bond in
Sec. III. In Sec. IV the parameters of the Si—0 bond are
evaluated using data from literature. Parameters of
internal strain are given in Sec. V and in Sec. VI we dis-
cuss the main difference between the traditional
diffraction method and the optical procedure proposed
here.

structural details. In Eq. (5b), however, each term of the
sum can be positive or negative. As a consequence, Ay(, )

rejects the structural parameters in a very sensitive way.
It is convenient to distinguish between two kinds of
structural anisotropies. The first describes the anisotropy
of bond orientations:

G() =XI3C(;)—1]" (6a)

The second represents the anisotropy of the bond length:

D(;) =g (3C(;) —1)
P R

(6b)

With above abbreviations the quantity

2V
~X(i) ~X(i) (7a)

is given by

by(";) =g[G(;)EI3+D(;)bgb f ] (7b)

(9b)

5(~&(*)) 5C( ) 5 lnd
6C(;) hP+ (3C(;) —1) APE

For each bond the inhuence of the strain is given by

(9c)

where the index v denotes different types of bonds.
In Eqs. (1)—(7) f and by(;) are tensor invariants and

Cartesian tensor components are labeled by indices which
are not in parentheses. In the following text the latter
will be used in the matrix notation. The piezo-optical
experiments were performed with uniaxial stresses o„
but for the theoretical description the dependence on
strain e; is preferred. We define the increment of the op-
tical susceptibility

(0)
i gi gij Hj gij Cjk&k

where c; are the elastic constants.
At first we consider strains which are parallel to the

axes of coordinates. Diiferentiating Eqs. (5)—(7) with
respect to the strain e;(i =1,2, 3) we obtain

5(X) =--F-51"V+F'r f-y51-d
"

(9a)5: ' 5: V , 5:
5(~X( )) 2 5g 51nv F 5(~X( })
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(10a)

The index "p" enumerates the bonds within one unit cell
of volume V. The atomic positions are involved in
C(;) =(x —x");a;/d where (x —x"); is the difference
of the relative coordinates of the two atoms in the bond
A —B.

Equation (5a) shows that g does not depend on

nd 5 lna 5 lnxk
C(j) 5 X C(k)

Ej Ej
(10b)

In Eqs. (10) the last term denotes the contribution of
internal strain.

In the case of a shear strain ek(k =4, 5, 6) we neglect
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internal displacements throughout this work. The
inhuence of homogeneous displacements is given by

QEP(d) [C(,) + C(~)
—4C(, )C(~) ]"e„,4V„

Ge02 Na4Ge902o K2GesO17

TABLE I. Structural and optical data of germanates. The
optical contributions of Na—0 and K—0 bonds are given in
parentheses. V is the volume of a unit cell and d is the average
length of the Ge—0 bonds.

where k =9—i —j. It should be noted that all equations
are referred to a Cartesian system of coordinates. For tri-
gonal and hexagonal crystals (monoclinic and triclinic
symmetry is not considered here) atomic coordinates
have to be converted before above equations are applica-
ble.

III. The Ge—O BOND

A. Selection of materials

Space group
V(A )

d (A)
x

P42/mnm
55.36

1.882
2.837

0.229

I4) /a
1657

1.831
1.79

(15.6%)
0.025

(0.0%)

Pnam
1557

1.797
1.785

(9.1%)
—0.008

(9.0%)
—0.0123

(2.8%)

In the present model a bond is characterized by the
four parameters p, hp, f, bf. To obtain f and b,f, com-
pounds with a sufFiciently strong variation of the bond
length are needed. These are compounds with Ge—0
bonds because Ge can be surrounded by four or six oxy-
gen atoms and a change of the coordination number X&,
is accompanied by a change of the bond length. We have
selected tetragonal GeOz and orthorhombic K2Ge80]7
(abbreviated KGe) as reference materials for Xo, =6 and

XG, =4, respectively. In addition, we have used tetrago-
nal Na4Ge9020 (abbreviated NaGe) which shows both
coordination numbers simultaneously. In KGe Xz, =4 is
dominant but for some Ge atoms the unusual coordina-
tion No, =5 (Ref. 31) is realized. Thus, in these three
compounds the Ge—0 bonds are arranged in rather
different ways. The occurrence of K—0 and Na—0
bonds as minor components introduces no additional
problems because their optical parameters are well
known from a previous work.

Growth of single crystals and optical constants of
Ge02 and Na4Ge9020 were reported previously. The
refinement of the structure and some thermal properties
of K2Ge80&7 have been published recently. Refractive
indices of K2Ge80&7 we have determined in the visible
spectral range by the prism method. The results of re-
fractive index measurements were used for evaluating the
average susceptibility g=n —1. For all three crystals
the dispersion of n shows that transitions with large oscil-
lator strength are centered near 10 eV. This is in accor-
dance with band-structure calculations for rutile com-
pounds. The values of y were obtained at significantly
smaller photon energies (1.6—3.3 eV). Therefore, g can
be expanded in the power series

y,. —y, =2n(n(, )
—n( ) )

depends more sensitively on electronic details. There-
fore, the birefringence

=2~5= (n( ) n()) )L

X. X.
1 J .36

0.05

0.04

0.03

of thin plates with thickness t. was determined in a large
spectral range. Measurements were performed with a
scanning wavelength method. Figure 1 presents the re-
sults for y, —y. as a function of the squared photon ener-
gy. For NaGe and KGe there is always a sufficiently
large linear range which is used for determining the sus-
ceptibility at E =0. At small photon energies most
curves show the inhuence of IR bands. Their presence in
the Ge02 spectrum has been eliminated with aid of IR
data. The residual spectrum was fitted by using, in ad-
dition to the first terms of a power series, a simple reso-
nance term. The fit yielded a resonance energy of 4.74 eV
which is close to the position of the direct forbidden band
gap at 4.68 eV. The values obtained for E=0 from the
fits in Fig. 1 are listed in Table I. Note, that the average
contribution of Na—O and K—0 is only 10%%uo of the to-
tal values.

7'(E) =X+I' "E'+ (12)

where E =A'co is the photon energy. Results for E =0 are
given in Table I together with some crystallographic
data. y is nearly the same for KGe and NaGe, but it is
significantly larger for Ge02.

0.02

0.01—
3 X

i2 16
l:hv (eV)j

20

—.32

—.30

B. Spontaneous and induced birefringence

Whereas g reflects average properties of materials, the
difference

FIG. 1. Difference of optical susceptibilities in Cxe02 (solid
squares are raw data, in open squares IR influences are eliminat-
ed), Na4Ge902o (diamonds), and K2Ge8O» (triangles). Lines are
least-squares fits as explained in the text.
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Piezo-optical coefficients were determined in rectangu-
lar samples of G e02 and KGe by recording the
birefringence 5 as a function of uniaxial stresses. Using a
He-Ne laser (A, =633 nm, E =3.8 eV ) the influence of
dispersion effects are small (see Fig. 1). Applying alter-
nating stresses (frequency about 120 Hz) the changes of 5
were detected by lock-in techniques. A typical result is
shown in Fig. 2. Over more than three orders of Inagni-
tude the induced birefringence depends linearly on stress.
The piezo-optical results are presented in Table II. To
convert these coefficients in elasto-optical ones, the elas-
tic constants are needed as in Eq. (8). For GeO& they
have been reported previously. In KGe we have deter-
mined the c; by measuring the resonance frequencies of
ultrasonic waves propagating in rectangular samples.
These results are added to Table II. The longitudinal
elastic constants are larger in GeO2 by a factor 6. Thus,
the elastic as well as the optical susceptibilities are
significantly different for both crystals.

C. Bond parameters

In Eqs. (5)—(7) optical and structural quantities are
linearly connected. Figure 3 demonstrates that optical
anisotropy obeys the predicted linearity with high accu-
racy. The same is observed for average optical suscepti-
bilities. The bond parameters derived from these results
are presented in Table III.

In a next step we have to clarify that the parameters
observed in unstressed crystals are valid in stressed crys-
tals, too. Evidence for this identity is given if elasto-
optical effects are described by Eqs. (9)—(11) with a van-
ishing internal strain. This approximation is supposed to
be most likely for shear strains, because such strains do
not change the volume. Indeed, F6/5@6 in GeOz and in
KGe behave as expected. This is demonstrated in Fig. 3
by the two values represented by diamonds. They were
obtained by changing the experimental results for
5y6/5@6 by use of Eq. (11) into a form which is appropri-
ate for a common representation with natural anisotropy

TABLE II. Piezo-optical constants q;, =5/;/50 J {unit 10
Pa ') in GeO& and K2Ge80, 7 and the elastic constants c;, (unit
10 Pa) of K2Ge&O». Uncertainties are given in parentheses.

GeQ2

q i i
—0.96q31 = 14.7(1.7)

q» —0.96q3i = 19.5(3.3)
q33 1.04q&3 5 1(1 2)

K2Ge80»

q» —
q21 16'5(1'4)

—q3, =12.5(0.8)
q22 q» 18 9( 1 ~ 8)
q22

—
q32 = 18.8( 1.7)

q33 q&3 13 6(3.3)
q33 q23 17.9(2.4)

K2Ge80i7

c„=65.9(0.7)
c„=87.3{1.0)
c» =56.2(0.4)
c» =26(1)
C]39(1)
C23 19( 1 )

c44 =4.8(0. 1 )

c55 =20.6(0.1)
c« =12.8(0. 1)

as shown io Fig. 3. We try the same approach also with
e; along the main axes. In Fig. 4 the experimental values
are compared with those calculated for a vanishing inter-
nal strain. Only 5(by3)/5e, and 5(Ay3)/5@3 for Ge02
and 5(4g2)/5e2 and 5(bg3)/5@2 for KGe show a finite
value for internal strain which is clearly larger than the
experimental uncertainty. The majority of elasto-optical
coefficients in Fig. 4 and the two values in Fig. 3 are con-
sistent with the absence of internal strain and the identity
of bond parameters in unstressed and stressed crystals.

IV. THE Si—O BOND

Si—0 can be considered as one of the most important
bonds in inorganic chemistry. As silicates are the main
constituents of rock forming minerals, their optical prop-
erties have been extensively studied. Nevertheless, the
evaluation of f and bf is more difficult than in the case
of Ge—0 because the bond length ds; 0 is rather con-
stant in different minerals. We have chosen the Si—0
bond as a second example because in a-SiO2 internal dis-
placements have been determined by neutron
diffraction. This enables a consistency check between
optical and diffraction methods. The experiment was
performed with hydrostatic pressure po. In contrast to
uniaxial stresses 0.; a hydrostatic pressure yields reliable
diffraction results because po can be much larger than o,
In a-SiO2 po was about 10 Pa. With this pressure the
changes of the four relative coordinates were deter-
mined with an error of 35%. Using the reported
structural results together with the elastic and elasto-
optical constant of a-Si02," 5y/5po, and 5Ay(3)/5po are
obtained in terms of p,f and hp, b,f, respectively. In Fig.
5 the anisotropic part of the result is presented as biz, .

109(6/6R)

TABLE III. Optical parameters of the bonds Si—0 and
Ge—O. Values are referred to the coordination number X„=4
and to the bond length dz. Units are A (da ) and A (P, hP).

FIG. 2. Double logarithmical plot (to base 10) of stress-
induced birefringence 6 versus the modulation amplitude o. of
uniaxial stress in KGe. Length of the sample is 4.4 mm. Refer-
ence values are 5~ = 10 ' rad and o.

&
= 10' Pa.

Si—0 1.604
Ge—0 1.74

9.00(20) 9.66(8) 1.17(2)
12.81(19) 5.22(4) —2.66(4)

0.57(2)
—1.13(8)
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FIG. 3. Optical anisotropy (circles) in crystals with Ge—0
bonds versus structural parameters. by*, G, and D are defined
in Eqs. (6) and (7). Diamonds represent results which are de-
rived from the elasto-optical effect 5y6/6@6. Solid line is least-
squares fit. The slop gives hP and the y-axis intercept is APhf.

A second photoelastic value, denoted by y„ in Fig. 5 is
evaluated from the average (5y4/5e4+5y6/5@6)/2 by use
of Eq. (11). Furthermore, two values which represent the
bond parameters in mechanically free materials are ob-

experimental

5(AX )/SE
(1)

22

0 4—
33

0.0

-0.4
31

0e
I

-0.2 0.0 0 ~ 2

cal culat ed

FIG. 4. A comparison of experimental and calculated
(without internal strain) elasto-optical coefficients in KGe
(squares, circles, diamonds) and Ge02 (stars). The given num-

bers ij indicate directions in the measurement of 5(hg(;))/5E'j.
The values for GeO2 are ten times bigger than shown in the
figure. The solid line illustrates the 1:1correspondence.

FIG. 5. Optical anisotropy versus structural parameters for
Si—0 bonds. Values denoted by a-Si02 and P-Si02 are ob-

tained from birefringence of the low- and the high-temperature
modification of quartz. Ag„and Agq, are derived from elasto-

optical effects as described in the text. The solid line represents
a least-squares fit.

tained from the natural birefringence of trigonal a-Si02
and of hexagonal P-Si02. The solid line in Fig. 5.
represents a least-squares fit of the two parameters bp
and b,Pb,f for the Si—O bond. In evaluating
diffraction results were used. They are obviously con-
sistent with the optical data. The parameters P and f are
obtained from g of both comPounds and from 5g/5Po of
a-Si02. All results are summarized in Table III.

V. COMPONENTS OF INTERNAL STRAIN

Based on the two sets of bond parameters in Table III,
structural changes can be determined from the results of
piezo-optical experiments. In K2Ge80, 7 internal strain
was observed only for e; parallel to the b axis (see Fig. 4).
The special importance of this axis (pseudotetragonal
axis) is clearly visible in the structure of KCxe (Ref. 33)
and manifests itself in optical and elastic properties, too
(see Tables I and II). This qualitative agreement in the
anisotropy of different properties is the only result for
KGe. As the number of free structural parameters is 44,
we have no chance to obtain their dependence on strain.

The rutile structure of GeOz shows one free structural
parameter, which is the x

& (x2 =x
&

)-coordinate of the ox-
ygen atom. ' For a strain along the c axis only this rela-
tive coordinate varies, which is described by the com-
ponent 313 of the tensor of internal strain. The strain E1

destroys the fourfold axis and the original space group
P42/mnm [No. 136 of the International Tables for X-ray
Crystallography (Ref. 10)] is changed to P2, /mnm (No.
S8). In this orthorhombic space group the two Ge atoms



12 214 H.-J. WEBER 51

TABLE IV. Matrix of internal strain components for the ru-
tile structure and some numerical values for GeO2.

A ]2 A ]3 A ]4 A ]5

A/3 A/5 Al4 A(6A

0 0 A 340 0

0.92+0.26 A.3.6+1.9 A; Al2= 7.0+2.2 A;

of the unit cell and the x3 component of the 0 atoms are
the same as before. The x& and x2 components of 0,
which are connected in the rutile structure are now in-
dependent from each other. Thus, for e& two parameters
of internal strain exist. The sketched analysis is easily
continued for shear strains. Finally we obtain the matrix
for the internal displacements of 0 given in Table IV.
For strains along the crystallographic axes the tensor
components have been determined by our piezo-optical
measurements. Numerical results are given in Table IV.
The agreement between the experimenta1 and calculated
value for 5g6/5@6 (see Fig. 3) shows that 2,6=0 within
the given experimental accuracy. The shear strain e~ (or
e5) induces a three-dimensional displacement. It is de-
scribed by the three tensor components A, ~, 324, A3g.
Unfortunately, the same strain gives only one additional
elasto-optical coefficient. Therefore, the three com-
ponents A &4, A2&, A3~ cannot be determined by piezo-
optical measurements alone.

In both crystals, KGe and Ge02, the number of corn-
ponents of internal strain is larger than the number of
available experimental data. The same problem happens
with a-quartz, too. However, with the example of a-Si02
we can demonstrate that crystal chemical considerations
are able to support experimental results. For a stress
along the trigonal axis four structural parameters are free
to vary, but only two piezo-optical data are available.
The gap between available and needed quantities even in-
creases for other directions of stress. Inspecting intera-
tornic distances in a Si04 tetrahedron, we notice that out

0
of the six 0—0 distances three are short (2.605 —2.613 A)
and three long (2.636—2.639 A). Note, that the effective
ionic radius of 0 derived from a representative number
of compounds is ro=1.40 A (Ref. 42) to ro=1.375 A
(Ref. 43). Thus, even the longest 0—0 distance in a-
Si02 is relatively short. As repulsive forces increase
strongly with decreasing distance it is very unlikely that
the compression —0.

3 causes a further decrease of the
shortest distances. They should be constant. This re-
striction allows us to eliminate the variation of two
structural parameters. The two remaining variations can
be determined by the experimental results for 5y/6o3
and 5Ay(3)/603. The obtained atomic displacements are
given in Table V. A countercheck of this result is per-
formed in the following way. Two Si—0 distances in a
Si04 tetrahedron show d, = 1.595 A and two bonds show
d2=1.613 A. Compared with the effective ionic radii of
0 and Si + both distances are rather short. Therefore,
we expect 5d2/50. 3 to be significantly bigger than
6d

&
/6o. 3. With the result of Table V we obtain

TABLE V. Stress-induced changes of relative coordinates in
cx-SiO2 in units of 10 ' Pa '. The x component of Si is denot-
ed by u and x,y, z are the relative coordinates of O.

5~ /50-3

—7.3 0.4

5y /50. 3

1.6

5z /50,
—1.4

VI. DISCUSSIGN

All tests demonstrate that the proposed piezo-optical
method works reliably. As shown in Sec. V, the number
of available piezo-optical data is usually too small for
determining all internal displacements. This is the main
disadvantage of the method. Its main advantage is the
high sensitivity. This is impressively revealed by a com-
parison of piezo-optical measurements with diffraction
experiments. Jorgensen needed a hydrostatic pressure
of more than 10 Pa for detecting internal strain. Figure
2 demonstrates piezo-optical measurements with less
than 10 Pa. The following example will show that the
difference in sensitivity of more than six orders of magni-
tude cannot be decreased significantly by technical im-
provements. Cousins' suggested the use of synchrotron
radiation and modulation techniques to measure internal
strain as sensitively as possible. Such an experiment was
recently reported by Graafsma et a/. They measured
electric-field-induced displacements in 2-methyl-4-
nitroanaline (MNA) which shows an extremely large
piezoelectrical effect. Relative changes of 10 were
detected with an accuracy of 20%. The sensitivity was
significantly higher than in the experiment of Jorgen-
sen, most likely due to the applied modulation tech-
nique which is more easily realized with an electric field
than with a mechanical stress. Taking into account the
magnitude of the electrooptical effect in MNA (Ref. 45)
and the sensitivity achievable in electro-optical measure-
rnents, we estimate again a difference in sensitivity of
more than 10 for the detection of induced displacements
by both methods.

Both examples, the stress experiment by Jorgensen
and the electric-field experiment by Cxraafsma et al. ,
clearly show the limitation of diffraction experiments.
Obviously, internal strain is detectable in this way only if
conditions are extraordinarily favorable. This is the
reason for the only partial work on this subject in the
past. The optical method presented in the present paper
opens a new way to attack the problem of internal strain.
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