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Among the A&BX4 family, features of incommensurate phases in K2Se04, K&ZnC14, and Rb2ZnC14
have been examined using a Ginzburg-Landau theory with complex amplitudes of the first- and higher-
order lattice distortions as an order parameter. Characteristic features of the present theory are that the
theory is based on an extended-zone scheme and only higher-order distortions with wave vectors close to
a vector of the first-order one are taken into account. Free energies of incommensurate and commensu-
rate phases then have the third-order umklapp and lock-in terms, respectively, from an invariance of the
translational symmetry. Note that neither a polarization wave in the incommensurate phase nor a mac-
roscopic polarization in the commensurate one is considered. In spite of this neglection, the present
theory can sufficiently reproduce incommensurate features such as a change in an incommensurability
and a phase modulation. That is, the incommensurate features in these materials are understood to orig-
inate mainly from the phase modulation of the first-order distortion by means of the higher-order ones.

I. INTRODUCTION

A lot of normal-incommensurate-commensurate transi-
tions have been so far reported in the dielectric AzBX4
family. Among the AzBX4 family, potassium selenate
KzSe04 is a prototypical material and exhibits a normal-
to-incommensurate transition at TI of 130 K and an
incommensurate-to-commensurate one at T, of 91 K.'
Features of the incommensurate structure are that a
direction of a modulation is parallel to the c axis and its
period is close to a commensurate value of 3cp where lat-
tice parameters of the normal orthorhombic phase (space
group; I'cmn) were determined to be a0=10.466 A,
bp=6. 003 A, and cp=7. 661 A. Note that ferroelectric
properties are obtained only in the commensurate phase
with the period of 3cp. The same type of successive tran-
sitions have been also found in KzZnC14 and
RbzZnC14. ' The present theory described here focuses
on the incommensurate phases in these materials as well
as KzSe04.

Features of the incommensurate phases in KzSe04,
KzZnC14, and RbzZnC14 have been investigated experi-
mentally and basically resemble one another. As for
KzSe04, as an example, a modulation mode of the incom-
mensurate structure has been analyzed to be mainly due
to a rotation of the Se04 tetrahedron about the a and c
axes. ' A wave vector characterizing the incommensu-
rate structure is given as ko= —,'(1+5, )Choo, where b, is an
incommensurability and Capp, is a reciprocal-lattice vec-
tor along the c axis. A change in 6 with respect to tem-
perature was in details examined by means of neutron
diffraction. According to the diffraction experiment, b
has a value of b.=0.09 at TI. When the temperature is

lowered, 6 decreases gradually in a higher-temperature
region of the incommensurate phase and rapidly in a
lower-temperature one.

The neutron diffraction in KzSeO& showed that the
second- and third-order peaks exist in reciprocal space of
the incommensurate phase, in addition to the first-order
superlattice peak due to the first-order lattice distortion.
According to the discommensuration theory proposed by
McMillan, " higher-order lattice distortions produced
from these harmonics via the umklapp process mainly
modulate a phase of the first-order distortion in order to
make a free energy of the incommensurate phase lower.
An effective phase modulation is made by higher-order
distortions in the vicinity of the first-order one in recipro-
cal space and results in a phase-slip region, which is
called the discommensuration. Among the AzBX4 fami-

ly, the discommensuration has been actually observed in
KzZnC14 and RbzZnC14 by transmission electron micros-
copy. ' However, Iizumi, Axe, and Shirane adopted the
third-order distortion far from the first-order one, not the
second-order one near it, in a construction of a free ener-

gy to explain the transitions in KzSe04. This is because
the third-order distortion produced from the third-order
harmonic can play a role of the polarization wave Pm as a
secondary order parameter although there is no macro-
scopic polarization in the incommensurate phase. In
their free energy, then there exists the fourth-order um-
klapp term of Q Pio where Q is an amplitude of the first-
order lattice distortion as a primary order parameter. An
important thing is that their theory can reproduce the
change in 5 only in a special assumption. As a natural
consequence, a serious problem is that the modulation by
the third-order distortion never results in a phase modu-
lation. That is, the theory cannot predict the discom-
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mensuration. In the present work, on the basis of this
problem, we adopt the second-order distortion related to
the second-order peak appearing near the first-order peak
in order to explain the incommensurate features, particu-
larly the details of the phase modulation. It should be
remarked that Iizumi, Axe, and Shirane neglected the
third-order umklapp term related to the second-order dis-
tortion in their theory on the basis of a speculation that
this term will not lead to lock-in. '

As mentioned above, the commensurate phase has been
reported to exhibit the ferroelectric properties. ' ' ' In
the case of K2Se04, a spontaneous polarization Ps ap-
pears along the b axis owing to a displacement of the K
atom basically. According to Aiki et al. , when the tem-
perature is lowered from the incommensurate phase, Ps
jumps from 0 to a finite value at T, and subsequently in-
creases in a form of Ps ~ (To —T) with To of 102 K in
the commensurate phase. In addition, a double hysteresis
loop was also observed above T, .

In the present paper, a Ginzburg-Landau theory ex-
plaining features in the incommensurate phases of
KzSe04, K2ZnC14, and Rb2ZnC14 is described. We first
show an order parameter for the successive transitions in
these materials and then a Ginzburg-Landau free energy
including only the contribution of the higher-order lattice
distortions near the first-order one in reciprocal space.
Both the polarization wave in the incommensurate phase
and the spontaneous polarization in the commensurate
one are not, on the other hand, taken into account from a
purpose of ap understanding of a role of the higher-order
lattice distortions. Incommensurate features calculated
using the present free energy are presented and compared
with experimental data in K2Se04, KzZnC14, and
Rb2ZnC14. On the basis of the comparison between the
calculated and experimental results, we finally discuss
features of both the incommensurate phases and the
incommensurate-to-commensurate transitions in these
materials.

II. ORDER PARAMETER IN THE SUCCESSIVE
TRANSITIONS

K2Se04 is a typical material showing a soft-phonon-
mode behavior in the normal orthorhombic phase. It is
understood from the neutron diffraction that a related
phonon mode is a X2 optical mode with a wave vector of
k —

—,
' [001].' lt should be noticed that the Xz branch is an

extension of the X3 acoustic branch in an extended zone.
Actually the first-order superlattice peak in the reciprocal
space of the incommensurate phase is located in the vi-
cinity of Goo2/3, not around Goo, /3, where Goo2 is the
002 reciprocal-lattice vector of the normal orthorhombic
structure along the c axis. Therefore, a wave vector of
the incommensurate structure should be given as
ko= —,'(1—

5)GOO2 in the extended-zone scheme where 5 is

given as 6= —,'h. It is worth noticing that the same situa-
tion is realized in K2ZnC14 and Rb2ZnC14, and a sign of 6
is positive for K2Se04 and KzZnC14 and negative for
Rb2ZnC14. A real order parameter for the first-order lat-
tice distortion is then given as a real part of a complex or-
der parameter %0(r), go(r) =Re[%0(r)], where

the —-type position
3

4th 1st 211d 5t.h

~G002 2y G002
3 3

4g G002 5 g G002
3 3

FIG. 1. Schematic representation showing locations of the
first- and higher-order spots close to the —,

' -type position,

Cx002/3, in electron-diffraction patterns.

III. GINZBURG-LANDAU FREE ENERGY
IN THE SUCCESSIVE TRANSITIONS

As in cases of long period superlattices in alloys and an
incommensurate-to-commensurate transition in barium
sodium niobate, ' we start with the following free-
energy functional, using q =

—,
' (1—5),

F= J dr[K~(V ~'qGOO2)C(r)~ +ari'+by'+cq ], (2)

+,(r) p=, exp(ikor) and po is a complex amplitude of the
complex order parameter.

As mentioned earlier, there exist the second- and
third-order peaks in the reciprocal space of the incom-
mensurate phase of K2Se04. The higher-order distor-
tions with wave vectors close to a vector of the first-order
distortion can effectively modulate the phase of the first-
order one. In electron-difFraction patterns of the incom-
mensurate phases in K~Se04, K2ZnC14, and Rb2ZnC14,
higher-order spots due to the higher-order distortions
should appear near the —,'-type positions, GO02/3. Figure
1 schematically represents the higher-order spots near the
—,-type position in the reciprocal space. As is shown in
Fig. 1, for instance, the fourth- and fifth-order spots are
expected to appear in the vicinity of the —,-type position
in addition to the second-order spot. Then, the higher-
order distortions related to these spots are taken into ac-
count in the present theory. Note that the third-order
distortion is not considered unlike the theory proposed
by Iizumi, Axe, and Shirane. ' As for locations of the
higher-order spots in the reciprocal space, as a vector
from the —,'-type position to the first-order spot is given as
—6(xo02/3, the second-, fourth-, and fifth-order spots ap-
pear at +25GOO2/3, —45Gooz/3, and +55GOO2/3 from
the —,'-type position, respectively. Wave vectors are there-
fore written as k~= —,'[1—(3j+1)5]GOO2=q~G002 where
j=0, —1, 1, and —2, correspond to the first-, second-,
fourth-, and fifth-order lattice distortions, respectively.
A complex order parameter with the contribution of the
higher-order distortions is eventually written as

@(r)=g %', (r)=g 4, exp[iq, GOO2r] .
J J
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where the real order parameter having the higher-order
distortions is given as il(r) =Re[4(r)] and 5 is an incom-
mensurability at TI. In the present theory, we take into
account only the translational symmetry for an invari-
ance of the above free-energy functional. Coefficients

should be then given by, for instance,
a =ap +g G a exp( —i G r ) . The temperature depen-
dence of the coefficient is assumed only for
ap=ap(T Tp—). A general free energy is obtained by
substituting Eq. (1) into Eq. (2) and can be written as

1=XX &J&J'«J q—)(q,' q—)Gm2Pq, q,'—)+ g—g ~p p p(q +q')+ 'g—g pbbs, y, ,y, „g(q,.+q, .+q,„).
J J 'J J' 'JJ'J-

1

16 XXX X cW, 4,'it, -0,-4(q, +q, +q, -+q" J J J- J- (3)

where g(q~)=1 for q Gppz=O or G and g(q )=0 otherwise. In Eq. (3), the coefficients are treated in the following
rule, for instance,

ap for (q +q')Gpp2=0,
a for (q, +q,')G~, =G (4)

It is worth noticing that Eq. (3) is the same free energy as Iizumi, Axe, and Shirane used in the analysis of the transi-
tions in K2Se04. ' A feature of the present free energy is that the free energy has only terms up to the fourth-order ones.

From a series of our studies on the incommensurate phases, ' we have recognized that features of the incommens-
urate phases such as the temperature dependence of the incommensurability can be well explained using only a several
higher-order distortions, although the theory requires a lot of the distortions in order to get the lowest free energy.
Three higher-order lattice distortions, the second-, fourth- and fifth-order distortions, were mainly used in the present
analysis because a four-wave calculation was understood to reproduce a change in 6 with respect to temperature well.
Note that experimentally only the second-order peak was observed in K2Se04. When the complex amplitude is written
as P =P exp(i a ) using both a real amplitude P. and a phase a, the free energy of the incommensurate phases for the
four-wave case becomes

+I +pNG++ —10 1++141++——2P —2 ~1(400—I+24polo —2+0 141)—
+

C i(0p+ 0' i+Pi+ 0' 2—)+4C i (0o-0' i+ loki+ 4-o&'-2

141 0—1—4' —2+0'l0 —2+0'p0 —i Pl+0p4 —10—2+ 0p4' —1010—2) (5)

with a~. =Kp(5 —5) Gppz+ —,'ap(T Tp). In the —free en-

ergy, the phases are assumed to be no=a 2=0 and
a &=a&=m without a loss of generality. Note that new
coefficients x~. , Bi, and C, are used in Eq. (5). The most
important feature of the present free energy is that
there are third-order umklapp terms

8 i ( PpP i +2fpg if 2+ / &Pi ), which result from the
condition of (q +q +q ~ )Gppz =Gppz. As mentioned
earlier, no fourth-order umklapp term exists in the free
energy because the third-order distortion; that is, the po-
larization wave, is not taken into account in the present
theory.

In our viewpoint, the commensurate phase has a wave
vector of q, =

—,'Cro02 and there exists the third-order
lock-in term in the free energy of the commensurate
phase because of (q~+q~ +qj )Gpp2=3X 3Gpp2=Gpp2.
From Eq. (3), it is easy to write down the free energy of
the commensurate phase as follows:

the commensurate phase exhibits the ferroelectric prop-
erty, the free energy should have both the spontaneous
polarization terms and the coupling term between the or-
der parameter and the polarization. In spite of this fact,
we do not consider these terms from the purpose of ex-
amining only the eA'ect of the higher-order lattice distor-
tions in the vicinity of the —,-type position in the incom-
mensurate phase.

The incommensurability 5 and the amplitude of the lat-
tice distortion PJ at each temperature were determined

by minimizing the free energy; for instance, Eq. (5) for
the incommensurate phase and Eq. (6) for the commensu-
rate phase in the four-wave case. An actual calculation
was made in an iteration method. The phase modulation
of the first-order lattice distortion is then calculated from
determined amplitudes. In order to get a variation of the
phase with respect to a position, the complex order pa-
rameter is converted into the following form:

F, =[K 56ppp2+ —,'a (TpTp))$, —
—,'B,P', +C—ig, , (6)

C&(r) = 3 (r)e px[i [ —,'Gppzr+B(r) } ]

where P, is a real amplitude of the commensurate lattice
distortion and a phase is assumed to be a, =m. Because with
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A(r)=+a(r) +b(r)

6(r) =tan '[b(r)/a(r) j,
1.0

where a(r) =g. g cos(qj&oozr) and b(r)
=g,.g sin(q Czoo2r). It is obvious that 6(r) represents
the phase modulation of the first-order distortion. That
is, we can understand the details of the phase modulation
from the variation of 6(r) with respect to temperature.

0.6-

0.4-

IV. CALCULATED RESULTS

In the present work, the coefFicients in the free energy,
Kp, 8 i, and C&, were determined from a comparison be-
tween calculated and measured incommensurabilities.
Note that the coefticient ap is assumed to be a unity. %'e
then represent a calculated change in 6 first. Figures 2, 3,
and 4 show calculated changes in 5 for KzSe04, KzZnC14,
and RbzZnCI4, respectively, together with measured
values of 5 at various temperatures. ' Both values of T
and 5 are normalized with respect to those at the
normal-to-incommensurate transition, respectively. The
measured values just below TI are also omitted because
of an inaccuracy resulting from a weak intensity. As can
be seen in these figures, the theory reproduces the mea-
sured values very weH in higher-temperature regions of
the incommensurate phases, but cannot explain them in
lower-temperature ones. It is obvious that this discrepan-
cy comes from the incommensurate-to-commensurate
transition. Among these materials, free energy curves of
the incommensurate and commensurate phases for
KzSe04 are, as an example, shown in Fig. 5. The calcula-
tion of the free energy curves was made using the same
coef5cients as those for the incommensurability. As is
seen in Fig. 5, the curve of the commensurate phase inter-

0.2-
K2ZnC14

0
0.7 0.9 1.0

sects that of the incommensurate one at T/Tp=0. 83,
108 K. This means that the theory predicts the first-
order lock-in transition at 108 K. In Figs. 2—4, the pre-
dicted lock-in transitions are indicated by long arrows.
An important feature of the lock-in transition is that the
predicted transition temperature T,' is higher than the
measured one T, . In spite of this disagreement, however
the present theory is basically understood to explain the
change in the incommensurability for KzSe04, KzZnC14,
and RbzZnC14. Determined coeKcients and T,' for each
material are listed in Table I, together with an experi-
mentally obtained transition temperature of the normal-

FIG. 3. Calculated incommensurability 5/5 as a function of
the reduced temperature for K2ZnC14. In the figure, the mea-
sured value of 5 at each temperature is also plotted by a closed
circle (Ref. 8). The predicted lock-in transition is indicated by a
long arrow.

1.0

0.6-

0.4
0.6-

0.2- K2Se04

' 0.'W
PF

0.8
T/To

I

0.9 1.0

02 Rb2Zn. C14

FIG. 2. Calculated incommensurability 5 as a function of the
reduced temperature T/To for KzSe04, together with measured
values denoted by closed circles at various temperatures (Ref.
1). The value of 5 is normalized with respect to that at the tran-
sition temperature of the normal-to-incommensurate transition
5. The lock-in transition predicted on the basis of the present
theory is also indicated by a long arrow.

0.5 0.7 0.8 0.9

FIG. 4. Calculated incommensurability 5/5 as a function of
the reduced temperature for Rb2ZnC14, together with measured
values denoted by closed circles (Ref. 8). The predicted lock-in
transition is indicated by a long arrow.
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FIG. 5. Temperature dependence of the free-energy curves
for the incommensurate phase (F& ) and the commensurate one
(F, ) in K2SeO&. The temperature is normalized with respect to
Tp ~

to-incommensurate transition, TI, and that of the
incommensurate-to-commensurate one, T, . The
disagreement between T,' and T, will be discussed later.

Because determined magnitudes for each coefficient are
almost the same in KzSe04, KzZnC14, and RbzZnC14, cal-
culated changes in amplitudes of the first-, second-,
fourth-, and fifth-order lattice distortions should also
resemble one another. From this fact, we present them
only in KzSe04 here. Calculated changes in the ampli-
tudes of the first- and higher-order distortions in KzSe04
are depicted in Fig. 6. In the figure, a square root of a
measured peak intensity at each temperature, which was
obtained by Iizumi, Axe, and Shirane, is also plotted by
a closed circle. The root is normalized with respect to
that at T/To=0. 80, 104 K. It is understood that the
calculated amplitude of the first-order distortion in-
creases with decreasing temperature and is in very good
agreement with the measured value. As for the higher-
order distortions, when the temperature is lowered from
TI, the amplitudes of the distortions increase gradually
and exhibit a relatively large change around T,'. At
T/To=0. 90, for instance, the amplitudes of the second-,
fourth-, and fifth-order distortions with respect to Po are,
respectively, determined to be P, /Po =0.178,
P&/Po= —0.048, and P 2/Po= —0.004. Because a rela-

K~Se04
K2ZnC14
Rb2ZnC1&

0.034 0.40 0.44
0.032 0.39 0.44
0.034 0.27 0.38

108
470
209

130
553
303

91
404
191

TABLE I. Determined values of three coe%cients, KpGpp2,

S&, and C&, in the free energy and the predicted transition tem-
perature of the lock-in transition T,' for K2SeO4, K2ZnC14, and
RbzZnC14. The transition temperatures of the normal-to-
incommensurate and lock-in transitions, TI and T, , which
were determined experimentally, are also listed.

Material Kp Gpp2 81 C] T (K) TI (K) T (K)

FIG. 6. Determined magnitudes of the real amplitudes of the
first- and higher-order distortions as a function of T/Tp for
K2Se04. The amplitudes of the first-, second-, fourth-, and
fifth-order distortions are represented by Po, P „P„and P z,
respectively. A solid circle at each temperature also denotes an
amplitude obtained as a square root of the measured intensity of
the first-order peak (Ref. 1).

tive intensity is proportional to (PJ /Po), the fourth-, and
fifth-order peaks among the higher-order ones have very
weak intensities against the first-order one. It is then
hard to detect diffraction peaks due to these distortions
experimentally. On the other hand, the second-order
peak should be detected because of (P, /Po) -0.032.
Neutron diffraction actually showed the second-order
peak although the measured peak intensity is weaker
than the intensity predicted by the present theory. '

In order to understand the details of the phase and am-
plitude modulations, we calculated these modulations us-
ing the determined amplitudes. The present calculation
showed that the change in the phase modulation in
KzZnC14 is identical to that in K2Se04. We then show
the variation of the phase against the position for both
K2Se04 and Rb2ZnC14. Figure 7 represents relations be-
tween the phase 8 and the position r at four tempera-
tures, T/To =0.97, 0.90, 0.83, and 0.77, in KzSe04. The
position in the figure is normalized with respect to a dis-
tance between two neighboring discommensurations at
T/To =0.77, hr. At T/TO=0. 97, the relation is almost a
straight line and the phase modulation does not basically
occur. When the temperature is lowered, the relation be-
comes a steplike shape. Actually, the relation at
T/To =0.77 below T,' consists of both in-phase and
phase-slip regions, which are indicated by 2 and B, re-
spectively. It is obvious that the phase-slip region should
be identified as the discommensuration. A feature of the
discommensuration is that the phase slip does not take
place at a point in space, but occurs gradually in a finite
distance. Because of the gradual change in the phase, we
call the phase-slip region the extended discommensura-
tion. A magnitude of the phase slip is found to be 2m. /3.
In addition, the relation at T/TO=0. 83 does not exhibit
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FIG. 7. Posi
''tion dependence of the phase 8 of the modulated

first-order distortion at T/Tp =0.97 0.90
2 e 4. e position is normalized with res ect to a

, Lr. In the figure, the in-phase and the discommen-=0.77 Lr
suration are indicated by A a d 8an, respectively.
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1.0-

1.0 2.0 3.0

T/To ——0.83

I

40

the in-phase region defined as de/dr =0. Th'r= . is means
e discommensuration is not well developed at T,'.

It should be remarked that in Fig. 2 thig. e measured incom-
mensurability deviates from the calc 1 d
T/To =0.77 at

e cacu ate one below
at which the disco mmensuration is

suFicientl d 1n y eveloped, as mentioned just above. F'
shows r

ve. igure 8

T/T =0.
e ations between the phase and then e position at

.80, 0.68, and 0.63 in Rb2ZnC14. Although the
change in the relation with respect to temperature is basi-
cally the same as that for K SeO th

' - h
with d1

2 e 4, e in-phase region
h jt e/dr =0 does not form even at T, of

T/TO=0. 63 below T,' of T/TO=0. 68 in RbzznC14~ ~

There is no essential di6'erence in a calc 1 t d 1'cua e amp i-
u e modulation for K2Se04, K2ZnC14, and Rb2ZnC14.

the osition
Figure represents relations between the am 1't d dampiu e and

e position at three temperatures, T/TO=0. 90, 0.83,
and 0.77, only in K SeO . Note th t ' F' . 9a in ig. we used the
normalized position, just as in the case of the hase
modulation. In Fi . 9n ig. 9, there are minima in the amplitude

e p ase

at the discommenensurations, which correspond to the
out-of-phase region. When the temperature is 1 dowere, a

a region with a constant amplitude is enlar ed and
other minima in the amphtude then appear at the middle
of the in-phase region below T' I hn ot er words, the

4 Tt.

0.6-

0.4 1.0 2.0

r/wr

3.0

T/To ——0.77

4.0

FIG. 9. Position dependence of the
T/T =0.90 0 83, 0.

e amplitude

sition are
.77 for K SeO.4. The amphtude and the po-

si ion are, respectively, normalized with res ect
e amp etude A and aa istance between two

ig onng discommensurations at T/Tp =0.77 Ar) ~

constant-amplitude re ion hg' has a maximum size around
C

Eventuall y we show a modulated first-order distortion,
il(r) with the contribution of th h' he ig er-order distor-
tions, at T/T0=0. 77 for K S 0 ' F'

2 e 4 in ig. 10. As is under-
stood in the figure, in order to get the lower free ener
of the incommensurate phase thase, e in-p ase region with
t e commensurate period is enlarged in space and the
out-of-phase region identified as the di

s run . e amplitude of the distortion is also reduced
at the discommensuration. Furth ther, ere exists a slight
decrease in the amplitude in the middle of the in-

a oug the disco mmensuration is well
developed.

3 7T

Q a

0 1.0 2.0 3.0
r/a r

4.0 5.0 -0.4-

the extended discommensurntion

FIG. 8. Position de endenpendence of the phase e at T/T =0.80
.68, and 0.63 for Rb2ZnC14. The ositio

p

respect to a d'
n 4. e position is normalized with

ec o a istance between two nei hborin
T fT/T =o p =0.63,hr.

FIG. 10. Variation of ththe real order parameter with the con-
tribution of the higher-order distor

'

T!T =
p =0.77 for K~Se04.

er is ortions against the position at
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V. DISCUSSION

The present Ginzburg-Landau theory considering only
the higher-order lattice distortions near the first-order
one are in reciprocal space clearly shows that the incorn-
mensurate features such as the change in the incommen-
surability in K2Se04, K2ZnC14, and Rb2ZnC14, which
have been obtained experimentally, originate mainly from
the phase modulation of the first-order distortion by
means of the higher-order ones. The phase modulation is
an eff'ort of a crystal to obtain the lower free energy of the
incommensurate phase. Note that the lattice distortions
are due to the rotation of the tetrahedron involved in the
crystal structure as the modulation mode. As a result of
the phase modulation, the discommensuration with the
phase slip of 2n /3 is developed in lower temperatures of
the incommensurate phases. Because of the phase slip of
2m/3, the patterns consisting of three discommensura-
tions should play an important role in the incom-
mensurate-to-commensurate transition. On the other
hand, a problem of the present theory is that the calculat-
ed transition temperature of the incom-
mensurate-to-commensurate transition, T,', is higher than
the measured temperature, T, . The details of the
incommensurate-to-commensurate transition will be
mainly discussed here.

The incommensurate-to-commensurate transitions in

K2Se04, K2ZnC14, and Rb2ZnC14 are understood to be of
the first order according to the present theory. In addi-
tion, the spontaneous polarization has been observed only
in the commensurate phase. The lock-in transition then
involves the following four processes; that is, the nu-
cleation and growth of the ferroelectric commensurate
phase and the formation and annihilation of the pattern
consisting of the discommensurations. The latter pro-
cesses are directly related to the rapid decrease in the in-
commensurability in the transition. It should be
remarked that these processes are characterized as a
thermally activated process and were actually observed in
RbzZnC14 by transmission electron microscopy. It is ob-
vious that the existence of the thermally activated pro-
cesses leads to the fact that T, obtained in the cooling
process should be lower than T,'. Although we do not
know whether T, in K2Se04 and K2ZnC14 was experi-
rnentally determined on cooling or heating, at least T,' is
slightly higher than T, obtained on heating in

Rb2ZnC14. ' This fact clearly indicates that both the mac-
roscopic po1arization terms and the coupling term be-
tween the polarization and the order parameter must be
taken into account in the free energy of the commensu-
rate phase. It should be remarked that the consideration
of these terms results in new coefficients as an adjustable
parameter. The introduction of the new parameters must
make the reproduction of T, possible. In order to eluci-
date an essential origin of the incommensurate features,
however the smallest number of the parameters should be
adopted. Because of this, we take into account only the
lattice distortions as an order parameter. Since even the
present theory with only three parameters Ko, 8&, and

C, can give a rough estimation of the transition tempera-
ture of the incommensurate-to-commensurate transition,

0
0

I

1.0 2.0 3.0

r/~r
FIG. 11. Schematic representation of the ferro electric

domain structure appearing in the lock-in transition. In the

figure, the expected domain structure is depicted by a thick
solid line, while the dashed line shows the relation between the
phase and the position at T/To =0.77 for K2Se04. A vector P,
denotes a direction of the spontaneous polarization in the
domain structure.

the incommensurate features are basically understood to
be explained as being due to the phase modulation of the
first-order distortion by the higher-order ones.

Because the discommensuration as the out-of-phase re-
gion leads to a loss of an elastic energy, the ferroelectric
commensurate phase should be nucleated along the
discommensuration. When one of two types of ferroelec-
tric domains in a domain structure is nucleated along the
discommensuration, the domain structure indicated by a
thick solid lines in Fig. 11 must be formed in the incom-
mensurate phase. Note that the dashed line denotes the
calculated relation between the phase and the position at
T/TO=0. 77 for KzSe04, which is shown in Fig. 7. As
can be understood in Fig. 11, a size of a domain is almost
the same as that of the discommensuration and one of
two domains forming the domain structure plays a role of
the discommensuration with the phase slip of 27r/3
against the other. In other words, a ferroelectric domain
wall can be regarded as a discommensuration with a
phase slip of 2m. /6. Therefore, the incommensurate-to-
commensurate transition proceeds by the formation and
annihilation of a pattern consisting of six ferroelectric
domain walls, as was observed experimentally. In this
situation, further an external electric field helps both the
nucleation of the ferroelectric commensurate phase and
the annihilation of the pattern. The electric field should
then result in an increase in the transition temperature of
the incommensurate-to-commensurate transition.

As mentioned earlier, the calculated intensity of the
second-order peak in KzSe04 is slightly stronger than the
intensity measured by Iizumi, Axe, and Shirane, al-

though the intensity itself is very weak. We believe that
this disagreement is not a serious problem in the present
theory. In the comparison between the calculated and
measured intensities, we used the peak intensities along
the symmetry line. It should be noticed that the loca-
tions of the higher-order peaks in reciprocal space are
very sensitive to a deviation of that of the first-order peak
from the symmetry line. From this fact, we think that
the disagreement is due to a slight deviation from the line
and then a careful measurement of the intensity in a wide
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region of the reciprocal space is needed in order to mea-
sure integrated intensities of the higher-order peaks.

In the present work, the calculation was made for
different numbers of the higher-order distortions N in the
vicinity of the erst-order one; concretely %=1, 3, and 7.
The best fit with the observed features was obtained for
%=3, as was shown. This situation is entirely identical
to all incommensurate phases, which we have analyzed so
far. ' We do not understand why the four-wave calcu-
latiou (N=3) is the most appropriate to produce the
features observed in the incommensurate phases. Be-
cause the lattice distortions are due to the rotation of the
tetrahedron as the modulation mode, it seems that this
fact is related to a discontinuity of a lattice system. The
following should be noted. If a large number of the
higher-order distortions were taken into account to ob-
tain the lowest free energy, the incommensurate-to-
commensurate transition would be of the second order.
In other words, the experimental data require a limited
number of higher-order lattice distortions.

Recently Chen and Walker analyzed successive transi-
tions in the A2BX4 family in terms of competing interac-
tions and obtained a behavior characterized as the devil' s
staircase for the appearance of various incommensurate
and commensurate phases. ' ' Their theory can explain

a lot of features in the successive transitions in the
A2BX4 family except for the incommensurate features
such as phase modulation. On the other hand, our work
is particularly focused on the incommensurate features.
We believe that both types of the approaches are
de6nitely needed to get a complete understanding of the
successive transitions in the A2BX4 family.

VI. CONCLUSION

Among the A2BX4 family, there exist the incommens-
urate phases with the commensurate phase characterized
by the wave vector of q, =

—,'Csoo2 in K2Se04, K2ZnC14,
and Rb2ZnC14. We have analyzed the features observed
in these incommensurate phases on the basis of the
Ginzburg-Landau theory considering the contribution of
the higher-order lattice distortions. As a result, the
features of the incommensurate phases were understood
to result from the phase modulation of the erst-order dis-
tortion by means of the higher-order ones. Eventually,
the incommensurate phases in these materials are charac-
terized as a pure discommensurate structure due to the
rotation of the tetrahedron as the modulation mode
without the ferroelectric domain structure.
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