Erratum: Vortex depinning frequency in $YBa_2Cu_3O_{7-x}$ superconducting thin films: Anisotropy and temperature dependence [Phys. Rev. B 50, 470 (1994)]

M. Golosovsky, M. Tsindlekht, H. Chayet, and D. Davidov

In Eq. (10) α should be replaced by α_{max} . Equation (11) should read

$$\omega_0 = \frac{\beta(t)\rho_n}{16\pi\mu_0\lambda^2} \approx \frac{\beta(t)n_s(t)}{16\pi\tau(t)n_0} . \tag{11}$$

The factor 2 is omitted in Eq. (6b). As a consequence, the factor 2 is extraneous in Eq. (7a). The corrected equations should read

$$Q^{-1} = 2 \operatorname{Im} \left[\frac{\lambda}{s} \operatorname{coth} \left[\frac{d}{\lambda} \right] \right], \tag{6b}$$

$$R_s = \pi \mu_0 s f Q^{-1} , \qquad (7a)$$

$$X_s = 2\pi\mu_0 s \Delta f . \tag{7b}$$

Accordingly, the following changes should be made in the paper. The values of X_s in Fig. 3(a) should be multiplied by 2 and the values of $Im(\lambda^2)$ in Fig. 4(a) should be multiplied by 0.5. In Fig. 5(a) the values of ω_0 should be multiplied by 2, the values of α should be multiplied by 1.33, and the values of η should be multiplied by 0.67. Figure 6 is replotted accordingly. None of the physical consequences change.

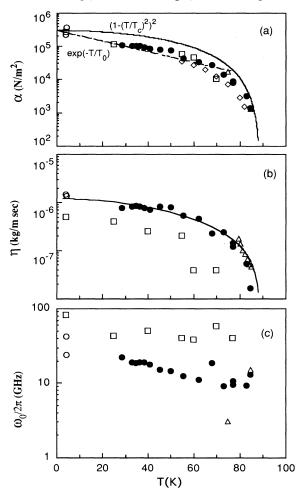


FIG. 6. Temperature dependence of the (a) pinning constant α , (b) viscosity η , and (c) depinning frequency ω_0 for $YBa_2Cu_3O_{7-x}$ and H||c. \bullet —present experiment (thin films, f = 5.5 GHz, 0.1 T < H < 0.8 T), \square —Pambianchi et al. (Ref. 11) (thick films, f = 11 GHz, $H \le 0.35$ T), \diamondsuit —Hebard et al. (Ref. 13) (thin films, f = 1.25 kHz, 1 T < H < 14 T), \triangle —Owliaei et al. (Ref. 8) (thin films, f = 10 GHz, H < 8 T), \bigcirc —Revenaz et al. (Ref. 12) (stripline, f = 1-20 GHz, H < 5 T). The solid curved line in (a) demonstrates the approximation $\alpha(t) = 3 \times 10^{5} [1 - (T/T_c)^2]^2$ (N/m²) with $T_c = 89$ K, while the dashed straight line demonstrates the exponential dependence $\alpha(t)=3\times10^5 \exp(-T/T_0)$ (N/m²) with $T_0=27$ K. The solid (b) demonstrates the approximation $\eta(t) = 1.2 \times 10^{-6} (1 - t^2) / (1 + t^2)$ (kg/m sec), where $t = T/T_c$ and $T_c = 89$ K.