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Three-dimensional XY scaling of the resistivity of YBa~cu3O7 ~ single crystals

Mark A. Howson, Neil Overend, and Ian D. Lawrie
Department of Physics, University ofLeeds, Leeds I.S2 9JT, United Kingdom

Myron B. Salamon
Department ofPhysics and Materials Research Laboratory, University of Illinois, West Green Street, Urbana, Illinois 6180I

(Received 29 November 1993; revised manuscript received 9 January 1995)

The electrical resistivity of a single-crystal sample of YBa2Cu307 z has been measured. The results

are consistent with the existence of a critical regime governed by three-dimensional XF critical ex-

ponents. Evidence is also found for the divergence of the conductivity along a line H~( T) o- (1—T/T, )

the vortex glass transition line. The vortex glass exponents characteristic of this line are

zg ( vg 1 ) 5+ 1 The results are not consistent with the lowest Landau-level scaling.

The phase transition in conventional superconductors
has, for a long time, been considered a paradigm of a con-
tinuous phase transition described by mean-field theory.
In high-T, superconductors this is no longer the case.
The coherence length is anisotropic, but with an average
of about 10 A, and the region over which the effects of
Gaussian fluctuations are thought to be observed is now
of the order of 100 K. The temperature range over which
critical fluctuations may be observed is thought to be of
the order of 10 K. '

The universality class that describes the critical fluc-
tuations in a superconductor is not known. For an un-
charged Bose fluid, such as liquid He, we expect to ob-
serve three-dimensional (3D) XY critical behavior with
the exponent for the correlation length v=0. 669. The
evidence is mounting that this is also the universality
class for high-T, superconductors within the experimen-
tally accessible temperature range near T, . Very close to
T, the effect of fluctuations in the vector potential,
present because Cooper pairs carry charge, are expected.
But we emphasize that in an extreme type-II supercon-
ductor this region of fluctuations in the vector potential
is probably experimentally inaccessible, and so we expect
to observe critical behavior in a region around T,
governed by 3D XY critical exponents similar to the
liquid He.

The mean-field phase diagram of a type-II supercon-
ductor in an applied magnetic field H exhibits a line
H, z(T) at which the amplitude of the superconducting
order parameter goes continuously to zero. Beyond
mean-field theory, the theoretical situation is rather un-
certain. Within the lowest-Landau-level (LLL) approxi-
mation, which assumes that the order parameter is negli-
gibly small, one finds that various physical properties can
be expressed in a scaling form. " ' The LLL approxi-
mation is probably valid near a line in the phase diagram
which can be regarded as a renormalized version of the
mean-field H, 2(T),"' and scaling behavior in such a re-
gion is indeed found in conventional type-II materials.
Whether a similar region exists in the phase diagrams of
high-T, materials is not known. However, this scaling
behavior is not associated with a phase transition. The

superconducting coherence length remains finite at
H, z( T), and no singular behavior is apparent either in the
specific heat or in the electrical conductivity. The scaling
behavior associated with the lowest-Landau level is of a
different kind from critical point scaling, and the regions,
if they exist, where these two types of behavior occur,
cannot overlap. Thus, we might expect to see critical
behavior, governed by the 3D XY critical exponents, in a
region of small t and H, near T = T, and H=O and LLL
scaling in a region which surrounds H, 2(T) but stops
short of the critical region.

A number of groups have reported what they believe to
be scaling behavior in a magnetic field typical of the LLL
region. ' Welp et al'. report observing LLL scaling,
which appears to improve at higher fields (H )40 kOe),
in the magnetization and resistivity. However, they do
not see LLL scaling in their analysis of the specific heat
data of Inderhees et al. ' and have to introduce an arbi-
trary exponent for the magnetic field in order to see poor
scaling over a very limited range of reduced temperature,
t. On the other hand, other groups have reported 3D XY
behavior typical of the critical regime. ' ' ' We have
carried out a study of the electrical resistivity and of the
specific heat of a single crystal of Y-Ba-Cu-0 in a mag-
netic field in order to see if there is a consistent picture of
the phase diagram. In this paper we concentrate on the
electrical resistivity data.

Within both the LLL and critical regimes the H, z(T)
line no longer marks a line of phase transitions. There is
no region associated with the H, 2( T) line where there are
singularities in the specific heat, the magnetization or the
resistivity ' in the presence of a magnetic field. Fisher,
Fisher, and Huse have also pointed out that, while there
is no transition near H, 2( T) in the presence of a magnetic
field there is the possibility of what they call a vortex
glass transition along a line H (T). This line should be
observable from the electrical conductivity data as a
divergence to a zero resistivity state.

The non-Ohmic resistivity has been extensively investi-
gated ' providing evidence for the existence of a glass
transition line H (T) along which the Ohmic resistivity
vanishes. Within the one parameter critical scaling re-
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In this form there is only one branch of the scaling func-
tion. Although we do not know the form of s (x) over the
whole critical regime, we do know its behavior in certain
regions. For T )T, the conductivity must remain finite
as 8 ~0 and so s (x ~+ ~ ) =x'. At T, the conductivi-
ty must remain finite except at 8=0 and so s (0)=const.
When pinning gives rise to a vortex glass the Ohmic con-
ductivity should diverge along a line given by x = —x
and the behavior close to this line will be governed by the
glass coherence length g (T) ~(x+xg) ' which leads
to the prediction

—z (v —1)cr„H' =s (x)=ss(x +xg ) (3)

where z and v are exponents governing the glass transi-
tion. The glass transition line is then given by
8~(T)=[(l—T/T, )/xs) . All these features are shown
in Fig. 1.

Within the LLL regime, at high fields, a difFerent scal-
ing behavior to the critical scaling is predicted ' '

1/2T'
~a= (4)

T —T,(K)
TH'"

for the field perpendicular to the current. If this holds at
all it will hold close to the H, 2(T) line but outside the
critical regime as shown in Fig. 1.

The crystal used for the resistivity measurements was
the same crystal Y8 as used in the paraconductivity data
published earlier. ' It is also the same crystal for which
we published specific-heat data. A four-probe dc
method was used to measure the Ohmic resistivity in the
a-b plane with the magnetic field either longitudinal or
transverse and in the a-b plane or with the field along the
c axis. The V(I) curves were measured at various tem-

gime the Ohmic conductivity is conjectured to have the
scaling form

—g2+ z —dS (8g2 )

where g~ ~T —T, is the zero-field coherence length,
and where S+(y) are the scaling functions that hold
above and below T, . The scaling variable is 8$ but
since high-T, superconductors are extreme type-II super-
conductors, then 8 =@0K, where H is the applied field so
that to a large extent H and 8 are interchangeable —this
approximation gets worse as we approach closer to the
Meissner phase.

The dynamical universality class of the 3D XY model
is not clear. For superfluid liquid helium, although the
order parameter is not a conserved quantity because of
phase Auctuations, the charge density is conserved and so
helium is considered to exhibit model F dynamics" with
z =3/2. However, Fisher, Fisher, and Huse argue the
number of Cooper pairs in a superconductor are not con-
served, because of the presence of plasma fluctuations, so
that both the magnitude and phase are fully relaxational
and model A dynamics are appropriate with z =2.

It is more convenient to use a temperaturelike scaling
variable x, and if we take z =2 with d =3, then

a—a (T)(T—T
-z (v -1)

~B S(x

S X

FIG. 1. A schematic diagram of the H-T plane for a super-
conductor indicating the region in the vicinity of the multicriti-
cal point T, where one parameter scaling is valid. The line
8 =Bg(T) is the vortex glass transition. Two "crossover lines"
are also shown to indicate the region close to the vortex glass
transition line and the region as x~ ao where the form for s (x)
should be well approximated by power laws.

peratures to confirm that the resistivity measurements
were taken in the Ohmic regime. The current density
used for the measurements was 4X10 Am and a
Keithley 181 nanovoltrneter used to measure the voltage
across the sample. Figure 2 shows the broadening of the
resistivity in a magnetic field for the current in the a-b
plane and the field along the c axis, while the inset shows
the data for the field transverse to the current and in the
a-b field.

The scaled Auctuation conductance data are shown in
Fig. 3. To calculate the fluctuation conductance we have
subtracted a normal-state conductance, assuming p ~ aT,
from the measured conductance and scaled the data ac-
cording to Eq. (2). The scaling is not sensitive to the ex-
act value of a or whether we assume that p~aT+b.
While experiments which investigate the Gaussian Auc-
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FIG. 2. The resistivity vs temperature for sample Y8 with the
magnetic field along the c axis and the current in the a-b plane
(perpendicular). The inset shows data for the transverse case
with the field in the a-b plane.
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FIG. 3. The scaled conductivity data with z=2. The Auctua-
tion contribution is obtained from the measured conductivity
by subtracting the normal background term [(0.77
pQcmK ')T] ' from the data. The dotted line is the diver-
gence predicted by the vortex-glass transition and the solid line
is the expected asymptotic behavior =x . The magnetic field
is along the c axis. The inset is data for the transverse case.

tuations well above T, are very sensitive to the exact
choice of the normal-state resistivity here we are looking
at the fluctuation conductivity, close to and below T„
which is diverging over several orders of magnitude.

In both figures the data scale very well. The solid line
shown on the curves is s (x) o- x "o-x, the expected
asymptotic behavior at low fields. The dotted line
represents the behavior expected from Eq. (3) with
zs(vg —1)=5+1. These results are consistent with a
divergence in the Ohmic conductivity along a line
B,(T) ~(1—T/T, )' similarly to previous results. '
The divergence takes plane along a line x =x =(75+4
T) with the field along the c axis.

The scaling analysis of the perpendicular and trans-
verse data shows that the region of small t and B close to
T, is the 3D XY critical regime and further supports the
view that there is a divergence to a zero resistance state
along some vortex glass transition line.

There has been some controversy as to whether LLL
scaling or critical scaling is appropriate for the field and
temperature regimes that have been explored experimen-
tally. Some groups show data which exhibit convincing
scaling for the resistivity and magnetization using LLL
scaling ' and other groups show equally good scaling for
the resistivity using 3D XY critical scaling. So, in Fig. 4
we show the conductivity scaled according to Eq. (4) for
the LLL approximation. We see that the scaling of the
data is not as good as that using the critical scaling form
of Eq. (2). To obtain this scaling we have had to use a T,
of 92.5 K and dB,2ldT= —2 T/K. It is difficult to
choose a value of dB,2/dT; Welp et al. used —1.7 T/K
for their LLL analysis, while Welp et al. ' obtained—1.9 T/K from magnetization measurements. Our
value was estimated from the shift in the midpoint of the
rise in the specific heat. It is possible to improve the
LLL scaling but only by using values of dB,z/dT as low
as —1 T/K.

This indicates that the range of fields and temperatures
we have investigated lie in critical regime. The extent of

t~!(HT) (T K )

FIG. 4. The scaled conductivity data using the LLL scaling
of Eq. (4), and the field along the e axis, with dB,2/dT = —2
T/K.

the regions in which critical or LLL scaling should hold
is hard to determine theoretically. It has been argued
that the LLL approximation should be valid in a region
where Hg /@o))1, but this criterion must be treated
with caution. If ( is interpreted as the zero-field coher-
ence length, then the LLL region would overlap consider-
ably with the critical region which, as noted above, can-
not be the case.

In the Hartree approximation, the quantity 6'

=g(T, B) satisfies a constraint equation of the
form ' '
a=go 2t +2vrB/No+(ir kT/CO)(B/40)' f (a+o/B),

(5)
where go is a characteristic length, of the order of the
zero-temperature, zero-field coherence length, and the
function f involves a sum over all Landau levels. This
function is well approximated by retaining only the
lowest level when a@0/B is very small, in which case the
constraint reads

a=go t+2nB/&bc+(a kT/4())(B/@o)foa

where fo is a constant. It is this equation, together with
the requirements that cz40/B be small and the order pa-
rameter be negligible, which determines the extent of the
LLL region. ' The H, 2( T) line corresponds to

t +2vrB/No=0. In the mean-field approximation,
where f=0, this is indeed the line along which the order
parameter vanishes. While the Hartree approximation
provides qualitative guidance on the nature of the phase
diagram, Lawrie' has attempted to estimate the cross-
over field from the critical to the LLL regimes. He finds
it to be very sensitive to sc, but estimates it be of the order
of 10 T for Y-Ba-Cu-O, beyond the field range investigat-
ed in this work.

It is also important to note that Welp et al. could not
get the specific-heat data of Inderhees et al. ' and
Salamon et al. ' to scale at all with the LLL model, but
Salamon et al. ' achieve good 3D XY scaling for the same
data, while Overend, Howson, and Lawrie achieve good
3D XY scaling for their specific-heat data. More recently
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Junod et al. ' have measured the specific heat in fields up
to 20 T and also find they cannot scale the data using the
LLL model although the scaling did appear to improve at
the higher fields consistent with the crossover from criti-
cal to LLL scaling behavior above 10 T. Recent mea-
surements of the penetration depth also show the critical
region around T, to be about 10 K wide and consistent
with the 3D XYuniversality class.

The general smoothness and the fact that the scaling
functions monotonically increase with decreasing t make
it difficult to distinguish between the LLL and critical
scaling. This difficulty is most probably because of
the similarity between the scaling variable [for LLL,
(T T, (H—))I(TH)' and for critical (T —T, )/(T, H'43)
and the magnetic-field exponent (for LLL, H ' and for
critical with model Fdynamics, H ) ].

The difFerence between H ' for critical scaling and
H for LLL scaling in the specific heat, and the fact that
specific heat is not a simple monotonically increasing
function of t but has a peak, allows us to distinguish
clearly between the two regimes: it is clear from the data

of Overend, Howson, and Lawrie and others that LLL
scaling does not work, for the field and temperature
range investigated.

To summarize we have presented a scaling analysis of
the electrical resistivity of a single crystal of Y-Ba-Cu-0
and shown the data to be consistent with 3D XY critical
scaling. Previous measurements of the specific heat' ' '

also show clearly that for the fields and temperatures
used here we are within the 3D XY critical regime. With
the present data we are not able to distinguish between
model A and F universality classes, however, we have
carried out our analysis assuming z=2. Within the 3D
XY critical scaling analysis of the conductivity data we
were able to present some evidence for a transition line
consistent with the vortex-glass transition.
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