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Possibility of reconciliation on the type of the order parameter in high-temperature superconductors

A. A. Abrikosov
Materials Science Division, Argonne Rational Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439

(Received 13 July 1994; revised manuscript received 16 January 1995)

A model of high-T, superconductivity is proposed based on the following assumptions: (a) There are
extended saddle-point singularities in the spectrum of electrons with a strongly enhanced density of
states; (b) the interaction between electrons consists of a large and long-ranged phonon attraction and a
small and short-ranged repulsion. It is shown that this model, having properties of both the s-wave and
the d-wave approaches, can effectively explain most of the rather contradictory properties of these sub-
stances.

One of the hottest topics in the theory of high-T, cu-
prates is the type of the order parameter. One point of
view is that the pairing is of "s-type, " possibly anisotrop-
ic. According to this hypothesis the order parameter
does not change its sign along the Fermi surface, and the
energy gap has no nodes. This is confined by several ex-
periments which definitely demonstrate a finite energy
gap, e.g. , the Knight shift, ' tunneling conductance in
BiSCCO, and HgBCCO. The most convincing argu-
ment in favor of this point of view is the strong isotope
shift of the critical temperature in YBCO with a partial
substitution of constituents (Y—+Pr, or B~La). ' This
is a clear evidence of a phonon mechanism of supercon-
ductivity which leads to an order parameter with no
nodes. The weakness of the isotope shift for pure YBCO
can be explained by the inhuence of "extended saddle
point singularities, ' (see below). The same, together
with the assumption of a weak screening of Coulomb
forces, can explain the observed anisotropy of the gap.

On the other hand there exists also strong evidence in
favor of the so-called "d-wave" pairing. These are the
linear temperature dependence of the penetration depth
at low temperatures, the Josephson experiments on sin-
gle crystals' and rings, consisting of several grains. "
One must have in mind, however, that these experiments
demonstrate actually only the fact that the order parame-
ter, as a function of momentum, changes sign and has
nodes but does not exclude dependencies differing from
the form h(k) =cosk„—cosk, which is usually advocat-
ed by the proponents of the d-wave hypothesis. Recent
direct measurements of the angular dependence of the en-
ergy gap by photoemission' did not confirm this form.
The only result, which favors it, is the absence of the
Josephson effect in a BiSCCO-Pb tunnel junction (surface
lc)' but this result, which could mean that the integral
of b, (k) over the whole Fermi surface vanishes, is in con-
tradiction with the observation of the Josephson effect in
the same geometry with YBCO instead of BiSCCO and
with the gap measurements already mentioned.

The goal of this paper is to demonstrate that most of
the observations can be explained by a very simple idea
which is a development of the model proposed recently.
It is based on two assumptions, which we call the E-I
model: (a) the existence of extended saddle point singu-

larities and their dominant role in defining the order pa-
rameter and (b) the existence of a large dielectric constant

associates with the ion cores which results in weak
screening of the Coulomb forces and long range of
Coulomb-based interactions of conduction electrons,
namely the direct Coulomb repulsion and the electron-
phonon interaction.

In order to avoid misunderstanding, I would like to
stress the difference of this approach with the one based
on "simple" saddle points (see references in Ref. 14). The
latter leads to a slight increase of T, if the Fermi level
coincides with the saddle point. This cannot be the case
for differently doped materials. The "extended" saddle
point (actually a line) means that the spectrum in a cer-
tain region of momentum space is quasi-one-dimensional
and this leads to a considerable enhancement of the den-
sity of states in some energy interval in the vicinity of the
saddle point and to the convergence of the integral in the
BCS self-consistency equation defining the order parame-
ter (see Ref. 6).

Everywhere we will consider electrons as two-
dimensional, and phonons as three-dimensional. Com-
pared to Ref. 8 we introduce the following changes. First
of all, for the sake of generality we will write the
phonon-mediated electron interaction in the form

K
V(k) =g

k +K2
L

n
coo(k)

( g —g' ) —coo(k )

where a is the reciprocal Debeye screening radius, g and
g' are the electron energies before and after the emission
of the phonon, n ) 1 is some unknown power (in Ref. 8
we assumed n = 1), and k is the 3D phonon momentum.
In the case i('—P ~

&&coo(k) the second factor in Eq. (1) is
equal to —1. We will also assume that in addition to this
attraction there exists a small and short-ranged repulsive
interaction U =const which can represent either the re-
normalized Hubbard repulsion at the copper sites or the
interaction mediated by spin fluctuations (taken alone,
such an interaction would lead to d-wave pairing). If the
Fermi level is close to the saddle-point energy, the spec-
trum in the corresponding part of the momentum space is
quasi-one-dimensional (see Ref. 6). As in Ref. 8 we will
presume the following inequalities:
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where 5& is the value of 6 in the singular region, and
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where pz&=(2m„p, i)' is the 1D Fermi momentum in
the singular region, p, =p —co is the Fermi energy with
respect to the saddle point, Poy is the length of the singu-
larity (as an example, we assume that the saddle point ex-
tended along the p axis, and the energy to depend only
on p„), d is the lattice period along the c axis, and K is
the reciprocal-lattice period in the (ab ) plane. As shown
in Ref. 8, under conditions (2) b, is constant in the singu-
lar region. Substituting V(k)+ U into the BCS self-
consistency equation, assuming the density of states and
6 in the singular region to be much larger than beyond it
and integrating over ky and k„we obtain

tan[(k'+ ~i)'"/2~]1=— (3)
2 p(g+— )1/2 (g2+ g2)1/2

We will assume the second term in the brackets to be
much less than the first one, and neglect it. The solution
of Eq. (3) at T=O in the limit b, ((p, is

8 ~
—1/A,

Now let us consider some point at the Fermi surface,
distant from the singularity. For simplicity we consider a
circular Fermi surface (there is no dependence on k, ),
and y will be the angular distance from one of the singu-
lar "points" (the length of the singularity, Po, and the z
size of the Brillouin zone, 2m/d, are assumed to be small
compared to the radius of the cylindrical Fermi surface,
po, which is of the order of X). The integral in the BCS
equation consists of two parts: along the singularity and
beyond it. Since the density of states in the singular re-
gion as well as the value of h=h, are large, we will as-
sume that this part of the integral dominates (estimate of
the other part's contribution; see below), and hence h(y)
beyond the singularity will be defined by its value in the
singular region. The integral over g will be the same, as
in Eq. (3), and we can replace it using this equation.
Eventually we obtain the equation

g(~) 2(n 1 )Poy

'd 2po
sin " ~ +sin

2
(6)

where po is the Fermi momentum and cpo is the location
of the next singularity (in general a sum over locations of
all singularities has to be taken). This formula describes
the behavior of h(y) far from the singularities, i.e., at not
too small values of y. For description at any angle a sim-
ple interpolation

sin q&/2~sin y/2+const,

with the constant chosen so that b, (0)=b., can be used.
The minimal value of the Grst term in the curly brackets
of Eq. (6) is at p =yo/2, and its value is
2[a/(2po sin(yo/4))] ". If this is smaller than U/g, then
b.(qr) has a negative value somewhere between the maxi-
ma, and hence the gap has two nodes in this region. In
the case go=a. /2, as it happens in BiSCCQ, the nodes
have to be located symmetrically around ~/4, and this
corresponds to the observations of J.-C. Campuzano
et al. ' If go=a, which is most likely to be the case in
YBCO, the negative values of b, are located around n/2,
i.e., if the positive maxima correspond to the a direction,
the negative values are around the b direction, which is
exactly what is seen in experiments measuring the phase
of the order parameter.

The necessary conditions for all that to be true is a
sufficiently small value of U:

U (&gK d /Poy

If this condition is fulfilled, ho in the singular region will
be defined self-consistently by Eq. (4), and hence the criti-
cal temperature will be also defined by this equation. As
shown in Ref. 7, in the case when the characteristic pho-

non frequency coo p, (re~ is an optical frequency, or
acoustical frequency at k =~), the integration in Eq. (3)
has to be cut off at coo, and a regular isotope effect ap-
pears. Since this is observed in experiment, we believe
that the condition (7) is reasonable. Another concern
could be the part of the integral in the equation for b,(p)
outside the singular region. With respect to the terms,
which we have kept, it is either of the order ofPzi/po, or
[UPo~/(g~ d )]X(p~, /Po ). Both quantities are small.

Since there is no reason for the integral J h(y)dy to
vanish, there should be a Josephson current in the
HTSC-Pb junction if the boundary is normal to the e
axis, although it may be smaller than what could be ex-
pected from an estimate based on 6&. The failure to ob-
serve it in a BiSCCO-Pb contact could be due to the weak
hopping between the Cu02 layers. The Fermi surface in
this case is an almost straight cylinder, and the c com-
ponent of the electron velocity is very small. If the elec-
tron crosses the barrier keeping the direction of its veloci-
ty, it has to go a very long path. This decreases drastical-
ly the tunneling probability and can destroy the Joseph-
son current. This does not happen if the boundary is
parallel to the e axis, because then the velocity normal to
the boundary is large, and also in YBCQ, where due to
the chains the hopping between the CuO2 layers is
stronger, and hence the e component of the velocity is
much larger. In these cases the Josephson effect was real-
ly observed. ' '

The idea presented above also solves an important
problem about the suppression of superconductivity by
nonmagnetic impurities. In the case of d-wave pairing
one would expect the necessary condition to be ~A 1,
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whereas in the case of s-wave pairing it could happen
only at wcF 1. This criterion is rather difficult to apply,
because in the HTSC the ratio 6/c. F is not so small as in
low-temperature superconductors, and it is also not very
clear which impurities behave as nonmagnetic. Never-
theless the general opinion is more inclined to interpret
experimental data in terms of the condition ~cz & 1.' In
our scheme it would be rather natural, since the impuri-
ties are most likely ionized, the interaction of electrons
with them is weakly screened and long ranged, and it
would not mix the singular and remote regions of
momentum space. This, however, has to be checked. '

There is also a question about the tunneling conduc-
tance. Experiments on BiSCCO (Ref. 2) and HgBCCO
(Ref. 3) show a small conductance at eV less than some
large gap with 25(0)/T, -6—8. This seems in contradic-
tion with the present results, as well as with the d-wave
and anisotropic s-wave concepts. Our scheme can ex-
plain the tunneling results as follows. The tunneling con-
ductance is proportional to the density of states. In the
nonsingular regions not only the gap, but also the density
of states (per unit solid angle), is much lower than in the

singular region. Therefore it contributes a small back-
ground; only, when eV=b, , is reached, the conductance
becomes large (the background is usually attributed to
normal inclusions).

The model presented here cannot explain all the data.
Even with an energy-dependent one-dimensional density
of states the maximal value of 2b, (0)/T„which can be
obtained from Eq. (4), is less than 4 (see Ref. 6), whereas
the experimental values are around 6 to 8. This contrad-
iction can be due to the fact that we apply the simple
BCS-type theory, whereas the increased density of states
makes the e6'ective interaction strong. This has to be
resolved in future studies.

I would like to thank Dr. J.-C. Campuzano for corn-
municating to me his data prior to publication and all the
participants of the Argonne Workshop, 1994, for stimu-
lating talks and discussion, which contributed essentially
to the ideas underlying this work. This work was sup-
ported by the Department of Energy under Contract No.
W-31-109-ENG-38.

S. E. Barrett et al. , Phys. Rev. 8 41, 6283 (1990);M. Takigawa
et al. , ibid. 39, 7371 (1989).

Ch. Renner et al. , Physica B 194, 1689 (1994).
Jun Chen et al. , Phys. Rev. B 49, 3683 (1994).

4J. P. Franck et al. , Physica B 169, 697 (1991);Phys. Rev. 8 44,
5318 (1991).

5H. J. Bornemann and D. E. Morris, Phys. Rev. B 44, 5322
(1991).

A. A. Abrikosov, J.-C. Campuzano, and K. Gofron, Physica C
214, 73 (1993).

7A. A. Abrikosov, Physica C 233, 102 (1994).
A. A. Abrikosov, Physica C 222, 191 (1994).

W. N. Hardy, Phys. Rev. Lett. 70, 3999 (1993); D. A. Bonn
et al. , Phys. Rev. B 47, 11314(1993).
D. A. Wollmann et al. , Phys. Rev. Lett. 71, 2134 (1993).
C. C. Tsuei et al. , Phys. Rev. Lett. 73, 593 (1994).
H. Ding et al. (unpublished).
H. Z. Durusoy et al. (unpublished).

~~P. C. Pattniak, C. L. Kane, D. M. Newns, and C. C. Tsuei,
Phys. Rev. B 45, 5714 (1992).

~5A. G. Sun et al. , Phys. Rev. Lett. 72, 2267 (1994).
A. Leggett (unpublished).
For the complete theory, see A. Abrikosov, Physica C (to be
published).


