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Disorder-induced Auctuations in the magnetic properties of an Anderson-Hubbard model
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We present a microscopic description of the inhomogeneous magnetic response of a disordered, in-

teracting system, with local susceptibilities determined via a random-phase-approximation-type ap-
proach about stable, inhomogeneous mean-field ground states. A careful treatment of the role of disor-
der is vital in describing: the phase boundary to local moment formation; site-difI'erential inhomogeneity
in the distribution of local susceptibilities in a local moment regime, and its marked disorder-induced
enhancement; and, on the length scales probed, large disorder-induced fluctuations in the total magnetic
susceptibility.

A theoretical description of local magnetic moments in
disordered metals, and their role in the approach to a
metal-insulator transition, is a problem of great current
interest (see, e.g. , Refs. 1 —6). Milovanovic, Sachdev, and
Bhatt' have shown clearly the importance of disorder in
accounting for the instability of a disordered, interacting
Fermi liquid towards the formation of local moment
states, by treating the disorder exactly via a numerical
calculation and interactions at the mean-field level of
Hartree-Fock. But granted local moment formation—
occurring necessarily on an inhomogeneous scale due to
disorder —what are the properties of the resultant local
moment phases themselves'7 In particular, what is their
inhomogeneous magnetic response, it evolution with dis-
order and interaction strength, and how does the site-
difFerential character of the local magnetic response dic-
tate bulk behavior? These questions are of central impor-
tance to the wide range of systems wherein both local
moments and disorder are simultaneously present, and
are the subject of the present paper.

For specificity we consider a site-disordered Ander-
son-Hubbard model (AHM) in d =3 on a simple cubic
lattice,
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where the (ij ) sum is over nearest-neighbor sites;
n; =c; e; and o. =+ denotes the spin. The site energies
I e; I are drawn randomly from a common Gaussian dis-
tribution g(e) of variance b, . We consider half-filling,
y=1. With B=12t the simple cubic bandwidth, the
model is speci6ed simply by the scaled interaction and
disorder strengths, U= U/B and A=A/B, respectively.
A site-disordered AHM is chosen because t; provides a
clear and natural site-di6'erential measure for resolving
the inhomogeneous distribution of, e.g., local magnetiza-
tion and magnetic susceptibilities.

Self-consistent, fully unrestricted Hartree-Fock (UHF)
was recently used to find locally stable, inhomogeneous
mean-field ground states for all local moment phases at
T=O in the disorder-interaction plane. Since the mag-
netic response of the system rejects collective excitations
about such states, we erst review briefly this work. The
resultant diagram in the (b, , U) plane, shown as part of
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FIG. 1. Mean-field phase diagram at half filling (Ref. 5}. AF:
antiferromagnet; SG: spin glass; P: paramagnet; M: metal; I:
gapless insulator; HI: Mott-Hubbard insulator. The P-SG
phase boundary obtained here is indicated by crosses.

Fig. 1 (for %=512 sites), arises from direct sampling of a
wide range of possible self-consistent UHF states. All
broken-symmetry mean-field phases for y =1 are found to
be Ising-like, with S,"'=0; and all phase boundaries
occur for relatively weak coupling U, where UHF for the
ground state is likely to be reasonable. The mean-field
ground state is determined on energetic grounds, with its
magnetic character deduced by examination of S,(k)

ik R,.=X 'g;p;e ' where p, =2(s,, )H„ is the UHF site lo-
cal moment. Three distinct magnetic phases are thereby
found at half-filling: disordered paramagnetic (P), antifer-
romagnetic (AF) and spin-glass-like (SG) phases. In the
P phase, p; =0 for all sites. In the two broken-symmetry
phases the distribution of moment magnitudes I p, I is
site disordered, but difFerent magnetic ordering occurs.
For the AF, S,(k) is sharply peaked at k=n, on the. or-
der of the mean moment magnitude per site
(N g, ~p,. ~ ), indicating AF long-ranged order; while in
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[E ] are the energies of the UHF single-particle states,
with eigenvectors ~%' ) =g, a; P; ) expanded in a site
basis. g is real symmetric; it may thus be diagonalized
(with eigenvalues t A, ~ } ) by an orthogonal matrix v such
that, for any A, , y v = A, v . From (1) the RPA y is also
diagonalized by v, and has eigenvalues A, /(1 —UA, ), i.e.,

r
&v ~vr1 Ug vjr .

r r
(3)

The above procedure is, in principle, simple: first solve
the UHF problem to obtain IE,a, I, then diagonalize
y; the RPA y follows from (3). But this should be done
for each disorder realization at a given (6, U) point; and
the disorder "averaging" is delicate. For example, g, the
disorder averaged y, has the translational invariance of
the lattice, as does y; and we denote 5y =y —y . If,
following Singh, (1) is iterated in powers of y and all
fiuctuation moments [5y ]~ neglected, then a Fourier
transform yields the purely algebraic f(q)=y (q)/
[1—Uy (q)]. Use of this to find magnetic phase boun-
daries amounts to a generalized Stoner criterion: at some
critical U, (h), g(q) will diverge. But this will occur at a
single q vector, implying a transition to a magnetically or-
dered phase for any disorder A. For example, the resul-
tant phase boundary to local moment formation with in-
creasing U, coming from a nonmagnetic (P) regime, is al-
ways found to be to an AF (as indeed found in Ref. 7),
with increasing stability of the I' phase at large disorder 6

the SG phase, S,(k) shows small peaks of magnitude
O(1/N) at numerous k vectors, and no hint of long-
ranged order. The metallic (M) or insulating character of
the mean-field states is also shown in Fig. 1. The dom-
inant insulating phase is a gapless insulator (I), although
a disordered Hubbard (gapped) insulator (HI) is also
found at low 6; and the location of the metal-gapless in-
sulator transition (MIT) was obtained by considering lo-
calization properties of single-particle states in the pseu-
dogap at the Fermi level.

To examine the inhomogeneous magnetic response of
the disordered mean-field states in any of the phases, we
employ a random-phase approximation (RPA). Since the
UHF states are Ising-like, transverse-spin excitations
decouple from longitudinal spin and charge excitations.
We consider here the static magnetic susceptibilities,
their site-differential character and disorder-induced Auc-
tuations therein. Broken-symmetry phases are found to
undergo a zero-field spin-Aop transition, such that the Is-
ing spin axis lies perpendicular to a uniform applied mag-
netic field. Thus, only the transverse static susceptibility

=—y is probed. For any disorder realization
the RPA y;. = [y]; is given by

X=X'[1—UX'] (1)

with [I ];~ =5,~. y is the UHF transverse susceptibility
given (for T=O) by

(where U, -b. ). This disagrees strongly with Fig. 1, ob-
tained by direct sampling of lowest energy UHF states.

Neglect of the disorder-induced fiuctuations [5g ] is,
however, found to be wholly inadequate. For example,
from (3) the boundary to local moment formation may be
obtained by finding U, (b, ) at which, for a given disorder
realization, an eigenvalue of g first diverges, i.e.,
max(A, r)~ U; and then sampling disorder realizations.
The results of such are shown by crosses in Fig. 1 (also
for N =512 sites); variation of U„;, with disorder realiza-
tions is small, within +0.02 of the mean for all A. Full
agreement with the UHF boundary is found, in all cases
within the error bars of Ref. 5. Fourier resolution of the
divergent Goldstone eigenvector [u,.~] further shows uni-
form contributions from most q values, i.e., a magnetical-
ly disordered SG phase, as opposed to an AF. This
occurs for 6 as low as 0.005, suggesting that for all 6 )0
a SG moment phase is first accessed; (for b, =O we find
correctly U„;,=0 and an AF stable for all U) 0, as the
lattice is bipartite ).

Incipient local moment formation, and hence the P-SG
border, is thus accessible via the restricted HF states ap-
propriate to the P phase. However, Eqs. (1)—(3) hold
equally well for magnetic phases provided the specific
broken-symmetry UHF states are stable: this requires

(U ' for all y other than the characteristic Gold-
stone mode [max(A. r)= U ']. To examine the magnetic
phases we consider the total uniform static susceptibility
y„=N 'g;~y;J =N 'g;y;, with g, =gjy;J the local
susceptibility of site i. We write

g„=fy(e)g(e)de,

where, for any disorder realization, y(e)=N, 'g;.,
1

is the mean local susceptibility per site of given site ener-

gy e; and N, /N=g(e)de. Note that the Goldstone
mode, corresponding to a global spin rotation, does not
contribute to tg; I for S,"'=0 Ising-like UHF states; its
occurrence is thus not a practical problem.

The e dependence of g(E) refiects the inhomogeneous
magnetic response of the disordered local moment distri-
bution, itself embodied at the UHF level in the @-

differential distribution of local moment magnitudes:
~p(e) =N, 'g;, ,~p, , ~. To show the evolution of y(e)
with disorder, we consider a fixed interaction strength
U= —,

' with increasing disorder, 6=0, —,', 4, —,', Fig. 2 shows

y(e') and ~p(e) ~

vs Z=e/8 for b, = —,
' (a) and —,

' (b), aver-

aged over several typical realizations for %=216 sites.
For the 6 =0 pure Hubbard model the UHF ground state
is a Hubbard insulator (HI) and a uniform two-sublattice
Neel AF, with g;=—g„ for all sites i and the RPA
y„=0.39/t (the N~ oo limit which, for U= —,', is repro-
duced for N as low as 64). With b, )0 the UHF [p; ] are
again "phase-locked" to produce AF ordering, but the
distribution of moment magnitudes is site disordered
(Fig. 2) with ~p(E)~ largest for sites with ~Z~

~ —,'U:El, —
and the moment carrying sites are randomly located in
space. At b, = —,

' the system is a gapless insulator (I); by
b, = —,

' it is safely metallic (M), and as b, increases further
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FIG. 2. Distribution of local susceptibilities g(e) vs 8=@/B
(solid lines), for disorder realizations yielding typical total sus-
ceptibilities, for U=

2
and 6= —,

' (a) and 2 (b). Also shown are
the corresponding local moment distributions ~p(e)~ (dashed
lines) and the noninteracting U=O Pauli local susceptibilities
D(e;EI; ) (dotted lines).

it is driven towards a M-(gapless)I transition (MIT) at
6=0.56; see Fig. 1.

For low disorder, b, =—,', Fig. 2(a) shows strong local
moment sites to have y(e)'s close to the b, =O pure Hub-
bard limit of 0.39/t. Likewise, y(e) is only slightly
enhanced over the U =0 noninteracting limit, where
y„=D (E~ ) (Pauli) with y( e) =D ( e;E~ ) the correspond-
ing local density of Fermi level states, also shown. How-
ever, although the local moment profile ~p(e) varies little
over the b, range shown, a pronounced e differentia-l sus
ceptibility enhancement for strong local moment carrying
sites occurs with increastng disorder. This is already evi-
dent by 6 =—' in the M phase, but it increases markedly
with disorder until [Fig. 2(b)] by b, =—,

' —close to the
MIT—y(e) for the strong local moment sites, is well
over an order of magnitude larger than that for the 6=0
nondisordered limit; and is similarly in excess of that for
the U=0 limit. That y(e) is largest for strong local mo-
ment sites reflects appreciable overlap, on such sites, of
low-co transverse-spin excitations; these, being spin-
wave-like, naturally have largest weight on the moment
carrying sites. [This is evident from the Lehmann repre-
sentation of y;—:g y, +(co); and has been confirmed
directly by analysis of the co-dependent RPA transverse-
spin excitations. ]

The above effect has significant implications. First, aII
sites contribute to the total susceptibility g„, Eq. (4); and
the disorder-induced enhancement of g(e) for strong lo-
cal moment sites leads to a net increase, in y„as 6 is in-
creased towards the MIT. This occurs even though, for
fixed U in the site-disordered AHM, the fraction of mo-
ment carrying sites decreases with increasing h. Second-
ly, the local NMR Knight shift under the electron-
nuclear contact interaction, K, , is proportional to the lo-
cal site susceptibility y,. ; site-differential inhomogeneity in

[y, ], refiected in y(e), will thus lead to a distribution of
Knight shifts. In practice however, only nuclei resonant
within a machine-dictated field range are detected experi-
mentally, the observed Knight-shift range being typical
of Pauli susceptibilities. Thus, as disorder is increased to-
wards the MIT, the strong local moment sites whose
large disorder-induced y(e) enhancements dominate the
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FICx. 3. Probability density P(y„) of the total uniform sus-
ceptibility y„ for U=

2 and h = 2, obtained by sampling ap-
proximately 1200 disorder realizations. A log-normal fit to the
distribution is shown by the solid line. Inset: P(y„) for U=

2

and 5=
8

is shown for comparison.

total y„, may by the same token ultimately be "projected
out" of the Knight-shift signal —which will thus be dom-
inated by sites outside the strong local moment range,
whose y(e)'s have Pauli-like values; further, as shown in
Ref. 5, it is precisely the latter sites which participate
most significantly in Fermi-level single-particle states,
and which thus dominate charge transport in the metal.
The above behavior is qualitatively akin to that observed
by Alloul and Dellouve in Si:P; and although the present
study is of course for a site-disordered AHM, which
differs in several important respects from the positionally
disordered AHM directly applicable' to doped semicon-
ductors, we believe it likely that the effects described
here, together with the important role of density fluctua-
tions and temperature, will also be relevant in that case.

The y(e) enhancement for strong local moment sites is
further manifest in disorder induc-ed fiuctuations in the to
tal uniform RPA susceptibility y„, whose probability den-

sity over disorder realizations we denote by P(y„). We
consider again U= —,', with increasing disorder 5=

—,', —,', —,',
and P(g„)'s obtained from —1200 realizations each
yielding stable S,"'=0 Ising-like UHF solutions. For
6=—,', Fig. 3 inset, y„ is sharply distributed about its
most probable value y . With increasing disorder, how-
ever, P(y„) broadens considerably, and by 6= —,

' (Fig. 3)
some 15%%uo of realizations yield g„'s in excess of 2y ~. A
Gaussian fit to the distribution is wholly untenable. A
log-normal fit is shown in Fig. 3, with 6=0.29 the rms
fluctuation in lny„; this is tolerable for the bulk of the
distribution, although P(y„) decays more slowly at large

The disorder-induced fiuctuations in P(y„) do not
appear to be trivial finite-size effects, at least on the
length scales we can adequately probe in practice: vary-
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ing N from 64 to 216 produces no significant change in
the form or moments of the distribution (for U= —,', even
N=64 reproduces the N~ oo RPA y„ for b, =O); and
while P(y„) shows strong fiuctuations, the corresponding
P(g„) for the UHF y„ is an extremely sharp, essentially
Gaussian distribution.

Fluctuations in P(y„) cannot occur in either the pure
Hubbard (b, =O) or Anderson (U=O) limits: they clearly
require both disorder and interactions. This is further
apparent from the deconvolution of y„ in terms of g(e),
Eq. (4). Figure 2 shows typical y(e) profiles (for
y„-y „), and the same deconvolution may be per-
formed for realizations yielding large y„s in the tail of
P(g„). From such, we find consistently that large fiuc-
tuations in y„arise from large Auctuations occurring
quite uniformly in y(e) for the strong local moment sites
with ~Z~

~
—,
' U; while fiuctuations in g(e) for nonmagnetic

(Pauli) sites outside this range are by contrast minor.
Fluctuations in the total g„are thus dominated by large
disorder-induced Auctuations in the local susceptibilities
of the strong local moment sites, and clearly reflect a
fluctuation-induced softening of the transverse-spin exci-
tation spectrum. ' The fiuctuations in P(y„) are at least
reminiscent of conductance Auctuations, "' occurring
on mesoscopic length scales in the pure localization prob-
lem; and, relatedly, to fluctuations in the spin-stifFness

constant of the classical Heisenberg model, ' wherein
thermal Auctuations are closely analogous to those due to
disorder. Work on these problems tends naturally to
focus on the scale (N or I.) dependence of the problem, a
feature we cannot reasonably address in the present con-
text; but while much remains to be understood, we specu-
late on the possibility of a connection.

In summary, and via study of a site-disordered
Anderson-Hubbard model, we have given a microscopic
description of the magnetic response of a disordered, in-
teracting system. Disorder, in producing a range of local
environments and thus local moment formation on an in-
homogeneous scale, ' leads further to a strong site-
differential enhancement of the local susceptibilities for
moment carrying sites, whose evolution with increasing
disorder controls both the total susceptibility and observ-
able Knight shifts of the system; and we have shown that
a careful treatment of disorder, even when weak, is neces-
sary to describe moment formation, the resultant inho-
mogeneous magnetic response of the system, and even the
total susceptibilities on submacroscopic length scales.
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