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The condensate pair Quctuations in the frequency region u & 2A and the associated Raman-
scattering intensity of a two-dimensional (2D) d-wave weak-coupling BCS superconductor are in-

vestigated. Our model includes a dominant d 2 v2 (L=2) and a weaker s-wave (L=O) pairing
interaction. All response functions involving density and pair operators are evaluated (in the low-

q limit). For neutral d-wave superconductors (no Coulomb interaction), the expected phononlike
phase mode is obtained in the L=O channel (which couples to density fiuctuations). In contrast,
excitonlike modes corresponding to excited Cooper pair states are obtained in the L =2 channel. We
find an amplitude ffuctuation mode with frequency ~3A. For charged d-wave superconductors, the
L=O phonon is renormalized into a 2D plasmon, but the L=2 excitonlike mode remains unaffected

by the Coulomb interaction. At T=O, the latter is shown to be completely washed out in the Raman
scattering spectrum (q = 0) due to large phdamp-ing (which arises in the absence of a finite pair
breaking gap in d-wave superconductors). However, at finite temperatures, we find the energy of the
excitonlike mode is drastically lowered [relative to 2A(T)] when the s-wave attraction is comparable
to the d-wave pairing. This leads to a decrease in the damping and, as a result, the mode shows up
as a low-frequency resonance in the Raman cross section. Due to the anisotropy of the d-wave order
parameter, the quasiparticle excitation spectrum and the noninteracting two-particle spectrum are
strongly dependent on the direction of g. We also find that the excitonlike mode frequency becomes
anisotropic for wave vectors of the order of 4/vs.

I. INTRODUCTION

Recently d-wave pairing in the high-T, layered su-
perconductors has been of increasing interest in both
theoreticali 4 and experimentals s studies (further ref-
erences are given in these papers), although unambigu-
ous evidence for d-wave pairing is still missing. d-wave
superconductors involve an order parameter describing a
Cooper pair condensate which is anisotropic, with nodes
at various points on the Fermi surface. As a result, the
&equency and spectral weight of the BCS quasiparticles
are strongly dependent on the direction of the propa-
gation wave vector q. This in turn modifies the prop-
erties of the collective modes. In view of the potential
relevance in layered high-T, copper oxides, we present a
detailed analysis of the collective modes associated with
Cooper pair Huctuations in two-dimensional (2D) d-wave
superconductors. Our work is easily generalized to three-
dimensional (3D) layered d-wave superconductors if we
ignore electronic tunneling between layers, as done for
8-wave superconductors in Ref. 9.

Hirashima and Namaizawa~ have made a detailed
study of the collective modes for 3D d-wave supercon-
ductors, including different order parameter symmetries
and the effect of the Coulomb interaction. However, they
did not discuss excitonlike modes or consider the efFect of
strong damping. Recent work of Devereaux et al. has
given a detailed analysis of the effect of vertex corrections
(and the resulting collective modes) on Raman scatter-
ing in 3D and 2D superconductors, but only considered

pairing in the d-wave channel. In our work, we discuss
the collective mode spectrum at finite q, as well as at
q = 0 which is probed by Raman scattering. We empha-
size the role of a strong 8-wave attractive interaction on
the collective mode spectrum of a d-wave superconductor.
In Raman scattering, we show that while the resonances
&om excitonlike modes are washed out at low T, they
may show up at temperatures close to T, if the s-wave
pairing interaction is appreciable. In general, our results
show characteristic differences &om predictions based on
considering only two noninteracting quasiparticles (i.e. ,
when vertex corrections are ignored).

In contrast with previous work, which dealt with 3D
d-wave superconductors, we consider a 2D supercon-
ductor. As is well known, a major feature of a 2D su-
perconductor is that plasmons have low energies at long
wavelengths, with an energy less than 2L.

The particle-particle (pairing) interaction can be de-
composed into various symmetries using

where, in 2D, I represents the azimuthal angular mo-
mentum m. The orthonormal angle functions fr. (q) are
defined on the Fermi surface (assumed to be circular in
2D) and the pairing interaction is rotationally invariant.
We assume that the most important contributions to the
pairing interaction are 8- and d 2 y2-wave components in
a spin-singlet state, i.e.,
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&~(T) =— ,~(p-P') 2'E l1-2 ~(E )],
dp', Ap (T)

where n~(E)=[exp(PE)+1] is the Fermi function with
p = (k~T) '. If gL, o dominates, superconductivity of
s-wave type is the most stable. In this case, the solution
of (3) is found to be isotropic, i.e., A~(T) = A(T). If
gl.—2 dominates, d-wave superconductivity arises, with a
d-wave order parameter which is anisotropic. In this case,
the solution of (3) is of the form A~(T) = A(T)f(p),
with f(p) = fr. 2(p)/~2 = cos(2gV). i4 This d wave o-r-

der parameter looks like a four-leaf clover with four nodes
on the Fermi surface (see Fig. 1) and corresponds to the
continuum limit of the well known tight-binding expres-
sion

( )= ( )Io(- ) —~ (. )]

discussed in the recent literature. In this paper, for
simplicity, we exclude the possibility of a solution of (3)
which is a mixture of 8- and d-wave components, which
can arise due to the highly nonlinear nature of (3).

In conventional isotropic 8-wave superconductors, the
Cooper pair collective modes are well known: the (phase)
Anderson-Bogoliubov (AB) phonon mode which arises
in neutral superconductors and couples into the density
Huctuations, » and an amplitude mode~9 which
appears close to the isotropic pair breaking energy 2A
and is decoupled from the d'ensity Huctuations. As a

k

FIG. 1. Sketch of the magnitude of the order parameter
(hatched area) for a 2D d-wave superconductor, where P is
the angle between the momentum q and the k axis and P'
is the angle bet@seen the quasiparticle momentum p and the
k axis.

~(p —p') = ~i=oft=. (i)fi=o(p')
+g1.=2 fr=2 (P)fr=2 (P'),

where fl. o(p) = 1 and fg 2(p):—icos(2$') (gV is
the angle of p on the Fermi surface). With this model
pairing interaction, one can discuss both s- and d-wave
superconductors. In this paper, we limit ourselves to
pure spin-singlet pairing and exclude the possibility of
spin fluctuations arising &om spin-triplet states.

The well known self-consistent weak-coupling BCS gap
equation which A~(T) satisfies is given by

result, the AB phonon mode is renormalized into a plas-
mon mode in charged superconductors, while the am-
plitude mode remains unafFected by the Coulomb in-
teraction. Moreover, when an L = 0 channel Cooper
pair is broken up into two quasiparticles, the so-called
"residual pairing interaction" g2 will cause them to form
(excited-state) bound pairs which are orthogonal to the
L=O Cooper pairs. These are the well known L=2 ex-
citonlike modesi2 2o' which are also unaffected by the
Coulomb interaction in the q -+ 0 limit. This is because
in this limit the anisotropic L=2 modes involve no net
contribution to the overall density fluctuation in s-wave
sup erconductors.

In contrast, in d-wave superconductors, Cooper pairs
are formed by the dominant pairing interaction g2 and
have 1=2 symmetry. However, we show that while the
phonon modes correspond to overall phase fluctuations
of the d-wave order parameter (L=2), they are coupled
into density Huctuations and therefore are shifted to the
I = 0 channel. The long-range Coulomb interaction will
thus renormalize the phonon into a plasmon in charged
d-wave superconductors, a feature expected in any BCS-
type superconductor, whatever the nature of the pairing.
Analogous to the appearance of L=2 excitonlike modes
in 8-wave superconductors, the weaker "residual pairing
interaction" go may result in excited bound pairs. How-
ever, we show this leads to an excitonlike collective mode
in the L=2 channel, which is unaffected by the Coulomb
iriteraction.

As pair breaking can only arise at energies of 2A or
greater for s-wave superconductors, collective modes are
well defined for energies below 2A, but are damped for
energies above 2L. In d-wave superconductors, in con-
trast, pair breaking can arise below as well as above
2L. In particular, collective modes at q = 0 are always
damped. However, when q is finite, the minimum energy
E~ + E~+~ (at T=O) required to break up a Cooper pair
and the spectral weight of the noninteracting two-particle
spectrum are strongly dependent on the direction of q.
When this minimum is finite in a certain direction, a
collective mode with a frequency smaller than this mini-
mum energy can still be well defined (undamped). This
anisotropy is obviously of great experimental interest in
trying to obtain information about the symmetry of the
order parameter in the cuprates. Moreover, the temper-
ature plays a role in deciding whether a collective mode
is strongly or only slightly damped. We find that the
excitonlike modes become less damped at higher tem-
peratures (this efFect is maximum at T 0.75T,) if go is
comparable to g2. The reason for this somewhat surpris-
ing result is that as the temperature increases, the mode
energy is lowered [relative to 2A(T)] into a region where
the p-h decay channel is less effective.

When the pairing interaction is described by (2), one
can show that there are four collective degrees of &ee-
dom for Quctuations of the complex order parameter, in
addition to the density fluctuations. This gives rise to
four branches of the collective mode spectrum. In the
low-g limit, in 8-wave superconductors, the L = 0 chan-
nel which projects out the fL, o(p) contribution is de-
coupled &om the I=2 channel, which projects out the
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fL, 2(p) contribution. In contrast, we show that for d-

wave superconductors, the L=O and L=2 contributions
couple together and lead to renormalized L=O and L=2
channels. In this low-q limit, the collective modes corre-
sponding to di8'erent renormalized channels can be stud-
ied. Although we have only included two channels in (2)
for the pairing interaction, this is sufBcient to bring out
the essential physics and is of most physical interest in
connection with the cuprates. The extension including
other symmetries (channels) is straightforward.

In Sec. II, we derive the formalism for the analy-
sis of the collective fluctuations and various density-
density, density-pair, and pair-pair response functions.
In Sec. III, we study 2D d-wave superconductors and
work out the collective mode energy and damping in some
detail at small but finite q. In Sec. IV, we derive the
cross section for Raman scattering including the collec-
tive fluctuations and evaluate it at both zero and finite
temperatures. In Sec. V, we summarize our main conclu-
sions and their relevance to Raman experimental studies
on the cuprates. For the convenience of the reader, we
briefly review analogous results for collective modes and
the associated Raman-scattering intensities in 8-wave su-
perconductors in Appendix C.

II. RESPONSE FUNCTIONS

Our evaluation of the various response functions will be
based on what is called the time-dependent Hartree-Fock
approximation, generalized to superconductors. Calcu-

K=) cpa apt

1+—
2 ) V(q)a + a, , ap ap

P~P ~Q)~)~I I

(5)

where ap, at are the usual destruction and creation
operators for electrons and the kinetic energy with re-
spect to the Fermi energy is ep = p /2m —p. The
two-particle interaction V2 given by the second term on
the right-hand side (rhs) of (5) can be approximated in
the BCS superconducting state using the time-dependent
Hartree-Fock-Gor'kov mean-Beld approximation (MFA)
for a perturbed system,

lating the response to the self-consistent Hartree Beld due
to the Coulomb interaction corresponds to summing up
polarization bubble diagrams [random phase approxima-
tion (RPA)]. Similarly, including the response to the self-
consistent exchange Belds due to the pairing interactions
corresponds to summing up the ladders in the bubble di-
agrams (ladder approximation for the vertex functions).
An alternative Green's function derivation of these re-
sponse functions could begin with the generalized RPA
(GRPA) equations of motion in conjunction with (2), as
summarized by Eqs. (4.5) and (4.6) of Cote and Griffin9
(hereafter referred to as CG). We believe the linear re-
sponse analysis of this section is simpler and brings out
the physics more clearly.

The total Hamiltonian K = 0—pN of the interacting
electron gas can be described by

V2 = — ) 2V(q)(a + ap ) ) a, , ap —2V(p —p')(a ap+~ )a",+ ap,
P)P )9)& CT

+V(P p )( P —p+g — ) —P'+~, — P', + (p p )( —P+~, — P, ) P —p'+g— (6)

where (A) is determined self-consistently by the MFA
Hamiltonian in (6). The first term on the rhs of (6)
corresponds to the Hartree (direct) contribution. The
other terms correspond to exchange contributions. In
our case, we are dealing with the Coulomb interaction v
and a pairing interaction g. We only include the long-
range Coulomb interaction in the Hartree term in (6),
which corresponds to the well-known random phase ap-
proximation when used to calculate response functions.
In contrast, we only consider the short-range pairing in-
teraction in the exchange or Fock terms in (6), which
corresponds to the so-called generalized random phase
approximation (see Ref. 9 for further discussion).

It is useful to define the following L-dependent density
and pair order parameter operators:

We note that in a d-wave superconductor, it is m =

(and mt'+=2) which corresponds to the BCS order pa-
rameter. Making use of the model pairing interaction in
(2), the mean-field approximation (6) for the effect of the
two-particle interactions can be expressed in terms of the
operators defined in (7) [note fo(p) = 1],
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) 2 (
I 0) t I 0 ) ( I)

mq z mq + mq + mq (8)

pressed in terms of pL, mL, and mt L,

Vi ——) ( )
[S'IL(q, ~)p + bgL(q, td)mt

L

+bI/L(q, u))mL ],

where L=0,2 and we assume that the spin up (0 =t)
and spin down (0 =$) give the same contribution. Here
v~ = 27re2/q is the 2D Coulomb interaction. Following
the literature, 20 the strength gL here is assumed to be
the same in both the Cooper (particle-particle) channel
and the zero-sound (particle-hole) channels.

A perturbing Hamiltonian Vi can be conveniently ex-
I

where the applied external perturbation S'IL couples into
the density pL and the symmetry-breaking field br/L cou-

ples into mt L and bqL couples into mL . Using lin-
ear response theory to calculate the effect of Vi in (9),
in conjunction with a mean-field approximation for the
two-particle interaction in (8) appropriate to a supercon-
ductor, we obtain

bp = ) Xpr, pr, &pL + Xpl. trb-gL, , + X;L, I. bgL-
L/

0 0
+p p +L ff + Xp f IL ff + Xp IL ff

L/

-L' 0 L'—) X~pl pl' [b4'L' (gI' 2vgbL', 0)bp ] + X-L, - t I, (6'gL + gL bm ) + X I, I, (bgL + gL bm '
)

L/

where the various correlation functions in (10) are defined in terms of the L-dependent operators in (7),
P

X~I.I}& (q, iA„) = — d~e' " (T A (~)B ' (0)),
0

for A, B = p, m, mt and L, L' = 0, 2. Here we drop the spin label 0 in m and m~ for simplicity. The last line
of (10) is written in terms of three self-consistent effective potentials bPL, ff, bqL, ff, and brIL, ff which arise &om the
"mean-field" approximation (8) to the various terms of the two-particle interaction. Within the same framework, we
can write down the analogous linear response equations for mt L and m

b-t, L

L/

L/

X-t &p&'b(L'+X-t L -t&'b IL'+X t I. &'b /L'

0 0 0 III

X ,~ptrL, ' &VL', eff + X t, L, ~t, t, ' ~gL', eff + X t, s.~'~'glL', eff

-L' —L' L') X t z, L, [bpL —(gL —2v&bL 0)bp ]+X .. . , (bgL +gL bm ) +X t. -. (bqL +gL bm '
) (12)

L/

and

Sm = ) x- i-g bgL + x- ~ - t, ~ bgL + x-, - ~ bgL,
L/

0 c 0
b

' b *
X~LpL' '/'L', eff + X~L~},L' gL', eff + X~L~I, ' 9 ', Leff

L/

/ 0 -L' 0 - L'—) X - - [~QL' (gL' 2vgbL', 0)bp ] + X'- - t, (ttIIL' + gI'bm ) + X - - (b'gL + gL'ttm )
L/

Since L and L can be 0 or 2, one has to solve a 6 x 6 RPA-like matrix equation incorporating the above coupled
equations (10), (12), and (13),

x = x' —x'Vx
= (2+ X'V) (14)

where 2 is the 6 x 6 unit matrix and y is defined by
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( ypo po

Xp2 pO

Xmt OpO

Xmt 2pO

XmO pO

XPo P2

Xp2 p2

Xmt Op2

Xmt~ p
XmO p2

Xm p

XPomfio
Xp2

X
t t o

Xmomf o

2 f,O

XpOmf 2

Xp2mf 2

Xmf omf 2

Xmf ~2mf &2

X
Xm mt'

XpOmO

Xp2mO

Xmt 'm'
X
XmOmO

Xm2m ~

Xp m
f,O 2

Xmf~ m
XmOm2

x== )

(is)

The interaction matrix in (14) is

(gp —2v~
0
0
0
0

0 0
g2 0
0 0
0 0
0 —gp
0 0

0
0
0
0
0

—g2

0
0

—gp
0
0
0

0
0
0

—g2

o )
The general structure of (14) shows that the comp/ete

I

collective mode spectrum of the system will be given by
the zeros of the secular determinant, i.e. ,

det(Z'+ g V) = 0.

To a good approximation in the long-wavelength limit
(qv~ && A or q && ( i, where ( is the BCS coherence
length), the dominant matrix elements for various non-
interacting correlation functions in (15) are found to be
given by

((ap —bp)
0
0

—~2c,
0

0 0
(a2 —b2) ~2ci
—~2c, b,

0 0
~2c, —dp

0 0

~2c,
0
0

62
0

—d2

0

—dp

0
bp

0

—v2c, )
0
0

—d2
0

(18)

where explicit expressions for the functions ag, bg, cg, and
de (8=0,1,2) are defined in Appendix A for T=o. Using
(16)—(18), we obtain

det(X+ y V) = DpD2DpD2,

where we have introduced the four new functions

(19)

Dp: [I + (gp —2v&)Apj(1 + g2B2) + 4(gp —2v&)g2ci,

(2o)

(21)(1 + g2A2)(1 + gpBp) + 4gpg2ci&

De—:1+ge(de —be) (E = 0, 2), (22)

with Ae = ae —be and Be —= be+de (&=0,2), as in CG. One
can see from (19)—(22) that, in principle, there are four
kinds of collective modes in a 2D d-wave superconductor.
Two branches are given by ReD~ ——0 and another two
are given by ReDe ——0 (8=0,2). The long-range Coulomb
interaction is seen to only renormalize the collective mode
given by ReDp = G. It has no eKect on the other modes,
at least in the long-wavelength limit we are considering.

Of these four possible collective mode branches, we
shall see in Sec. III that the zeros of ReDp correspond to
the collective modes appearing in the L=o channel (they
appear in the isotropic density response function). In
contrast, the zeros of ReD2 correspond to the collective
modes in the L=2 channel. More explicitly, the solution
of ReDp ——0 corresponds to phase modes associated with
the d-wave order parameter fluctuations, while ReD2 ——0
gives excitonlike modes. Due to the phase fluctuations
coupling into the density fluctuations, the phase modes
are strongly renormalized by the long-range Coulomb in-
teraction, as can be seen in (20). In contrast, the ex-
citonlike modes correspond to the excited Cooper pair
states which remain unaffected by Coulomb interaction.
The solutions of ReDe ——0 (8=0,2) correspond to ampli-
tude modes of the d-wave order parameter and are not
affected by the Coulomb interaction, as shown explicitly
by (22).

Solving the RPA-like matrix equation in (14) (using
MApLE software), we obtain explicit expressions for all
the nonvanishing correlation functions in the 6 x 6 matrix
(is):

XpOpO—

2 p2

Ap(1+ g2B2) + 4g2c,
D

—Xppr
p

A2(1 + gpBp) + 4gpci
D2 (24)

~2c,
Xpomt ~2 Xm2 po Xpom2 Xmf 2Po )

Dp (2s)
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~2c,
Pp2mt&o Pm p PP~m Xmt~ p

2

Xmt~ mt~

Xmt omo

X t2 t'

bo(1+ g2A2) + 2g2ci
gm m D D/ )

2 p

(1 + g2A2)(gpbo —gpdo —dp) + 2g2ci[2gp(bp —dp) —1]
Xmomt' =

D D'2 p

b2 [1 + (go —2v~) Ap] + 2(gp —2v~) ci
Xm2m2 D D' )

p

(27)

(29)

+mt)2m2 gm2mt~2

[1 + (gp —2v~)Ap] (g2b2 —g2d2 —d2) + 2(gp —2vci) Ci [2g2 (b2 —d2) —1]
D,D', (30)

The density response function y~~ given by (23) is of spe-
cial interest. Using the expressions (B3) in Appendix B
which are valid for q = 0, one can easily verify that the
numerator of happ vanishes and hence

gpss(q = 0, (u) = 0.

Thus the density response function we obtain satisfies the
requirement of particle number conservation. All other
response functions in (15) which are not listed above
vanish in the small-q limit, even in the absence of the
Coulomb interaction.

We observe that the d-wave pair-pair response func-
tions in (29) and (30) clearly have the same collective
mode spectrum as the density response function in (23).
The phase fIuctuations of the d-wave order parameter
couple into the density fIuctuation spectrum and are
given by the zeros of Dp in (20), which are strongly mod-
ified by the Coulomb interaction.

III. COLLECTIVE MODE SPECTRUM
AND DAMPING

A. BCS particle-hole continuum

As mentioned in Sec. I, the d-wave order parameter is
anisotropic with nodes at the Fermi surface and therefore
the quasiparticle energies and the two-particle spectrum
are strongly dependent on the direction of the momentum
q. The BCS "particle-hole" continuum (at T=O) is given
by u~p, ——E~ + E~+~ corresponding to the minimum
energy required to break a Cooper pair. If we assume
that the dominant contribution in the calculation of var-
ious correlation function comes &om quasiparticles with
momentum near the Fermi wave vector (~p~ = k~), we
find

ur~h = ~icos(2$')~ + [v&q cos (P —P')

+4 cos (2P )]2.

Here gV is defined as the angle between the quasiparticle
momentum p and k axis, P is defined as the angle be-
tween q and k axis (see Fig. 1), and the long-wavelength
limit (~q~ && kp) has been assumed,

cp+q ~vp q ) Ap+~ - Ap ——A cos(2$'). (33)

We examine two extreme cases. When q is along the
direction of P = 0, where the magnitude of the order
parameter is maximum, one finds that there is a lower
and upper limit for cu~g in (32), i.e.,

~i,4=o(q) ~.-~,4=p(q) & ~2, 4=o(q)

Here we have defined the boundary frequencies by

(34)

vzq
~i,~=o(q) =

2
(35)

and

~2,y=o(q) = A(1+ 1+ vz~q /4 ). (36)

Clearly wi ~ p(q) is the minimum energy required to
break a Cooper pair and the particle-hole excitation band
is thus bounded by ld = clJi 4,—p(q) and u = u2 y—p(q) for
given momentum q with P = 0 (see Fig. 2). In general,
for the spectrum of p-h, modes in 2D d-wave superconduc-
tors, two difFerent regions are obtained, separated by the
dispersion relation w = ui ~ o(q). For u ) ui ~ p(q), the
p-6 spectral weight is finite and collective modes found in
this region are damped. In contrast, for ld & ldi y—p(q),
the p-6 spectral weight is zero and collective modes ap-
pearing in this region will be undamped.

For q along the direction P = 7r/4, where the order pa-
rameter vanishes (nodes), one Bnds, using approximation
(33),

0 & ~ h, ,p= /4(q) & ~2,Q= /4(q) (37)

where

/4(q)
—= A(1+ 1+ v~2q2/2A2 ).

The minimum value of cu~h 4, /4(q) is zero, a direct re-
sult of there being no pair breaking gap. The p-6 spectral
weight is therefore finite at any frequency and collective
modes are always damped. However, the p-h, spectral
weight in the region u & cui 4, /4(q)—:v~q is much
smaller (as long as v&q « 2A) than in the region of
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correspond to ur = 2A and (d = ld2 y—p as defined in (36).
The single cusp for P = n/4 corresponds to u = u2 ~ g4
in (38). This anisotropic p-h spectrum at finite q is a
characteristic feature of 2D d-wave superconductors. We
also note that while the p-h spectral weight develops &om
ur = 0 for the P = 7r/4 case, the weight is much smaller
for w & F14, ~4(q) compared to the weight for cu )
~i,y=~/4 (q) .

2h
VF.

FIG. 2. Schematic rendering of the particle-hole continuum
in a 2D BCS d-wave superconductor (hatched area). These
are for the direction of q with P = 0, where the magnitude of
the order parameter is maximum (see Fig. 1). The lower edge
of the p-h band at cuz ——2vzq corresponds to the minimum
energy required to break up a Cooper pair of momentum q.

w ) aI1~ ~4(q). This implies that long-wavelength col-
lective modes for P = ir/4 with low energy may be weakly
damped and hence observable.

It is of interest to evaluate the imaginary part of the
density response function for two noninteracting BCS
quasiparticles [see (23) for gp

——g2
——vz ——0],

&mX~~ &m[fofoG11G11 —fo foG12G12] = ImAp. (39)

Results are shown for this in Fig. 3 at 6nite q for both
P = 0 and m/4. The spectral density in (39) should be of
direct physical interest in phonon self-energies and other
experimental quantities. Due to the anisotropy of the
d-wave order parameter, the noninteracting two-particle
spectrum described by (39) is strongly dependent on the
direction of q, particularly at the region of ~ 2L. One
flnds that two cusps in the P = 0 case collapse into a
single cusp in the P = m/4 case. The two cusps for P = 0

B. Collective Huctuation spectrum
in the L=O channel (Do ——0)

Using the long-wavelength approximation results de-
rived in Appendix B, we 6nd that the phase Quctuation
modes are given by the zeros of the real part of [we re-
define N(0)gp ~ gp and N(0)g2 -+ g2]

2 2

Dp(q, u)) = 1 —2gpI2(ir) + goAp'(u)

2 2

X 4~'g2I2 (~) + g2B2'((u)

2 2-2]I-
+8gpg2(d I2(w) + ci (w) (40)

2 2

D.(q, ~) = 4~'g2I2(~) + [1 —2gpI2(~)]g2B2 (~)

(41)

where the function B2 is (see Appendix B)

I/B2 (~) J431(~) + J211(~) + 8J2—12(~) 4 J412(~).

where we define A'I (w) = a'I'(cu) —bl'(u) and BI'(w) =
b'I'(w) + dl'(w) (see Appendix B) and s = vs/~2. Here
we ignore the bubble diagrams due to the Coulomb in-
teraction (vz ——0). Since we are interested in the low-
frequency region u « 2b, , terms of order u2(s2q2)/A4,
s4q4/A4 and higher-order terms can be neglected and
thus (40) reduces to

1.5

1
II

3
O

E 0.5

I I I I
(42)

cu' = [1+2ReB2"((u)gp]s q'

f 1(I ——gp/sq, (43)

To go further in this analysis, numerical studies are
needed. It turns out that when u (& 2L, the imagi-
nary component of Dp(q, aI) in (41) is negligibly small
and ReI2(2) —ReB2 (u) 1/4. We therefore obtain a
well defined phononlike dispersion relation

0.5 1.5

FIG. 3. The frequency dependence of the imaginary
part of the noninteracting density response function
Imp~~ (q, cu) oc ImAp, as defined in (23) and (39), for
q = 6/vs and two difFerent directions of q.

a result only valid for q & A/v+. This describes the
phase Quctuations of the d-wave order parameter which
are coupled into the density fluctuations (since it occurs
in the L=O channel). This phononlike mode is the analog
of the well-known Anderson —Bogoliubov (AB) mode in
8-wave superconductors. ' One notes that gq has no
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efFect on the acoustic dispersion relation of this mode,
apart from renormalizing the sound velocity.

The effect of the Coulomb interaction can be easily
included by replacing gp in (43) by gp —2v~ [here v~ is
really N(0)v~]. One finds that the phonon mode in (43)
is then renormalized to

results in Appendix B again, D2 can be reduced to [as
usual, with N(0)gp -+ gp, and N(0)g2 ~ g2]

D2((u) = [1 —2ggI4((3)] 1 ——+ 4gpt3 Ip((D)
g2

2D+
~

1 ——gp ~S (44)
+8gpg2(d I2 (LiJ) . (45)

where w22D = 2mne2q/m (n = k&2/2vr is the 2D number
density) dominates in the rhs of (44) at low q. This is rec-
ognized as the dispersion relation of a 2D plasmon. This
behavior is, of course, expected for all BCS superconduc-
tors, independent of the pairing symmetry. i~'is We note
that, as recently discussed in detail by CG (Ref. 9) in the
case of 8-wave superconductors, while plasmons can exist
above 2L as well as below 2L in 2D superconductors,
their physical origin is quite different in the two regions.

Although the phonon is renormalized into a 2D plas-
mon due to the long-range Coulomb interaction, it is in-
teresting to study how the phononlike mode which ap-
pears in a "neutral" superconductor depends on q. In
the lower I=0 spectrum in Fig. 4, the two extreme cases
(P = 0 and m/4) for the direction of q are shown. We
take g2 ———0.25, and set gp

——g2 as gp only modi6es the
phonon velocity. One can see that up to q 6/vz, the
phonon frequency is not very sensitive to the direction of
the propagation wave vector q.

In general, the functions I; (w) defined in (B4) have
imaginary components in all frequency regions since pair
breaking can occur at energies below as well as above 2L.
We may rewrite (45) in the form

D2(w) = [1 —2g2I4(w)][1 —gpR(g2, w)], (46)

where B zs defined by

R(g2, a) = [1 —2g2I4(ur)]
1 —2g2I4(ur)

(1
X ——441 Ip(M) —8g2CtI I2 (&)

(g2

1—= ReR(g2, u).
gp

(48)

Using (46), collective modes in this channel are given by
the solutions of

C. Collective Huctuation spectrum
in the L=2 channel (Ds ——0)

/=0
. . . . y=~/4 L=2

L=O

2h.
VF

FIG. 4. The dispersion relation of the collective modes in
a 2D d-wave "neutral" superconductor for both L=O and 2
channels. Two difFerent angles for the wave vector q are
shown. For both channels (L=0,2), we set go ——gq

———0.25.
The frequencies associated the excitonlike mode (upper curve)
for the two propagation directions start to significantly devi-
ate from each other for q 4/vz.

The L=2 channel is of most interest in Raman scat-
tering (see Sec. IV). We consider q = 0 at T=O. The
collective modes in this channel are given by the solution
of ReD2(u) = 0, where D2 is defined in (21). Using the

Noting the definition of R in (47), we see that there is
no zero of D2 in (46) due to the vanishing of the factor
[1 —2g2I4 (~)].

The solutions of (48) will be referred to as "exci-
tonlike" modes, the analog of those found by Bardasis
and SchriefFer in 3D s-wave superconductors (see Ap-
pendix C). The solutions with gp & 0 correspond to
"particle-particle"-type excitonlike modes, while the so-
lutions with gp ) 0 correspond to "particle-hole"-type
excitonlike modes. In physical terms, when a d-wave
Cooper pair (formed by the dominant g2 pairing) breaks
up into two quasiparticles, the so-called "residual at-
tractive interaction" gp leads to the formation of a new
(excited-state) bound pair, somewhat analogous to the
electron-hole pairs (excitons) in semiconductors. These
high-energy excited-state bound pairs behave like par-
ticles with finite center-of-mass momentum and do not
form part of the "Bose condensate" associated with the
ground-state Cooper pairs.

For given (real) values of a and g2, we can solve for
the value of gp which satisfies (48). The results are pre-
sented in the top line of Fig. 5 for T=O. We obtain
particle-particle-type excitons in d-wave superconductors
with an energy below 2b, when q = 0 (i.e. , when the ex-
cited bound state has no center-of-mass kinetic energy).
At T=O, these excitons have an energy gap (i.e. , are
massive). In Fig. 5, this gap is at ws = 0.9(2A) for
~gp~ = ~g2~—:0.25. Within this gap [u & 0.9(2A)], the
only solution of (48) for real w requires that (gp( ) )g2(,
which is not possible in a d-wave superconductor.



N CHIN WU AND A. GRIFFIN 51

0.8

0.6

2~(T)
0.4

I I I I I I I I We haveve also nuInericall excIton}Ike

Fi. )=0 d /4 fo }I d'
ig. . Again th

e upper

ir ction of are cch q are cons'd red. He
oose p entatIve values. For

o l o diff' '
M6 tl hw e11 (I ~ 6/vy .

0.2

0.245 0.24 0.235 0.23

FIG. 5. The frequenc

ive

excitonlike mod

go (( 0), at various teIn
e magnitude of attrac-

rious temperatures. Th ese results are for

As the d-wave order
nodes on th

or er parameter iss anisotropic with

p

t}1 F
p

e, in

h th
alw

ese excitonl'
s, w ichin

o a lesser o
've mo es are

ol t f (4
(

b
e emperatures is t

in t e calcula-

y

e e s is o replace the I.e; ~) in (45)

D. Coll ective fluctuationua xon spectrum in D' =Irr r'
——0 (8=0,2)

ur' = (2A)'+ —(v (50)

While
inato ' '

g
Xm& 2mt »n (29

ors involving D'
an pm', ~m~ In (30) have d

o
' ' g, thereisno rr
or s-wave su

o so ution for r
e superconductors a 2 ——1ors we note that D2 ——1

In contrast i
which

, inadw-wave su erc

in the a
d't t

a . onsequently it is y

6 t to fth
(22), th li it fop ici orm being given by

In a s-wave su e
which

uperconductor
}I

l
correlation fu t'

r parameter. Th e
escnbed b th

x= = () y e ana-

ff t db th Co
a t ezerosofD' c

ion. ne may easil

0 correspond to the am
e y Littlewood and V

Al ow q, the am lip itude mode is f d e
o e s wave a

ion re ation (in 2D)
is ound to have

I, (u ) m I; (cu, T):———
16

x tanh
l )

l&2(&) I'

2vr E(u 2 —E2)

(49)

D2 = 1+g2 dp . ,E+ E'
(2 ), If2(&)l' 2EE,

EE'
~2 (E+EI 2 (5i)

where P = 1/k~, ~
—= e A T/ ( ), E = E/b. (T) an

-d
&

i.e., the ener r
ure- ependent order

rgy range for each cur
er parameter;

co ective m
vaue of t

the
ure increases. This

o decrease as

t h t
o su cientl la

in eraction

we de6ned at hi her
ese excitonlike modes

ig er temperature
aman-scatte

es. is is 0o inter-

removed at finite temperatures.
a e energy gap

us for q = 0 th e zeros of D'D2 are given b thn y e solutions

1+g2 6p
l~ (-)l2 ~ —4(E' —I&PI') = 0. (52)

Using the d-wave ga eave ga e ', one finds that 52

I ( &~)') = »'
lit

e ermi surfac
involvin

d
p ude mode is

conductorc or also note that D' = 1p = 1 fol' gp = 0).



51 CONDENSATE PAIR FLUCTUATIONS IN A TWO-. . . 1199

IV. RAMAN-SCATTERING INTENSITY (q —+ 0)

A. Raman response functions

We recall from Sec. II that the full correlation functions
which determine the Raman-scattering intensities in (58)
and (59) are given by

= ) &p(q)ai ai, +qt (53)

where p~ is the Raman-scattering strength. The cross
section for Raman scattering is then given by23

1
S(q, u) = ——[1+n~(ur)]lmypp(q, iur„~ ~+ ib), (54)

where n~(u) = [exp(Pu) —1] is the Bose distribution
function and the Raman response function is defined in
terms of the efFective density operators in the usual way,

In order to illustrate how the collective fiuctuations in
2D superconductors affect physical quantities, we now
consider the Raman-scattering intensity in connection
with the formalism derived in Sec. II. As discussed at
length in the literature, 2P 2i 2s 24 Raman scattering in-
volves a light-scattering experiment in the q = 0 limit
which can probe difFerent symmetries by choosing ap-
propriate incident and scattered polarization directions
of photons. As discussed in these references, it is conve-
nient to introduce an "efFective density" operator

Ap(1+ g, B,) + 4g, c',
Xp p D0

(60)

in (23) and

A2 (1 + gpBp) + 4gpci
~p p D2

(61)

BL,
XP P XPP( I ) 1 V+ L L

(62)

where VL, = gL, —2v~hp I, and the functions Rl, (I=0,2)
are now de6ned by

in (24),where Dp and D2 are defined in (20) and (21).
It was shown there that only ypopo is modified by the
Coulomb interaction, while yp&p2 is not. The result in
(60) shows that poles may occur when Dp ——0, which cor-
respond to collective modes in the L=O channel discussed
earlier in Sec. III. Similarly, the result in (61) gives poles
at D2 ——0, which correspond to the collective modes in
the L=2 channel.

As with s-wave superconductors, P 24 it is convenient to
rewrite (60) and (61) in the form

P
~pp(qi -) = — d e* "(T-P~( )p.'(0)).

0
(55) RI, =XI.+ gL, (2c,)'

1 + gl, 1 Bl,l
(63)

The q dependence of the Raman-scattering strength
p~ is dropped since we are in the q ~ 0 limit. One can
therefore expand p~ in (53) in terms of orthogonal angle
functions fl, (p), 2

Here L'=2 when L=O, and vice versa (In s-wa. ve super-
conductors, one has L' = L )By wri. ting (62) in this
form, the physics involved in the Raman-scattering cross
section will be more transparent. More generally, using
(59) in conjunction with (62), we have

op =) vl, fL(p) (56)

which is dependent on the direction of p only. By using
(56), one can rewrite the effective density p~ in (53) as

-L
Pq = QLPq)

L
(57)

where the L-dependent p+ are defined earlier in (7). As
a result, the Raman-scattering cross section can be de-
coupled into various channels in the limit of q ~ 0, i.e.,

S(q w 0, (u)—:——[1+n~((u)] ) ~yL, ~'S (q -+ 0, ~),
7r

(58)

S (q-+ O, u))—:S (ur) = Imp-~pc(q w 0, (u). (59)

where the off-diagonal terms (L P L') make a negligible
contribution to (58) (at q ~ 0). Here ]pl, ~2 gives the
diagonal (L = I') scattering strength in the L channel.
The L-channel Raman-scattering cross section is propor-
tional to the imaginary component of the L-channel ef-
fective density-density correlation function, namely,

1

VL,
™1+ VL, RI, (ur)

ImRI, (u))

[1+Vl ReRL, (u))]2+ [VrlmRL, ((u)]2' (64)

In d-wave superconductors, since the order parameter is
anisotropic with nodes at the Fermi surface, ImRL, (w)
can be large at frequencies below 2A. Any peak asso-
ciated with the collective modes as defined here will be
strongly damped by the large imaginary component of
RL, . However, we shall see later that S+(u) in (64) can
still exhibit a broad resonance or structure arising &om
the frequency dependence of RL, (w) in (64). Moreover,
at high temperatures (T & 0.7T,), collective modes in
the L=2 channel are weakly damped if go is comparable
to g2, and as a result, can give rise a peak in the I=2
Raman-scattering intensity. In contrast, these modes are
completely washed out at low temperatures (T (( T,),
where most Raman experiments have been carried out.

Considering the cuprate oxides with the symmetry
of the D4h point group, to a good approximation, one
has the following symmetry channels for the Raman-
scattering strength in (56):ii
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' pp+ p,'cos(4$),
y, cos(2$),
p, sin(2$),

8=Agg,
s=Bgg,
s=B2g,

(65)

I I I I I I I I
I

I I I

where s denotes the symmetry which is studied in a par-
ticular Raman-scattering geometry. Here pP represents
the isotropic and p, represents the anisotropic compo-
nent of p„while P is the direction of p on the 2D circular
Fermi surface.

B. Raman intensity

U 2

—1.5K
C
(D

1

E 0.5
U

0
0.5 1.5

In the q ~ 0 limit, the L=O channel has Vp

gp —2v~ ~ —oo. In view of the factor 1/VL, in S (ur) in

(64), the Raman intensity in the (isotropic) L=O chan-
nel is completely screened by the Coulomb interaction. In
other words, there is no weight for the 2D plasmon mode,
although it has low &equency (oc +q) which makes it po-
tentially more interesting than 3D plasmons. As a result,
the Raman intensity of Az~ symmetry will be partially
screened by the Coulomb interaction due to the existence
of the L=O isotropic component in p~„[see (65)].

In contrast, since V2 ——g2, the L=2 channel Raman in-
tensity is not screened at all by the Coulomb interaction.
Since the L=2 channel corresponds to f2(p) cos(2$),
the following Raman intensities for the L=2 channel are
all of Bzs symmetry [see (65)]. Substituting (B3) into
(63), one obtains for the L=2 channel (at T=O)

B2(~) = —2I4 (u) + 2
. (66)

8gpCil I2 ((d )
1+gp —1 g2 + 4(u Ip ur

We recall &om (64) that the complete L=2 Raman scat-
tering intensity is given by

Si=2( ), I4(~)
1+g, I4(u))

(67)

and thus the function 1mB'(u) is directly proportional to
the spectral weight for L=2 Raman-scattering intensity.
When we set gp = gg = 0 (66) and (67) give

FIG. 6. The intensity of the g = 0 L=2 channel Ra-
man-scattering (at T=O) in a 2D d-wave superconductor
as a function of frequency, ignoring all vertex corrections
(go = g2 = o).

of gp plays a key role in the L=2 Raman-scattering in-
tensity. For small values of gp, one finds that there is no
drastic change in the Raman intensity (see Fig. 7) &om
the gp = 0 case, apart from a decrease in the intensity of
peak around 2E (where the pair breaking mechanism is
strongest). However, when gp is large (but ]gp] & ]g2]),
the low-frequency intensity goes as u, rather than as

Observation of such a change would give direct
evidence that there is a strong s-wave pairing interaction
in d-wave superconductors.

We note that at T=O, the excitonlike modes discussed
earlier in Sec. III are completely washed out due to the
large imaginary part of correlation functions in this fre-
quency region. [We recall &om Fig. 5 (T=O case), for
example, for gp ———0.249 and g2 ———0.250, that we
found a collective mode at w 0.92(24) at q = 0.] The
large damping in the Raman spectrum is a direct conse-
quence of the fact there is no forbidden &equency region
in an anisotropic d-wave superconductor at q = 0 (no
pair breaking gap). However, the T=O Raman spectrum
still exhibits some important characteristic features (see

S ='(u) = ImR2(~) = —21mI4(u). (68)

S =
(~) = Im = —21mI4(u),

1 —2g2 I4 ld
(69)

This result gives a single peak at u = 2L and goes as
us in the low-frequency region (see Fig. 6). This choice

corresponds to the neglect of ladder diagrams (vertex cor-
rections), which are the source of the condensate collec-
tive fluctuations we are considering.

Keeping only g2 (but gp
——0), we obtain

~ 1.5
L

U

M

c- 0.5
U
E
U

0
0.5 1.5

where the last step makes use of the fact that
]2g, I4(u)] « 1 in most of the &equency region of interest
(except for w near 2b, ). Comparing (68) and (69), one
sees that there is little difference in the Raman intensity
(see Figs. 6 and 7) &om the case when vertex corrections
are completely neglected. Thus we see that a finite value

M/26

FIG. 7. The intensity of the q = 0 L=2 channel Ra-
man-scattering (at T=O) for a 2D d-wave superconductor as
a function of frequency, for several values of gp (& 0) and a
fixed value of g2 ———0.25.
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FIG. 8. The intensity of the q = 0 L=2 channel Ra-
man-scattering for a 2D d-wave superconductor at various
temperatures, for go ———0.24, setting gq

———0.25.
FIG. 10. The L=2 channel Raman-scattering intensity at

T = 0.95T, (taken from Fig. 9).
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FIG. 9. The intensity of the q = 0 L=2 channel Ra-
man-scattering for a 2D d-wave superconductor at various
temperatures, for go ———0.249 and gq

———0.250.

Fig. 7) in the low-&equency region which result &om the
vertex corrections.

Some finite-temperature results are shown in Figs. 8—
10. It is clear that the Raman spectrum becomes very
temperature dependent when go is appreciable. Unless go
is comparable to g2, the intensities do not change much
with temperature, except that the intensity of the peak
at 2A decreases strongly near T, (see Fig. 8). In par-
ticular, when T = 0.95T„ the peak at 26(T) almost
disappears, leading to a Hat spectrum at w & 26(T).
However, one sees some structure developing at low-
&equencies. When the magnitude of the residual inter-
action go is close in magnitude to gq (see Figs. 9 and
10), a strong peak [comparable in intensity to the pair-
breaking peak at 24(T)] can arise at low &equencies
(u (( 2A) as the temperature increases. In fact, this peak
corresponds precisely to the excitonlike collective mode
whose &equency is shown at 6nite temperatures in Fig.
5. The damping is much smaller in the low-&equency
region [u (( 26(T)] compared to the high-&equency re-
gion [w & 26(T)] and therefore these excitonlike modes
develop weight in the Raman-scattering intensity when
their &equency is shifted downward. We find that the

strongest low-&equency peak occurs at T 0.75T, at
a &equency w 0.26(T) (see Fig. 9). This feature in
d-wave superconductors may be useful in distinguishing
high-T, materials in which there is a significant s-wave
pairing interaction (phonon induced, for example).

V. CONCLUSIONS

We have studied the collective modes and Raman-
scattering intensity for a 20 spin-singlet d-wave super-
conductor, assuming both 8- and d 2 „2-wave contribu-
tions to the pairing interaction. We have shown that the
Cooper pair condensate fluctuations in d-wave supercon-
ductors can lead to several characteristic features which
can be experimentally distinguished &om those in 8-wave
sup erconductors.

In d-wave superconductors, the long-range Coulomb
interaction turns the phonon modes in the L=O chan-
nel into plasmon modes, as one expects &om very gen-
eral considerations in all BCS-type superconductors. We
show explicitly that the Coulomb interaction has no ef-
fect on the other modes. The excitonlike modes (which
occur in the I=2 channel) are strongly damped at
T=O. However, we have shown that this low energy
excitonlike collective mode may be well defined at fi-
nite temperatures when the system has a strong resid-
ual 8-wave pairing interaction and shows up as a dis-
tinct resonance in the Raman-scattering intensity at low-
&equencies. These temperature-dependent features of
Raman-scattering are specific to d-wave superconduc-
tors and hence may be of some experimental interest.
This behavior is quite different &om that of excitonlike
modes in s-wave superconductorsi2 2o 2i 2s 25 (see also
Appendix C).

Our results seem very relevant to current models of the
layered cuprate superconductors. Many authors have
argued that a spin fluctuation mechanism naturally arises
in the Cooper oxides, leading to Cooper pairs with d ~

symmetry. At the same time, there are good reasons
to believe that these materials have a substantial lattice
phonon-induced attractive interaction as well. In terms
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of the simple theoretical model we have considered, this
situation is described by a pairing interaction (2), with go
large but still weaker than g2. Our calculations in Sec. III
show that the q = 0 excitonlike mode (see Fig. 5) has an
energy which is very dependent on the magnitude of go
and the temperature. The lowering of the energy of this
state (into a region where the quasiparticle-hole damp-
ing is weaker) leads to low-&equency Raman-scattering
with a strength which increases with the temperature
(see Fig. 8). In the admittedly extreme case when go
is only just slightly weaker than g2, we predict a very
noticeable low-energy resonance (see Figs. 9 and 10) at
temperatures of order 0.75T, . It would be very useful
to have high-resolution Raman data in this temperature
and &equency region.

In our model d-wave superconductor, the excitonlike
modes which correspond to excited Cooper pair states
are due to the swave (L=-O) pairing interaction go. How-
ever, we have seen in Sec. IV that these modes appear
with substantial weight in the L=2 Raman-scattering
channel. The strong effect of ordinary impurity scatter-
ing on I=2 excitonlike states in 8-wave superconductors
due to a d-wave pairing interaction g2 has been care-
fully studied. 24 25 Analogous calculations on the effect
of impurity scattering on the excitonlike state of d-wave
superconductors would be useful.

We have concentrated our attention on the different
behavior of the Raman spectrum of 2D d-wave super-
conductors due to collective efFects arising &om vertex
corrections. Clearly our approach can also be used to
calculate the efFect on other physical phenomena (such
as phonon self-energies. 24)

The recent work of Devereaux et a)t. ii includes all
five possible values of m in the L=2 channel for 3D
d-wave superconductors, corresponding to five symme-
try channels [Rig, Big, B2g, E~(l), and Eg(2)] which
can be probed by Raman-scattering. In our 2D model,
with pairing of Big symmetry (L=2) in conjuction with
a weaker isotropic (I=O) attraction, the only Raman-
scattering channel of physical interest was the Bzg given
in (65). To complete our investigation of the Raman
intensity for 2D d-wave superconductors and the role of
collective modes, the inclusion of more Raman-scattering
channels (Aig, B2g, ...) is needed in addition to the Big
mode considered in Sec. IV. We note that the third pa-
per in Ref. 11 reports gauge-invariant calculations in 2D
superconductors with pairing in all d-wave channels but
no s-wave pairing.
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APPENDIX A: STRUCTURE OF aq, b~, cq,
AND dg (E=O,1,2)

~a'i~i (q iii ) = f ~ ), fr(P)fJ (P)T ie(P, q, iii )

—:fI.fL, G,aGe, , (A1)

where

1
x;I,t~(p, q, iO„) —= —) G,p(p+ q, i~ + iA„)

&iiini

x Gtz (p, iug ), (A2)

and iA (ia) ) is the usual Bose (Fermi) Matsubara &e-
quency. It is convenient to introduce

G(q, i(u„) = ~3G(q, (u„), (A3)

il 2

G(q, ice

BqVq ) ( 'Uq —'lliiVii )
—V ) ( tLqVq —8 )

E~ xcu„+ E~
+

(A4)

tL2=

QqVq

g
2

2m P)

1
211+E~)

Lq
2E~

i

"+l&gl'

1 t' &q)

~J

(A5)

As shown by CG, in the BCS weak-coupling limit,
we only have four independent matrix elements for

z,&z. (p, q, iA„), namely (at T=O),

a(p, q, iO„) =

c(p, q, iB„)=

d(p, q, iO ) =

Z+ E' EZ' —«'
2EE' (iO„)' —(E+ E')2'

E + E' —LpL~+~
2EE' (iB„)2—(E+ E')2'

—&~in„ 1

2E (iO„)2 —(E + E') 2 '

E+ E' (EE'+ ee')—
2EE' (iA ) —(E + E') 2 '

(A6)

(A7)

(AS)

(A9)

where E = E~, E' = E~+~ and 6 c~y 6 6g+g As
L, I' can be 0 or 2 only, it is convenient to introduce the
abbreviations aoo —= ao a22:—a2& and ao2 = a2o —= a1&
etc. The latter notation is used throughout this paper.

APPENDIX 8: SMALL WAVE VECTOR
EXPANSION FOR aq, b~, cc ~ AND

dg (E=O,1,2)

where the 73 o y
is the Pauli-Nambu matrix. The

components of t is 2x single-particle BCS Green's func-
tion are given by

We Grst de6ne the following useful 2D correlation func-
tions needed in our calculations [following CG (Ref. 9)]:

In the long-wavelength limit (v~q/4 (( 1), one can
expand the various correlation functions given in Ap-
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pendix A, where the functions I;(id) are defined by [f2(p) is real]

1 'U

zg(q, id):—zg(q, id) = zg(~) + — ~, N(0)z~ (id)

4 4

(Il1)

1I,(~)—:——
16

f2(p)
21r E(id2 —E2)

where the 2D density of states is N(0) = m/7r and the
odd-order terms in q make no contribution as a result of
the Fermi surface average. The above expansion assumes
the gap is slowly varying near the Fermi surface, i.e.,

Here z~(id)—:z~(q = 0, id) and we have
defi.ned

1 - 1-==—).
g2 -2E~ '

P
(B5)

The scaled energies are id = id/2A, e:—e/4, and E-:
E/b, . The parameter g2 in dp in (B3) is defined by

d'ze(q, ~)
( ) -=..N(0) d,

' (B2) where ~, is the usual BCS frequency cutofF in the pairing
interaction. Using the d-wave gap equation 14

The nonvanishing zeroth-order terms z~(id) in (Bl) are
given by

ap(id) = —bp(id) = —N(0)I2(id),
1

dp(cu) = ——+ 4id'N(0) Ip(id) —N(0) I2(id),
g2

c1(id) = +2idN(0)I2(id),
a, (id) = —b2(id) = N(0)I—(u),

1
d2 (id) = ——+ 4id2N(0) I2 (id) —N(0) I4 (cd),

g2

)'- lf2(p) I'

g2
- 2'P

one can show that g2 ——g2. We recall that f2(p)
1+cos(4$), and the term cos(4$) makes no contribution
to the rhs of (B6).

The second-order terms in (Bl) are obtained after
some lengthy algebra:

3 — — 3
ap (~d) J231(~d) J451(~) J212(~) + J432(~d) + 16J2—13(id) 8J413(id) y

1
"( ) =- "( )+- -.(-),

2
1

cQ'(Lu) = —~2(d J]j2((d) + —J332(ld) + ln J1 13(ld) —8J313((d)
2

1
dp (~) ap (~) + Joll (id) + 8Jp —12(id) 4 J212 (id) 4id J012(id) + J232 (id) + 16Jp —13(id) 8J213(id)

2 (B7)

The new functions J;~~(u) are defined as"d0' f;(p) -"(0- 0')

where P is the angle of q (Fig. 1). The functions z1'(id)
and x2'(id) (x = a, b, c, d) have an identical form to xp (id)
in (B7), except that for zi'(cu) we replace J,~A,. by J;+1~A, in
zp(id), and for z2(u) we replace J;zi, by J;+2zq in zp(id).

These long-wavelength approximations for the nonin-
teracting correlation functions in Appendix A are valid
at all frequencies. One may make further simplifying ap-
proximations when discussing difFerent &equency regions
(id as compared to 2b, ).

APPENDIX C: EXCITONLIKE MODES
IN a-&AVE SUPERCONDUCTORS

For comparison, we briefly review the excitonlike
modes (L=2) and the associated Raman-scattering in-

tensity for a 2D 8-wave superconductor. 2 One may
easily verify that the L-channel collective mode will be
given by the zeros of [see (19) for A~ = 4 and again,
N(0)go ~ go and N(0)g2 m g2]

DI = [1+(gl. —2v 80 L, )AL,](1+gr, BI,)
+4gl, (gL, —2V&bp L, )CI, (C1)

where 8 denotes an 8-wave superconductor and the func-
tions AL„BI., and cL, (L = 0, 2) follow the notation
used in Sec. II for d-wave superconductors (see also Ap-
pendix A). The collective mode in the L=O channel is
the AB phonon mode. This is renormalized into a 2D
plasmon by the Coulomb interaction and has no weight
in the Raman-scattering intensity. The Coulomb inter-
action has no efFect in the I=2 channel. We note that
while the pairing interaction go does not appear explic-
itly in (Cl) for L=2, it enters implicitly through the gap
parameter. For q = 0 and T=O, we obtain the analytic
form for (Cl) in the L=2 channel [compare with (45)—
(48)]
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(C2)

where we have introduced the functions

, arcsinw,
I(~) =

~ , [1n(u —fur' —1) + i —,],

w(1,
(d)1

(C3)

1 g2 1
D;((u) = 1 — g2—I(ur) 1 ——' + g2—(u'I(~)

4 gp 4

1 222+ g—2u 'I'(u ),

I 0 I I
i

I I2

1.6
t

1.2U

M

0.8
L
C

0.4

I s0
0 0.5

I
l f

I

I

I

I

I

I

I

I

I

I

I(

1

I I
I

I S I I

s—wave-

1.5
One can see from (C3) that the imaginary part of the
function I(2 ) only contributes when w ) 2A; i.e., there
is no pair breaking region below 2L.

We can rewrite (C2) as

D;((u) = [1 —g2R+(gp, a)][1 —g2R (gp, u)], (C4)

where the functions R~ are defined by

R~(gp, u) = — —+ —I(u)(l —cu')
1(1

)

FIG. 12. The frequency dependence of the T=O Ra-
man-scattering intensity for a 2D 8-wave superconductor in
the L=2 channel, for 6xed gp = —0.25, g2 ———0.20 (solid line)
and gp = —0.25, g2 = —0.01 (dashed line). A bound state
below the continuum 2A is visible when g2 is large enough.
The curves are convoluted with a resolution function of width
I' = 0.01 (see Ref. 20 for analogous results for 3D supercon-
ductors).

2
1 1 1 ) 1—+ -I(~)(1 —~') ——I(~)
2 (gp 4

~
gp

1
2

(C5)

Using (C4), the collective modes are given by the solu-
tions of

is found to correspond to an imaginary &equency, which
indicates the expected instability of the system with a
8-wave pairing order parameter in this case.

The L=2 Raman-scattering intensity is given by [com-
pare with (66) and (67)]

1—= ReR (gp, u)
g2

(C6) R2 (~)8, ='(ur) =Im,
( )

(C7)

for g2 ( 0; these correspond to "particle-particle"-type
excitonlike modes. For comparison with d-wave super-
conductors (see Fig. 5), we illustrate the solution of (C6)
in Fig. 11. When ~g2~ ) ~gp~, the corresponding solution

where

R2(~) = — I(~) + —',
2

. (C8)
1 is g2Ld I (Ld)

4 1+g2[—1/gp + 4~2I(~)]

0.8

0.6

0.4

0.2

0.24 0.22 0.2
—g2

0.18 0.16

FIG. 11. The frequency of the excitonlike mode in a 2D
a-wave superconductor (q = 0, T=O) vs the magnitude of the
attractive L=2 interaction g2. Compare with Fig. 5.

The &equency dependence of the L=2 Raman-scattering
intensity for a 2D s-wave superconductor given by (C7)
is plotted in Fig. 12, for g2 ———0.20 and —0.01, with a
fixed value of gp

———0.25 (see also Fig. 1 in Ref. 20).
When g2 ~ 0, we have R2(cu) oc I(w) and thus 8+(w) oc

ImI(u). This Raman spectrum exhibits a square-root
singularity at u = 2L, which corresponds to the two-
particle spectrum in the absence of vertex corrections.
In contrast, when g2 is finite (as discussed at length
in Ref. 20 for 3D superconductors), the I=2 Raman-
scattering spectrum for 8-wave superconductors consists
of a sharp peak at u ( 2L corresponding to a well-defined
excitonlike mode (see Fig. 11) and a continuum with a
broad maximum for u ) 2L. Unfortunately, in the usual
8-wave superconductors, there is no reason to believe that
an attraction in the d-wave channel will be very strong
and thus any excitonlike mode will always have an energy
very close to the p-6 continuum at 2L.
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