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The London magnetic penetration depth is investigated for the layered narrow tight-binding band an-

isotropic superconductors. The nearest-neighbor pairing interaction in planes and the tunneling between

planes are assumed. The manifestly gauge-invariant expression for the static electromagnetic response

kernel is derived within the framework of the ladder-diagram approximation. The out-of-plane penetra-

tion depth A,&( T) as well as the in-plane one A,
~~(

T) is calculated as a function of hole density nz and tem-

perature T( & T, ). The resultant A.~(0) and A, i~(0) depend symmetrically on hole and electron densities,

and are almost not aftected by the anisotropy of the order parameter. For both of the extended s-wave

and d-wave states, the obtained anisotropy ratio A,~(0)/X~~(0) as well as X~~(0) and T, can be in the range

of the experimental results for high-T, superconductors. For the d-wave state, the resultant A, i( T)/A, ~(0}
as well as A. ~I(T)/A, ~~(0) has T-linear behavior at low temperature, and substantially deviates from those

for the extended and usual s-wave states for all T & T, . The in-plane and out-of-plane Ginzburg-Landau

(GL) coherence lengths are also calculated by assuming their GL relations with the above penetration

depths, and are compared with the experimental results. The case with the out-of-plane tunneling in

proportion to carrier density is simply examined.

I. INTRODUCTION

The pairing state of high-T, superconductors has not
been fully understood, though many experimental results
supporting the d-wave pairing have been reported recent-
ly. ' The magnetic penetration depth A,L( T) (as a function
of temperature T) is one of the most important quantities
that give information on the pairing state. Recently,
A,L ( T) has been calculated on the basis of the tight-
binding models for the two-dimensional (2D) anisotropic
superconductors and the layered superconductors. '

The theoretical investigation of A, L( T) based on the
tight-binding model is considered to be worthwhile for
the following reasons. In many theoretical studies of
high-T, superconductors, the pairing interaction is as-
sumed to work over the whole region of the narrow band,
and various properties are calculated for Bloch electrons
in the narrow tight-binding model. Furthermore, in
many theoretical studies of the layered superconductors,
the tunneling between planes is taken as small, and is
treated in the form of a tight-binding band.

In a previous paper, the present author has shown
that the ladder-diagram approximation ' is consistent
with the gauge invariance in the tight-binding model of
the general anisotropic narrow-band superconductors.
Within the framework of this approximation, the mani-
festly gauge-invariant expression for the static elec-
tromagnetic response kernel has been derived, and A,~(T)
for the extended s-wave and d-wave states has been calcu-
lated as a function of hole density n& and temperature
(T & T, ) on the basis of the 2D square lattice model. The
obtained results have been compared with those of the
effective hole- and electron-mass approximations.

However, the previous calculation is for the 2D sys-

tern and is not sufficient, since kL(T) is to be considered
for the 3D structure. In this work, we extend the previ-
ous work to the layered system. Our model does not in-
clude the electron-correlation effect (though the transfer
is treated in the form of a narrow band). However, most
properties due to the symmetry of the pairing state are
expected to be examined also in our model.

Some studies have already treated the layered tight-
binding model of the high-T, superconductors. Schneid-
er and Frick have investigated the effect of the anisotro-

py due to the layered structure on the behavior of A,L (T).
Mirsiglio and Hirsch have investigated A.L (T) of the lay-
ered hole superconductors with a somewhat different
mechanism due to a modulated hopping interaction.
However, these works ' have examined only the (extend-
ed) s-wave states (though they have taken account of the
interlayer pairing) essentially. In this work, we examine
the d-wave state also and compare the result with that for
the extended s-wave state. We also compare the obtained
values for the in-plane and out-of-plane penetration
depths [and also for the Ginzburg-Landau (GL) coher-
ence lengths] with the experimental results. We take the
nearest-neighbor attractive interaction in planes and the
tunneling between planes, but we assume that the attrac-
tive interaction between the planes is small enough to be
neglected.

This work is organized as follows. In Sec. II, we apply
the ladder-diagraID approximation to the electromagnetic
response of our layered narrow tight-binding band sys-
tem. In Sec. III, we derive the manifestly gauge-invariant
expression for the static electromagnetic response kernel,
and calculate the out-of-plane penetration depth A, t( T) as
well as the in-plane one A.

~~(
T) as a function of hole densi-

ty nh and temperature T( & T, ). In Sec. IV, we calculate

0163-1829/95/51(17)/11791(7)/$06. 00 51 11 791 1995 The American Physical Society



11 792 SUSUMU MISAWA 51

the in-plane and out-of-plane GL coherence lengths.
Furthermore, the case with the out-of-plane tunneling in
proportion to carrier density is simply examined. A con-
clusion is given in Sec. V.

with the pairing interaction

V(q~~) = —2V[cos(q„a)+cos(q a)],
and the Coulomb interaction

(2.7)

II. MODEL AND FORMULATION

H= g t(r —r')c, c; +H. c. —pg n,
(r, r')o r, o.

+ g [V(r —r')+ Vc(r —r'))n, n,
& r, r') o.cr'

(2.1)

where t(r —r') is the transfer integral and V(r —r') the
attractive intersite interaction, Vc(r —r ) the Coulomb
interaction; c, and n, are, respectively, the annihilation
and number operators for an electron of spin o with the
chemical potential p at the rth site. In our model, we as-
sume that the intersite pairing interaction between planes
are small enough to be neglected. We take

—
t~~ (r, r' nearest neighbors in the plane),

t(r —r')= t~ (r, r' nearest neighbors out of plane),
0 (otherwise),

(2.2)

In this section, we apply the ladder-diagram approxi-
mation ' to the electromagnetic response of the layered
narrow-band ani. sotropic superconductor consisting of
Bloch electrons. Our starting model Hamiltonian is the
following phenomenological layered tight-binding model:

2778 sinhqI) d
Vc(q) =

qIIa coshqIId —cosq~d
(2.8)

where co„=(2n +1)m.T with T the temperature and n an
integer, P= 1/T, and ( ) denotes the thermal average of
the system under no field. The order parameter
b,k =g V(k~~

—
q~~)(e q&cq& ) /N is chosen to be real and

II

is determined without the Coulomb interaction (the effect
of which is assumed to be small and is neglected here as
in the usual non-81och treatment ) as

in the limit a —+O. Here, qII denotes a 2D in-plane wave
vector. We consider Vc(q), however, only for the
vacuum-polarization process as in the usual non-Bloch
treatment, and we will see that this Vc(q) does not con-
tribute to the static electromagnetic response.

We consider only the singlet superconducting state.
The temperature Green's function in the Hartree-Fock
approximation is given by

G(k, iso„)=—J dre " (4 (kr)'Pk(0))
0

(2.9)

and

By using the Nambu notation and by dropping some
nonessential terms, we rewrite Eq. (2.1) into the Fourier
transformed form

X (ek P)+kr3+k

+ X V(q)+k+q/2+3+k —q/2+k' —q/2+3+k'+q/2

(2.4)

Here, %k=[ck&,c k&]; r;(i =1,2, 3) are the Pauli ma-
trices, and N is the total number of the lattice sites. The
wave-number summations are restricted within the unit
cell of the reciprocal lattice.

In our model, the single-particle energy is expressed as

ek ——
2t~~ [cos(k„a ) +cos( k~a ) ]+2t~cos( k, d) (2.5)

—V (r, r' nearest neighbors in the plane),
Vr —r' ='

0 (otherwise) .

(2.3)

2E
(2.10)

with Ek=+(ek —p) +6k. This expression is in the

form of the self-energy, to which precisely the following
contribution to correct e& is to be added:

1

q

(2.11)

(Wk )
1 =—g tanh (a =es, d ),

2Ek 2T
(2.12)

along with Ek=+(ek p) +b, (wk )
—. Here, we note

II

that our pairing potential can be rewritten as

where nq is given below by Eq. (2.14). In the usual treat-
ments, this correction is neglected. We retain the nota-
tion e& for the corrected energy Zk =6k+ 5E'k.

In our model, the order parameter has the following
forms for the possible extended s-wave and d-wave states:
hk =5 wk (a=es, d) with wk' =cos(k, a)+cos(k a),
wk =cos(k a) —cos(k a), and b, determined by

where a and d denote the in-plane and out-of-plane lattice
spacings, respectively. We consider, in our model, only
the in-plane pairing, and the interaction in Eq. (2.4) is ex-
pressed as +Wk Wq ] (2.13)

V(q)= V(, )+ V ( ), (2.6) with wk' =V 2sin(k;a) (i =x,y). We determine p by
II
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1 l ~k
—

I

n, =2 —
ni, =—g n z

———g 1 — tanh
Nk Nk Ek 2T

(2.14)

j;(q)=jt'(q)+j; (q), (2.15)

where n, and n& are the electron and hole densities, re-
spectively.

The current carried by Bloch electrons under the weak
long-wavelength vector-potential field A, (q) are ex-
pressed as

given by

K; (q, co)=K; (q, co)+Kt,'(q, co) .

Here, the diamagnetic term is obtained as

4me

~akak ""
t."AN k

The paramagnetic term is described by

Kt'(q, co) = PJ(q, co+i 6),4~
C

(2.19)

(2.20)

(2.21)

where the paramagnetic- and diamagnetic-current densi-
ties are given by

with

P,"(q,ico ):———f dre' "'(jt'(q, r)j J( —q, O)) .
0

e
g X k —q/2 gk ro+k+q/2

k I

(2.16) (2.22)

and

~ d
2 8 6'k2

X X gk gk k —q/2+q'/2+3
CA Xkq

(2.17)

J;(q, co)= — g K;J(q, co)&j(q, co), (2.18)

where the electromagnetic response kernel K; (q, co) is

I

+K+q/2 —q'/2 ~J ( q

respectively. In Eq. (2.16), ro is the 2 X 2 unit matrix. If
we concentrate on the linear response to the weak field
/I;(q), the Fourier transform of the expectation value of
the current density is expressed [the perturbing term
~ = —(1/c&) g g,j, ( —q) A, (q) is added to our Ham-
iltonian (2.4)] as

XG(p+ )I,(p+,p )G(p )],
(2.23)

where p+ = (p+q/2—, t v„+ico /2); the free vertex

y,.(p,p+ ) is given by

BEp
'v~ (p —~pt+).

A' op;
(2.24)

and the vertex function I;(p+,p ) satisfies the linear in-
tegral equation

In the ladder-diagram approximation ' (the diagram is
almost the same as in Ref. 4), the paramagnetic term is
expressed as

e T
P)(q, ico )= g Tr[y, (p,p+ )

;(p+ p —)='V;(p+,p ) —~g &3G(k+ )I;(k+,k )G(k )r3V(p —k)+ V(q)73 QTr[r3G(k+ )1,.(k+, k )G(k )],
T 1

1, k l, k

(2.25)

with k~ —=(kkq/2, iv&+ico /2). The last term on the
right-hand side of Eq. (2.25) expresses the vacuum-
polarization correction. "' In our scheme, the effect of
the Coulomb interaction Vc(p —k) in the second term of
Eq. (2.25) is considered to be small. Hence, below, we
will take V(p —k) in this term as V(p~~

—
k~~) (as in the

usual non-Bloch treatment ) so as to be consistent with
Eq. (2.10).

3

I;(p+,p )=y;(p)+ g g w~p XP~(q, ico )r,
j=0 P

pii
lj

+ Y;3(q,i co )r3, (3.1)

the solution I, (p+,p ) (i =x,y, z) to Eq. (2.25) has the
form

III. RESPONSE KERNEL AND PENETRATION DEPTH

Here, by using the ladder-diagram approximation
given in Eq. (2.25), we derive the manifestly gauge-
invariant expression for the electromagnetic response
kernel K~ (i,j =x,y, z) at zero frequency, and calculate
the penetration depth for our layered system, in the same
way as for the 2D case in Ref. 4. We also note that hk
and wk depend only on 2D vectors k~~. We assume that

II

for the superconducting a-wave state (a=es or d). After
some manipulation, we can obtain the expressions for
XP~(P=es, d,p,p ) and Y,3. At co=0, the analytically
continued forms of X;&, X,3, and Y,3 vanish. We expand
Eq. (2.25) [written in terms of XPz and Xg ] up to the or-
der of q . We can solve this equation by using Eq. (2.12),
integration by parts, and some symmetries. In the fol-
lowing, we treat the energy correction 6@k given by Eq.
(2.11), in a self-consistent symmetric way, as
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V5e„=w f; g w "n
ll 2)V

q

(3.2)
For ql~y, in the limit of q ~0, we have

K; (q, O) =K;(q, O) =0 (i =x,y, z), (3.&)

2b, g. R; q
X;2 (q, co =0)= — &—1,

gl, m VlRim9m
(3.3)

Then the corrected quasiparticle energy has the same
symmetrical property as the bare one, and the following
result with respect to the symmetry coincides with that
obtained by using the bare energy as usual.

By appropriate symmetrical considerations, we can see
that Xg(P=es, d) and XP2(P=p, p ) vanish. For the a-
wave state, when we take the limit q ~0, only X;z has the
essential contribution terms of the order 0 (q ') as

K,"(q,O)= R,, 5," (i j =x,z) .
4me

C
(3.9)

By considering the case of the applied magnetic field

Hllz, we obtain the in-plane penetration depth (the depth
of the field penetration screened by the supercurrent flow
parallel to the plane, in the x direction here) as

4me
Aii(T = R (T

c a
where R; is given by

q2~-„E2 ak, 'llak, " " ak,

4me 2

2' 'dX'X-,
Bf(El, ) 8

+ n~az, ak.' '
(3.10)

E~
X + (3.4)

a&„a&„af(E„)
ak, ak, aE„+ak, ak,

"" (3.5)

Equation (3.5) can be easily transformed (by integrating
the second term by parts) into its original form (3.4). By
using Eq. (3.3) and Eqs. (2.19)—(2.25), we obtain the
gauge-invariant form for the static total K; as

E,"(q,O)= R, —4m.e

C

Xl Rilql R q

gl, m CiRimlm

(3.6)

This form is easily seen to satisfy the gauge-invariance
condition at zero frequency: g K;.q. =O (K;. becomes
purely transverse). Furthermore, it is considered to be
the generalized form of the hydrodynamical kernel for
the singlet superconducting state; R; can be interpreted
as the superfluid density per effective mass. If R;. has
the simple form R;;5; as in our case, it follows that K; is
of the form

2 R "q,.q.

I 11ql
(3.7)

with f (x)= 1/[exp(x /T)+ 1]. We have finite values of
the order O(1) for X,o (i =x,y). However, these
coefficients only correct nonessentially y, (k)

'(Bei, /Bk; )~o in I;, corresponding to that correction
[given in Eq. (2.11) or (3.2)] of ek by the self-energy which
we have neglected in Eq. (2.10), as in the 2D case.4

So, we neglect these coefficients, and our solution
reduces to that for the pure n-wave potential
V(p —k ) = —Vww . It should be noted that the

II Pll kll

Coulomb potential has no effect on the vertex at ~=0.
The rather complicated expression (3.4) can be rewritten
as

Similarly, by considering the case H~~x, we obtain the
out-of-plane penetration depth (the depth of the field
penetration screened by the supercurrent flow perpendic-
ular to the plane) as

4~e2 ~~kT 2
Bf(Ei, ) 8 e„+ nk~E Bk'

(3.11)

These expressions coincide with those obtained for the
transverse field in the Hartree-Fock approximation.
Here, however, Eq. (3.6) or (3.7) guarantees that the ex-
pressions (3.10) and (3.11) are really gauge invariant.

We calculate numerically ki(T) as well as X~~(T) as a
function of nh and T. The chemical potential p is deter-
mined by Eq. (2.14). At T =0 K, only the second terms
in Eqs. (3.10) and (3.11) contribute, and the resultant
A,i(0) and A, ~~(0) as functions of ni, are almost unaffected
by the anisotropy of Ak as shown in Fig. 1. They depend

symmetrically on hole and electron densities. If we take
tll =0. 15 eV, d =7.7 A and a =3.85 A, almost following
Schneider and Frick, we obtain the value of the unit
used in Fig. 1 as Qmh~~c a d/4vre =743 A. Here,
m„~~=A'/2r~~~' is the effective in-plane ho le mass when

ni, ~0. Then, for ni, =0.2, we have k~~(0)=1783 A,
which is little larger than the typical experimental value
1400 A for high-T, superconductors. ' The resulting
maximum T, for V/tll =2 and t~/tll =0. 1 shown in Fig. 1

is estimated as 261 K for the extended s-wave state and
696 K for the d-wave state, and is too large compared
with the experimental values. However, we can obtain
the more realistic value by using smaller V almost
without the changes of A, ~~(0) and i(,i(0) as shown later in
Fig. 4 and in Sec. IV.

By adopting the lattice spacing ratio d/a =2.0, the
resultant anisotropy ratio Ai(0)/A. ~~(0) is obtained as
about 5 for most nz with t~/tll=0. 1 as seen in Fig. 1.
This value is reasonable with the experimental results for



LONDON PENETRATION DEPTH IN A TIGHT-BINDING. . . 11 795

30.0 1.0

~ 20. 0

o 10.0

es
/

/

es

es

es

0.8-

V/t II=

tJ/t
II

0.0 0.4- d(nj, =

3.0
~~ 2. 0

1.0

0.0

CO

/t Ii=2.
d

0.6

0.4

C3

0.2

0.0
0.0

exten

usual

0.2 0.4 0.6
T/Tc

0.8 1.G

0.0 0. 5 1.0
nh

0.0
2. 0

FIG. 1. The in-plane penetration depth A, II(0), the anisotropy
ratio A,j(0)/A, ll(0) and the transition temperature T, as functions
of hole density n& for t~ /tll =0.025 (dashed), 0.1 (solid), 0.3 (dot-
ted but only shown for T, ). The resulting A, II(0) (as well as T, )

for t~/tII =0.025 almost coincides with that for tL /tII =0.1. The
result for the usual s-wave state denoted by us is added for com-
parison.

1/2
II

ted mhll

1/2

(3.12)

which is estimated as 1.58 for tj/tII =0.1, and 3.33 for
tJ /t

II
0.025 ( mz~ =A /2t~d —is the effective out-of-plane

hole mass when nI, ~0).
The behavior of A,~(T)/A~(0) as well as 1'll( )/A'Il(0) a

a function T/T, is affected by the anisotropy of the order
parameter. For the d-wave state, the resulting
A~( T) /Xj (0) as well as A, II( T) /A, II(0) has the T-linear
dependence in the low-temperature region, and substan-
tially deviates from the extended and usual s-wave ones
for all T ( T, as shown Fig. 2 (where the results for the
usual s-wave state and the empirical two-Quid model are
added for comparison). In our layered system, the d-
wave order parameter retains nodes on the Fermi surface.

IV. COHERENCE LENGTH

In this section, we calculate the GL coherence length
gGL(0) by using their GL relation with the penetration
depth. The critical field II, is determined by

YBa2Cu307 &.
' '" However, according to the recent ex-

periment' on the GL coherence length in
La2 „Sr Cu04, the anisotropy ratio /ALII(0) /g&L~(0),
which is considered to coincide with A,~(0)//(. II(0), is
significantly larger than 5 and is rather reasonable with
the value 20 (which can be obtained for most n& with
t~/tII =0.025 in our model as seen in Fig. 1). These re-
sults are not changed for the more realistic case with
smaller V, as seen in the next section. In the limit nI, ~0,
this ratio in Fig. 1 approximately coincides with that in
the effective hole-mass approximation

FIG. 2. The reduced in-plane penetration depth A. ll(T)/All(0)
and the reduced out-of-plane penetration depth A,~(T)/A, &(0) as
functions of reduced temperature T!T,. The results for the
usual s-wave state and the empirical two-Quid model are added
for comparison.

H, (T)
8~

1 (F„F,), —
a'
1 (0„—0, ),

Xa d
(4.1)

where F, (F„) and 0, (0„)are the free energy and the
thermodynamic potential in the superconducting (nor-
mal) state, respectively. By the same treatment as the
usual BCS one, for the a-wave state, we have

H (T)
8~

1 &dV'
( )Xa'd

1

a d
——y (Eq —

leq
—pl )

q

2T g ln
q

—P

Pl &q P I

(4.2)

where Hv is the second term in our Hamiltonian (2.4)
without Vc(q), and we have used the equation
(H~) = —b. /V and Eq. (2.12). The in-plane GL coher-
ence length /ALII(T) and the out-of-plane one gQLJ(T) are
obtained by the GL relations

oL,(T)= (v= ll, l),2V'2', (T)k (T)
(4.3)

where Po=vrficllel is the flux quantum. These connec-
tions are only exact near T, . We will proceed nonetheless
with GL analysis, following Mirsiglio and Hirsch, and
use Eq. (4.3) to calculate the GL coherence length at
T =0 K. The numerical result for goL (0) (v= ll, l) as a
function of nI, is shown in Fig. 3. The anisotropy ratio
g&„II(0)/goLj(0) coincides with A.~(0)/A, I~(0) as seen from
Eq. (4.3).

To examine the above treatment itself, we calculate the
spatial extent of the pair wave function, as a BCS-like
coherence length g'„(0), by following Mirsiglio and
Hirsch:
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FIG. 3. The in-plane GL coherence length go„l(0) and the
anisotropy ratio goLl(0)/gQLJ(0) as functions of hole density nh

(solid). Also are shown the in-plane BCS-like coherence length
(the spatial extent of the pair wave function) g, ~~(0) and the an-
isotropy ratio g„l(0)/g„, (0) (dashed but only shown for the ex-
tended s-wave state).

,g *(r)r g (r)

g, g'(r)g (r)
(v=!!,&), (4.4)

where

(c,, c,„&g(r)= (c„c,„&

with

ga
ikr(c c &

=—g tanh e'"' .
1V 2E 2Tk

(4.6)

At T =0 K, a combination of Eqs. (4.4) —(4.6) yields

( I/X) gk!Vq[hp /2Ek] I' (0)=
(1/X) g„[b,P /2E„],

As seen in Fig. 3, the difFerence between the resultant
0 /~~j(0) and g«ll(0)/g«~(0) as well as the

diff'erence between g„l(0) and jo„l(0) is small.
From Figs. 1 and 3, we can see that the out-of-plane

tunneling t~ in our model aff'ect the result as follows. (i)
It lowers T, but almost does not narrow the supercon-
ducting region of nh. (ii) It decreases (increases) A,~(0)
[g«~(0)] but it almost does not aff'ect kl(0)[g«~~(0)].

The result in Fig. 3 is only for t~/tll =0. 1 and the re-
sulting anisotropy ratio is estimated as about 5. Howev-
er, as stated in Sec. III, according to the recent experi-
ment' on the GL coherence length, the anisotropy ratio
g«~~(0)/goL~(0) is significantly larger than 5 and is rath-
er reasonable with the value 20. This situation can be
realized by setting t~/tll =0.025 as seen in Fig. 1, but the
result there has been obtained for the penetration depth.
The result obtained here for the GL coherence length is

shown in Fig. 4, but with V/tll = 1.0 to realize the realis-
0

tic T, . By taking the same values tll =0.15 eV, d =7.7 A,
0

and a =3.85 A as in Sec. III, we obtain the maximum T,
as 38.28 K for the extended s-wave state and 241.86 K for
the d-wave state. We have g«l(0)=38. 5 —154 A for
most n& in the extended s-wave state and

0

g«l(0) = 10.1 —154 A for most nh in the d-wave state.
0

The experimental result' is g«~~(0) = 31 —52 A for
T, =32—18 K.. Our g«~~(0) has a reasonable value
around the maximum T, . For small T„however, it be-
comes much larger than the experimental result. ' The
result for g«l(0) obtained in Ref. 6 based on the kinetic-
pairing mechanism has a reasonable value for small T„'
around the maximum T„however, it becomes rather
smaller than the experimental result. ' In both our result
and the result of Ref. 6, gGLl(0) increases with nz more
sharply than that in the recent experiment. ' The value
of the Xl(0) for nI, =0.2 is almost not changed from 1783
A obtained for V/tll =2.0 in Sec. III, and can be in the
range of the experimental values. ' '"

Furthermore the recent experimental result' for the
anisotropy ratio gGLl(0)/g&L&(0), exhibits a sharp de-
crease (from about 50 to about 10) as carrier density in-
creases in the low carrier-density region. This cannot be
explained in our above model without any change. Here,
we examine the case with the out-of-plane tunneling t~ in
proportion to carrier density, admitting that increasing
carrier density may facilitate the electron conduction
along the c axis. ' We change the constant t~ in Eq. (2.5)
into t~ potllnh for the extended s-wave state with some
constant po. We have some difhculty in choosing such
form for the d-wave state. If we take t~ =—pot!In~, we can-
not expect the sharp decrease of the anisotropy ratio as
nh increases in the d-wave region. Here, we choose
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FICx. 4. The same as Figs. 1 and 3 but with V/tll =1.0 and
with t~/tll =0.2nq for the extended s-wave state (solid) and

t~/tll =0.2(nz —1) for the d-wave state (solid). Also is shown
the result for V/tll =1.0 and t~/tll =0.025 (dashed). The result-
ing QGLl(0) [as well as ) ~~(0) and T, ] for t, lt~~ =0.025 almost
coincides with that for t, /tll =0.2nh or t, /tll =0.2(nz —1).
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t~=—peti(nt, —1) for the d-wave state; in those recent
treatments' of the strong correlation limit which support
d-wave superconductivity, the carrier density or the dop-
ing fraction is considered to be nh

—1( —= 1 —n, ) rather
than nz. We retain, however, the unrenormalized

t~~
in

this work. Our result [the sharp decrease of
g+L~~(0)/g+LJ (0) from about 40 to about 10] can explain
the experimental result' to some extent as seen in Fig. 4
with po=0. 2, though not completely. In our treatment,
the increasing tunneling t~ also almost does not narrow
the superconducting region of carrier density, though it
lowers T, by a small amount.

V. CONCLUSION AND DISCUSSION

In this work, we have investigated the London magnet-
ic penetration depth in the layered narrow tight-binding
band anisotropic superconductors with the nearest-
neighbor in-plane pairing interaction and the nearest-
neighbor out-of-plane tunneling. The manifestly gauge-
invariant expression for the static electromagnetic
response kernel has been derived within the framework of
the ladder-diagram approximation. The results for A,~(0)
and A, ~~(0) (as functions of the hole density nt, ) depend
symmetrically on hole and electron densities, and are al-
most not affected by the anisotropy of the order parame-
ter. The obtained anisotropy ratio A,~(0)/A, ~~(0) as well as
A, i(0) and T, for the extended s-wave and d-wave states
can be in the range of the experimental results for high-
T, superconductors. ' ' For the d-wave state, the resul-
tant reduced penetration depth A,~(T)/A, j(0) (as a func-
tion of temperature T) as well as A,

~~(
T)/A, ~~(0) has T-linear

behavior at low temperature and substantially deviates
from those for the extended and usual s-wave states for
all T&T, .

We have also calculated the in-plane GL coherence

length goL~~(0) and the out-of-plane one (~Lj(0) by as-
suming their GL relations with the penetration depths.
The ~e~~lta~t anisot«py ratio Nor il

koLi(0)
[—:A~(0)/A, ~~(0)] as well as T, for the extended s-wave and
d-wave states can be in the range of the experimental re-
sults. ' Our goL~~(0) has a reasonable value around the
maximum T, . For small T„however, it becomes much
larger than the experimental result. ' Our goL~~(0) in-
creases with n& more sharply than the recent experimen-
tal result. '

The out-of-plane tunneling t~ in our model affect the
result as follows. (i) It lowers T, but almost does not nar-
row the superconducting region of nh. (ii) It decreases
(increases) A,~(0)[goL&(0)] but it almost does not affect
A, ~~~(0)[goLi(0)]. If we introduce the tunneling t~ in pro-
portion to carrier density, the resultant anisotropy ratio
goL~~(0)/goL~(0) exhibits a sharp decrease as carrier den-
sity increases in the low carrier-density region, in agree-
ment with the recent experiment. ' In our treatment, the
increasing tunneling tz also almost does not narrow the
superconducting region of carrier density, though it
lowers T, by a small amount.

In this work, we have treated the transfer
t~~

and the
tunneling t~ as small and in the form of a narrow band.
We have explained the experimental results for the high-
T, oxides to some extent. However, the electron-
correlation effect is not included correctly. The effect of
impurities and the strong coupling to the certain bosons
have also been neglected. Including these effects remains
a future problem.
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