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Using the Ginzburg-Landau theory, a particular superconducting (sc) micronet, called the Wheat-
stone bridge, is studied. This planar micronet is made of two nodes connected by three thin sc wires.
A magnetic field is applied perpendicularly to its plane. The sc-normal second-order phase transi-
tion is characterized by only two configurations of the order parameter: pz ——pz and yz ———pz,
where pA and y~ are the order parameters at the nodes. For temperatures near T„we show that
only the pz = p~ configuration is admissible for Buxes near 4 = nC p, where n is an integer and
4p is the Bux quantum. Finally, the exact solution of the nonlinear Ginzburg-Landau equations
for one-dimensional systems is numerically fitted to the boundary conditions of the Wheatstone
bridge for the two configurations pz = y& and yA ———y&. Graphs of the Gibbs energy and of the
spontaneous supercurrent, which for these two configurations is always a screening supercurrent, are
given as functions of the total Bux. A discontinuous transition between configurations occurs as a
function of the Qux.

I. INTRODUCTION

A superconducting (sc) micronet is a two-dimensional
mesoscopic layout of multiply connected sc wires. For
the uniform case, the wires are all identical and made of
the same material. The radius of the wires is considered
negligible with respect to the lengths of the branches. A
node is a point where at least three wires join together
and a branch is a segment of nodeless wire between two
nodes. There is no discontinuity of the material at the
nodes. A uniform magnetic Geld is applied perpendicu-
larly to the plane of the micronet.

The study of this type of system was initiated in 1981
by de Gennes who calculated the properties of the sc-
normal second-order phase transition for the lasso (a ring
with a dangling side branch) using the linearized mean-
field Ginzburg-I andau formalism. Alexander, Simonin
et a)., and Fink et al. further developed this approach
for diferent geometries (Sierpinski gasket, infinite micro-
ladder, etc.). Fink and Griinfeld studied a wire with
dangling side branches and examined a new type of sc
quantum interference device (SQUID) which functions
without Josephson junctions. This device consists of a
ring to which two diametrally opposite branches are con-
nected, into which a transport current is injected.

In this paper, the Wheatstone bridge geometry is con-
sidered (see Fig. 1) using the nonlinear Ginzburg-Landau
formalism. This micronet consists of three branches join-
ing two nodes and may be considered as a first step in
complexity after the ring and the lasso. It offers the pos-
sibility of exact numerical computation with a nontrivial
behavior in the sc phase. Some results have been ob-
tained by Fink for a particular form of the Wheatstone
bridge, called the yin-yang, where all three branches have
the same length. In this paper, the spontaneous currents
and the Gibbs energy are computed as functions of the
temperature T and of the total magnetic Aux 4 through
one of the loops of the network. The phase diagram
(T, @j is established. It will be seen that a first-order
transition appears in the sc domain characterized by a
sudden inversion of the direction of the currents.

II. GINZBURG-LANDAU THEORY

As we study the macroscopic properties of a system
which is, by its nature, inhomogeneous (wires alternate
with insulators), the phenomenological Ginzburg-Landau
(GL) theory is the most appropriate tool to use. This
theory attributes a change of Gibbs energy to the sc state
with respect to the normal state of the form
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FIG. 1. Special geometry of the Wheatstone bridge where
the ratio of the lengths of the lateral branches to that of the
central branch is b = 3.

with N and 0 real functions of s and N & 0. With this
choice, the vector potential no longer appears explicitly
in the equations for N and 0, and 0 is gauge invariant.
N is the squared modulus of the order parameter. We
get, as a first result, that

J =No',

where the prime denotes difFerentiation with respect to
s. We choose to express N(s) as

B(s) = N(s) —Np, (8)
Here ( = ((T) is the coherence length of the material at
temperature T; x = x/((T) is the normalized position
vector, with x the efFective position vector; n oc (T —T )
and P are the two usual parameters of the GL theory (see
Ref. 9); the normalized GL order parameter y is defined
by &p(x) = &P(x)/p, with P the GL order parameter and

= InI/p; H;„d(x) is the magnetic field induced by the
supercurrents in the micronet; m, is the mass of a single
electron; and p is a gauge-invariant momentum operator
defined by

B' = 2R(R +2apR+ Np) + (Np) (9)

and

N. I&N«(Np)'&I
2 q

' 2Np)' (io)

where Np ——N(sp), sp being a given abscissa. These
definitions [Eqs. (6) and (8)j, inserted in the Ginzburg-
Landau equation (3), yieldi

p = —iV' —A, (2) with Np ——N'(sp) and Np = N" (sp),

where V' is the gradient operator for x and A
(2'/@p)A, with 4p the unit flux quantum and A a vec-
tor potential. The integration is carried out over the
whole space. The first term in the parentheses of Eq. (1)
is called the kinetic energy; the sum of the second and
third. terms is called the condensation energy.

Using a variational method for the variables y and A,
two equations, the Ginzburg-Landau equations, are de-
rived from AG. The first of these,

p'v —
v + IvI'v = o

gives the value of y, while the second one, not given
here, combined with the Maxwell equation curl H = J",
ensures that if the supercurrent density is

J"= — J,
e rp

with the normalized supercurrent density

ap = 3Np/2 —1

and

Jp ——Np Ql —Np. (12)

2 )
No

2
'

Besides Jo and J~, the solutions depend on the two pa-
rameters

With the assumption that so is so chosen that No is an
extremum of N(s) (i.e. Np ——0), the solution of the gen-
eral one-dimensional equation (9) is typically composed
of Jacobian elliptic functions and its precise form depends
on the values of the parameters No and J as shown in
Table I (Ref. 11) and Fig. 2. (The boundary conditions
are not yet taken into account. ) We use the definitions in
Ref. 13 for the Jacobian elliptic functions and introduce

J = Re(@*pe), 0.5

then the total Gibbs energy is minimal with respect to
variations in A. (Re means the real part of a complex
expression. )

III. CENERAL SOLUTION
OF THE GINZBURG-LANDAU EQUATION

FOR ONE-DIMENSIONAL SYSTEMS

0.4—

0.3

0.2

0.1

0.0
0.0 1/3 N 2/3 1.0

( ) gN( )
i(8(8)+J A ds] (6)

In micronets made of one-dimensional conductors such
as wires, both y and A become functions of the normal-
ized curvilinear abscissa s. Then Eq. (3) must be solved
with V' in p replaced by 0/cps. We set

FIG. 2. Regions of validity of the different solutions of the
GL equation for a one-dimensional superconductor. No is the
extremum of the normalized squared modulus of the sc order
parameter. J is the normalized supercurrent. Jo and J~ are
defined in Eqs. (12) and (13), respectively. The zones A, B,
C, and D refer to Table I.
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TABLE I. The di8'erent types of solutions of the normalized one-dimensional Ginzburg-Landau
equation [Eq. (3)] for B(s) defined by N(s) = ~p] (s) = Np —B(s) T. he zones refer tp the parameter
space (Np, J) (see Fig. 2). Np = N(sp) is an extremum of N(s), Np' ——N"(sp) and p(s) is the
normalized order parameter. The constants ao, Jo, and JI and the parameters A and 2p are
defined in the text [Eqs. (11)—(15)]. The Jacobian elliptic functions sd, sn, sc, and dn are defined
in Ref. 13.
Zone [Jf No R(s) = N(s) —Np

A ]Jf& Jp arbitrary (2p jA )sd (u]m)

B Jp & ]J( & Ji Np & 2/3 2p /[6 (1 —m)]sn [v 1 —mu[m/(m —1)] As 1/2(1+ap/6 )

C & 2/3 2p /(E m)sc (~mumm )

arbitrary 2p sc (u~m)dn (u]m) ps 1/2(l —ap/2p')

2(J2 —J2) /Np (14) IV. EVALUATION OF THE GIBBS ENERGY

2p = QNp' =

The last equality follows f'rom Eq. (10).
Two cases have to be distinguished: (i) Np g 0 and

(ii) Np ——0.
(i) If Np g 0, for any given values of Np and J,

Eqs. (11)—(15) uniquely determine the two parameters
and 2p and, as Jo ~ J~, a solution R is well defined.

On the curve J(Np) = Jp, B vanishes and N(s) = No.
Each solution is periodic of period 2K(M)s/U, where
K is the complete elliptic integral of the first kind
(cf. Ref. 13), and M is the parameter and U the argument
of the Jacobian elliptic function which is proportional to
s. It can be shown that the zones A and B are equivalent
in the sense that for a given supercurrent J, and for each
Np~ such that (Np~, J) belongs to zone A, there exists a
value Nprs with (Np~, J) in zone B, such that Np~ is the
maximum and No~ the minimum of the same function
N(s).

(ii) If Np ——0, one still has No ——0. In addition,
Eqs. (10), (12), and (13) show that J = Jp = Ji = 0. El-
ementary algebra gives the relation Np' ——(No) /(2Np),
and Eqs. (14) and (15) reduce to A2 = 1 and 2p2

QNp'. Since, in contrast to case (i), No' is now undeter-
mined, we are free to choose 2p ) 1, in which case the
form of solution given under D is valid.

This means that infinitely many solutions for B are
associated with the pair (Np, J) = (0, 0), while only one
solution B corresponds to any other value of (Np g 0, Jf.

It should be noted that this description is valid for
general one-dimensional systems. For a micronet with t
branches, two parameters (Npy, Ji, ) are associated with
each branch k. Hence the total number of dimensions of
the parameter space of the micronet is 2t. For a given
temperature T and a given Aux 4', only a finite number of
multiplets (Npi, Ji ..., Npg, Ji) will satisfy the boundary
conditions of the micronet (see Sec. V).

In Eq. (1), the kinetic contribution [pp[ can be in-
tegrated by parts over the whole space, leaving in the
integral a term of the form p*(p y). Equation (3) is
then introduced in Eq. (1) and the only term remain-
ing from both the kinetic and the condensation energy is
—(]n[ /2P)N . This shows that this energy contribution
is always negative.

In a bulk sample where y = 1, the critical magnetic
field H, (T) destroys superconductivity. Hence

2P 2
(16)

Extracting the factor [n[ /2P from Eq. (1) reduces the
latter to

gs I

2P
d'3~ N2 + lIld (17)

In the case of a linear singly connected conductor, the
second term of AG can be expressed as

where a is the radius of the wire, I is the inductance of
the circuit, and the prefactor comes from Eq. (4). For a
circular loop of quarter perimeter l,

21 (16l)L= go — ln~ —1.75

As 0 & N & 1 and N is confined to the wire, the integral
of N in Eq. (17) over—the whole space is of order 4lvra2,

while the order of AG s is l(vraz)21n(16l/ma). This es-
timate shows that in the limit a ~ 0, LG~ g decreases to
zero faster than the integral of —N . A straight compu-
tation of the difFerent quantities in LG g, evaluated for
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aluminum, shows that for a & 10 pm and 0 & J & 0.5
(see Sec. V C), the magnetic energy is equal to a small
percentage of the total Gibbs energy at any temperature.

lim ) II, (s) = 0.
k

This last condition is derived in the Appendix.

(23)

V. STUDY OF THE % HEATSTONE BRIDGE A. Determination of the second-order phase
transition

lim Ng(s) = ND,sos~ (2o)

where k specifies the branch in question connected to a
given node D. Since the supercurrent J is conserved a
second boundary condition, which is, in fact, KirchhoK s
law, applies,

) JA,. =0,
A:

(21)

for each node. A third boundary condition concerns the
imaginary part I of the complex current density P de-
fined by

We suppose that the center of the central branch of
the Wheatstone bridge is a center of inversion symme-
try (see Fig. 1). Two parameters describe the geometry,
l and b: The first is the normalized half-length of the
central branch and the second is the ratio of the normal-
ized half-lengths of the lateral branches to the normal-
ized half-length of the central branch. The normalized
curvilinear abscissa is measured from the center of each
branch. Figure 1 shows the case where the loops are
squares of side 2l, that is, b = 3.

For any micronet, the way in which the values of % on
diferent branches match at a node gives a set of equa-
tions which determine the solution for a given tempera-
ture and a fixed magnetic flux. As the junctions are ho-
mogeneous, N cannot exhibit any irregularity at a node.
Hence, a first boundary condition follows:

First we compute the phase transition line of the
Wheatstone bridge in the parameter plane (l, C/@o).
This line was first obtained by Riess, but we recalcu-
late this line which is needed for the subsequent nonlinear
analysis. As the transition is of second order, the order
parameter vanishes at the transition and an expression
for &p can be obtained by neglecting the term lpl2y in the
GL equation (3). This yields the linearized equation

/. 0
l

i +AA,
l

—(pl, —
&pA,. = 0, k = l, d, r,

) (24)

where the subscripts l, d, and r designate, respectively,
the left, central, and right branches and AI, is the com-
ponent of the vector potential parallel to the wire along
the branch. A gauge can be chosen such that AA, is a con-
stant along every branch and zero in the central branch.
Thus

Ay=0 and A„= —Ai. (25)

The solutions of Eq. (24) can be expressed as a linear
combination of the four terms obtained by taking all sign
combinations indicated in exp(i[AI, (+Eq —s) + (Iq + s)])
which takes the value p~ = l&p~le' at node A, where
s = Ig an—d &p~ = lp~le'~ at node B, where s = E~,.
hence, Eq. (20) is automatically satisfied. To take into
account the two other boundary conditions, Eqs. (21)
and (23), the currents in each branch must be computed
first. One obtains

P = V*~V (22) k = t, d, r,

and requires (26)

1
1~(s) = . 2 (I~~I'»n[2(&~ —s)] —

lv al'»n[2(&~+ s)]+ 2ly~llp~l cos(~ —p+ 2Agly) sin(2s)), k = l, d, r,
2 sin (2E~)

(27)

Q —P =0, (28)

where

Q = 2 cot(2bl) + cot(2l),
2 cos(2vr4/4O) 1+

sin(2hl) sin(2l)

which must be evaluated at 8 = —Zy and at 8
Using Eqs. (26) and (27), the set of conditions Eqs. (21)
and (23) reduces to two linear equations for y~ and y~.
These equations have nontrivial solutions if

These solutions are p~ = y~ when Q = P and
—pz when Q = P. If we consid—er Eq. (28)

as an implicit function of I vs 4/C'0, we may represent l

by an even number of curves, corresponding to y~ = p~
and y~ ———y~, which give it as a function of 4/40 of
period unity. For b = 1 there are two curves, as first cal-
culated by Fink. For b = 3 the corresponding six curves
are shown in Fig. 3.

For any flux, the phase transition happens at the small-
est value of l satisfying Eq. (28) (heavy line). It can eas-
ily be seen that when C/Co vanishes, I = 0 is always a
solution of Q = P. This implies that the symmetrical
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a short distance, a strong variation of B(s) [see Eq. (8)]
would mean a large increase in the GL &ee energy. Hence
the term of order 3 of B in Eq. (9) can be neglected. The
equation to be solved becomes

z/3
Z" = 2(2ap'Z+ N. )A, (31)

which gives

Nl1
B(s) = P, sinh'[ap(s —sp)]

2ao

Il= —Np (s —sp) .
2

(32)

0.0
1.0

FIG. 3. First period (i.e., 0 & 4'/Co & 1.0) of the phase
diagram for a Wheatstone bridge with h = 3 (cf. caption of
Fig. 1). These curves are solutions of Eq. (28) which follows
from the linearized GL equation. They show those values of
the normalized length l(T) where, at Sux 4/Co, the sc order
parameter y can vanish and induce a second-order phase tran-
sition. l(T) is related to the temperature by l(T) = l/((T)
where l is the half-length of the central branch and ((T) the
coherence length of the material at temperature T. Co is
the Qux quantum. The curves (a) and (b) correspond to the
p~ ——p~ and y~ ———y~ con6gurations, respectively. For a
given Qux 4 in one of the loops of the Wheatstone bridge, the
sc phase transition occurs at the lowest curve (bold line) of
the diagram. The sc phase exists above this line. ¹ normal
phase.

Ng(l) = N, (hl) = Ni(bl),

Jg+ J„+J) ——0, (34)

and

N„'(l) + N„'(Sl) + N,'(bl) = 0. (35)

The geometry of the Wheatstone bridge suggests some
symmetries for the order parameter.

(1) The squared modulus of the order parameter
reaches an extremum NOI, at the center of each branch,
A: = l, d, r.

(2) The squared modulus of the order parameter obeys
the relationship Ni, (s) = Ni, (—s), k = l, d, r; hence both
nodes are equivalent.

Assuming these symmetries, the boundary conditions,
Eqs. (20), (21), and (23), are

solution y~ ——p~ is realized in zero flux. A change of
the configuration of the order parameter occurs when the
lowest y~ ——y~ curve intersects the lowest y~ ———y~
curve (see Fig. 3), i.e., when Q and P simultaneously van-
ish. Such a change is found for b = 1, 2, 3 showing that,
at the sc transition for 4/Op ——1/2, the configuration
&p~ = —p~ appears. From Eq. (26), it can be seen that
the current Jg in the central branch is zero. Since Ã g 0,
Rom Eq. (7) we see that the gauge-invariant phase Oq of
the order parameter is constant along this branch. This
means that in the case p~ ———y~, N must vanish some-
where along the central branch. The currents flow only
within the lateral branches; hence they are screening cur-
rents. Assuming that y depends smoothly on the tem-
perature and magnetic flux in the vicinity of the phase
transition, this observation serves as a useful guide for
the following investigation of the nonlinear case.

2. Symmetrical 8olution

The symmetrical case occurs when

N„(s) = N~(s), (36)

which yields [see Eqs. (34) and (25)]

J„=—Ji Jg ——0.

Equations (33)—(35) yield the values of Np„, Np&, Np'„
as functions of Nog and imply that Nop is a maximum
when N(s) is convex in the lateral branches. The total
flux 4 associated with these configurations can be com-
puted using the fluxoid quantization, which, with our
normalization, is expressed as

B. Approximate study for 1 —T/T (( 1

Basis of the approsimation
where

ds = 2z.ly,
J(s)
N s (38)

The purpose of this subsection is to evaluate the GL
order parameter y approximately for T T . In the
vicinity of the critical temperature, the coherence length
( tends to infinity; thus l decreases to zero and our ap-
proximation 1 —T/T, « 1 corresponds to l « 1. Over

1( Cly= —
/

n+
epP

J(s) is a constant along a branch, but may vary from
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branch to branch. Following Eqs. (38) and (39), the
phase diagram expressed in terms of C'/4p is periodic
with period 1 and it is symmetric with respect to 4 = 0.
Therefore certain functions, such as the energy or N, are
periodic and symmetric, while others, like the current,
are periodic but antisymmetric with respect to 4/4p.

It follows from the symmetries expressed by Eqs. (36)
and (37) that the computation of the flux can be re-
stricted to one of the loops and the only contribution to
the left-hand side of Eq. (38) is provided by the lateral
branch. Retaining only the term of lowest order in / gives

Jg ——J,
J, = J/2+ J.,

J( = J/2 —J,.

(44)

(45)
(46)

Introduced into Eqs. (33) and (35), these definitions sup-
ply a first relation between the currents,

quantities in Eq. (38) gives the desired relations between
the variables.

Using these results, the general case described by
Eqs. (33)—(35) may now be treated. To allow for the
conservation of the real currents, we set

"x'
Npd ——1—

b(b + 1/2)
(40) (1 + 8/2) J + 2b' J, —(2b + 1)J „=0, (47)

J„=+Jpggl + 1/(2h), (41)

where Jp is defined by Eq. (12). Equations (41) and
(12) yield J„=0 for a vanishing flux or along the phase
transition line and J„reaches its maximum for a flux
4(l(T)) determined by

The phase diagram is constructed using Eq. (40), Npg
being expressed as a function of the flux and of the tem-
perature through y. When the flux is zero, Npg is max-
imal, and when Npg vanishes (i.e. , at the second-order
phase transition), the flux is proportional to l. This is
compatible with the solution rp~ = pter of Eq. (28). The
screening current flowing through the lateral branches is

Np„7rX„= (1 + h/2) J + b J„
N„~x& = —(1+h/2) J + bJ.,

(48)

(49)

and Eq. (43) yields

x. = x +ed J+v.(J.+ J/2),
xi = x- —~d.J+~.(J.—J/2)

(50)
(51)

Expressing y„and y~ in terms of y and Np„gives

gr =pl=pa
b —7 &Np

(52)

where Jp is defined in Eq. (12). Fluxoid quantization
[Eq. (38)] gives a first expression for x„and xi.

h(b + 1/2)
(42)

Hence J = 0 and thus the highly symmetrical case is
reproduced. What has been gained is a relation between
the applied flux 4, which enters via y, and the lateral
branch current density J„= —JE ——J, which can be
useful in experiment:

8. Solutione 1V„(s) g 1V((s) Np„vr

b —p„srNp„'
(53)

Dropping the symmetry condition imposed by Eq. (36)
leads to a magnetostatic problem. If a flux 4 is ap-
plied to a superconductor, a physical current density J"
appears and, according to Lenz's law, induces a magnetic
field which modifies the flux. As the currents are not the
same in both lateral branches, the total fluxes will be
diferent in each loop. Hence, the total flux 4 enclosed
by a current loop is composed of two terms: the applied
flux C and the induced flux. The latter is the sum of
the product of the inductance L with the physical net
current j" = era J" of each branch (indexed by m) of
the loop. With our normalization (see Sec. II), this is
expressed by

x=x.+) ~ J . (43)

Here J is the normalized current density along branch
m, X = l (n + 4 /Cp), and p i = 2mlppA2/(LS),
where A is the penetration depth of the material and S
is the normalized cross section of the wire.

In the asymmetric case, the fluxoid quantization has
to be applied separately in each loop of the micronet and
Eq. (38) has to be satisfied. Identifying the total flux
4 and the current J in Eq. (43) with the corresponding

where Np„ is that solution of

Np„p„7r + N—p„(p, ~ + 2p„vrh) + Np„( 2p 7rh —8 )—
~'x.' = 0 (54)28+ 1

which lies in the interval [0, 1].

C. Exact solution of the nonlinear problem

Vsing the formulas given in Table I for R(s) (see Sec.
III) and choosing one of the configurations p~ = +p~
which appears at the phase transition, Eqs. (20), (21),
and (23), describing the boundary conditions, can be nu-
merically solved for chosen values of b and T.

The boundary conditions specify a solution line in the
three-dimensional space of the parameters {Np, Np&g, J).
For each point of this line, the total flux is deter-
mined by integrating JN over the whole micronet
[cf. Eq. (38)], and the Gibbs energy AG is computed
as the integral of —N2/2 over the whole micronet (see
Sec. IV).

Fink presented the numerical results obtained for the
yin-yang geometry (8 = 1) for a single temperature corre-
sponding to l (T) = 0.71. [With his parameter choice, this
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FIG. 4. Normalized current J and Gibbs energy AG in
terms of the total flux C /C 0 for the /I = 3 Wheatstone bridge
(cf. Fig. 1) at a temperature T(l = 0.3). The unit of AG is
~n(T(l = 0.3)) ~

/P. Only the first period of the phase diagram
is shown (cf. Fig. 3). Only the tp~ = rp~ configuration occurs.
Notice that in a region centered at 4/C'o = 1/2 the normal
phase is the energetically most favorable one.

-6.0

-7.0
I

I

0.0
~ I

0.5
~'~~'p

1.0

FIG. 6. The same as in Fig. 5, for T(l = 1.0).

0.5

0.0

-0.5
0.0

(b)

-1.0

corresponds, in Fink's notation, to R(T) = 2/(T)/vr =
0.45.] We show graphs for the double-square b = 3 ge-
ometry at three different l(T), i.e. , three difFerent temper-
atures: in Fig. 4 for l(T) = 0.3, in Fig. 5 for /(T) = 0.5,
and in Fig. 6 for l(T) = 1.0.

At l(T) = 0.3, only the configuration &p~ = &p~ ap-
pears. As can be seen from Fig. 3, for this value of /(T)
the system is normal for fluxes such that 0.31 & 4'/Cio &
0.69. This is con6rmed in Fig. 4 by the vanishing of LG
and J in that region.

For both l(T) = 0.5 and l(T) = 1.0 (Figs. 5 and 6),
the b = 3 Wheatstone bridge remains superconducting
for any value of the flux. Besides the p~ ——y~ config-
uration, the y~ ———y~ configuration also appears for a
certain range of the flux. The Gibbs energy LG of this
configuration is minimal for 4/4o ——n + 1/2 and maxi-
mal for 4/4o ——n, which is the opposite of the behavior
of AG for &p~ = p~. For 4/Cio ——n/2 (n integer), J = 0,
and at this value of the flux, the direction of the current
reverses.

Vr'hen, at the same applied flux 4, the curves of AG vs
4 of both configurations intersect, a transition occurs.
In the limit where the inductance I of the micronet tends
to zero, the total flux reduces to the applied flux and
the Figs. 5 and 6 can be directly exploited to determine
which configuration has the lowest energy for any flux.
At the flux at which the change of configuration takes
place, there is a discontinuity in the slope of AG and
neither N nor the screening current is continuous. Thus
the transition is of first order.

-3.0

-4.0
0.0

I I

0.5
@/@p

1.0

FIG. 5. Normalized currents J and Gibbs energies AG in
terms of the total fiux C'/C 0 for the h = 3 Wheatstone bridge
(cf. Fig. 1) at a temperature T(l = 0.5). The unit of AG
is ~ntT(/ = 0.5)]~ /P. Only the first period of the phase dia-
gram is shown (cf. Fig. 3). Curves (a) and (b) refer to the
yz ——y& and yz ———p& configurations, respectively. In
the limit where the self-inductance of the circuit L ~ 0 and
at the Qux where the two AG curves intersect, a erst-order
transition occurs between the two configurations (a) and (b)
and the current suddenly changes sign and amplitude. The
dashed line represents the states of higher free energy.

VI. CONCLUSIONS

First we have computed the sc-normal second-order
phase transition line T, (4') of the Wheatstone bridge
(Fig. 1) which in the phase diagram (/(T), 4/4o) is pe-
riodic in 4'/Oo of period 1. [/(T) is defined as the ratio
of the half length of the central branch / to the coherence
length of the bulk material ((T).] This transition line
is obtained analytically in the first period of the phase
diagram &om the linearized GL equation for any value
of the ratio b of the lengths of the lateral branches to
that of the central branch (cf. Sec. VA and Fig. 3 for
/I = 3). This calculation determines the region of the
(/(T), 4/4o) phase diagram where superconductivity ex-
ists and shows that only two types of configuration of the
order parameter are possible at this transition:
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(1) p~ = y~ characterized by a maximum of the
squared modulus of the sc order parameter at the center
of the central branch, while the squared moduli of the
order parameters in the lateral branches are equal and
convex functions of the distance from a node. For any
value of 8, this is realized for fluxes e'/@o ——n, where n
is an integer.

(2) rp~ = —p~ characterized by equal and concave
squared moduli of the order parameters in the lateral
branches. The squared modulus of the order parameter
at the center of the central branch vanishes, while the
phase of the order parameter shifts by vr at this point. In
the cases where the ratio of the lengths of a lateral to the
central branch is b = 1, 2, 3, this configuration is realized
for fluxes C'/C'o ——n+ 1/2, where n is an integer.

In the central branch, and for both configurations, the
phase of the order paraineter is constant (except for the
unconsequential phase shift in the y~ ———p~ configura-
tion), and the electromagnetic vector potential vanishes.
This implies that only screening currents can appear at
the second-order phase transition; i.e. , the current in the
central branch is zero.

For 1 —T/T, « 1, our approximate analytical study
(Sec. VB) has shown that only the p~ = y~ configura-
tion exists in the sc phase corresponding to small fluxes.

In Sec. VC, the analytical solution of the nonlinear
GL equation has been numerically adjusted to fit the
boundary conditions of a particular Wheatstone bridge
with b = 3. We have restricted our investigation to
the p~ = p~ and p~ ———p~ configurations and have
obtained graphs for the normalized currents J and the
Gibbs energy AG in terms of the total flux for l(T) = 0.3,
l(T) = 0.5, and t(T) = 1.0 (Figs. 4, 5, and 6).

For t(T) = 0.3 (Fig. 4), the normal state subsists for
fluxes in the interval 0.31 & 4/@o & 0.69 and only the

p~ conflguration appears. For t(T) = 0.5 and
l(T) = 1.0 the system remains superconducting whatever
the flux. For these values ofl(T), both p~ = kg~ confi-
guration appear, and in the limit where the inductance L
of the micronet tends to zero (i.e., the total flux reduces
to the applied lux and the magnetic energy of the net is
zero), the figures show that the curves of the Gibbs en-
ergy vs flux of both configurations intersect. This means
that at this flux, a transition occurs between the two
configurations. Since the order parameter and the super-
current are discontinuous functions at this value of the
flux, the transition is of first order.

In the case 4/4o ——n/2, with n an integer, J = 0 and
no magnetic energy contributes to LG. For these fluxes,
the values of LG presented in the figures are exact for
any diameter of the wires. When J g 0, the magnetic
energy should be included for finite diameter wires. For
the experimental values of the diameter given at the end
of Sec. IV, the magnetic energy is equal to a small per-
centage of the total Gibbs energy.

We have shown (see, e.g. , Figs. 3, 5, and 6) that, even
though the temperature is diR'erent, the sequence of con-
figurations of the order parameter as a function of the Aux
found at the sc second-order phase transition remains the
same. These results for a b = 3 Wheatstone bridge are
in good agreement with the theoretical findings of Fink
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APPENDIX: BOUNDARY CONDITIONS

The third boundary condition introduced in Sec. V
concerns the imaginary part I of the complex current
density P defined by

P = @*pe = J+iI. (Al)

Using the three-dimensional version of Eq. (3),

S'V = (1 —~)V»

it follows from Eq. (Al) that

(A2)

V P = i(—~j(p~ + X —X ) =i% . I. (A3)

On the other hand, taking the divergence of Eq. (Al),
and noting that there is no normal current in the net,
and we deal with a static system, the divergence of J
vanishes. This confirms in another way the absence of a
real part in the expression (A3).

Gauss's theorem applied to V' P on a macroscopic
node (cf. Fig. 7) gives

V' Pd x =i I - do. ,~

~

V S
(A4)

I

I

1

I

I

FIG. 7. Schematic diagram of a truncated macroscopic
node.

for the case b = 1.
The above results lend trustworthiness to the linear

approach. As we have seen, no qualitatively significant
modifications are brought about by the nonlinear devel-
opment. This is an important point since, at present,
interest is directed toward diferent other geometries of
sc micronets such as periodic structures. ' Experimen-
tal techniques like decoration, developed to study the
physical properties of micronets, may provide tests of the
theory.

Of special interest would be an experimental test of the
discontinuous change of the direction of the supercurrent
as a function of the Aux, as predicted in Sec. V C.
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where V is the volume of the body obtained by truncating
all wires at a distance x from the node which is inside V,
and S is the surface enclosing V.

When the length x of the branches diminishes, V + 0,
and if we assume that V' P has no singularity, the in-
tegral over the volume vanishes. The only contributions
to the surface integral come from the sections Sk. As-

lirn ) Iy, (s) = 0,
k

(A5)

which is the third boundary condition.

suming that the imaginary current densities Ik are one
dimensional, we obtain
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