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Self-consistent microscopic theory of surface superconductivity
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The electronic structure of the superconducting surface sheath in a type-II superconductor in

magnetic fields H,z( H( 0 3 is calculated self-consistently using the Bogoliubov —de Gennes equa-
tions. We find that the pair potential A(x) exhibits pronounced Friedel oscillations near the surface,
in marked contrast with the results of Ginzburg-Landau theory. The local density of states near the
surface shows a significant depletion near the Fermi energy due to the development of local supercon-
ducting order. We suggest that this structure could be unveiled by scanning-tunneling-microscopy
studies performed near the edge of a superconducting sample.

The study of surface superconductivity was initiated
some thirty years ago by the seminal work of Saint-
James and de Gennes, who predicted that a magnetic
Geld parallel to a superconductor-vacuum interface would
nucleate a superconducting "surface sheath" before the
onset of superconductivity in the bulk of the material.
By solving the linearized Ginzburg-Landau (GL) equa-
tions subject to the boundary condition that the nor-
mal derivative of the order parameter vanishes at the
interface, they found an approximately Gaussian order
parameter profile localized within a coherence length (
of the interface; the critical Geld for this surface super-
conductivity is H 3

——1.69H,2, where H ~ is the bulk
critical Geld for the Abrikosov Aux-lattice phase. This
phenomenon has been confirmed by measurements which
observe a vanishing surface resistance at Gelds above II,2

(for a review of the early experiments, see Refs. 2 and
3). Due to the presence of the superconducting nucleus
there is also a depletion of states near the Fermi energy,
which is reHected in a suppression of the tunneling con-
ductivity at low bias, an effect which has been observed
in certain Pb-Bi and Sn-In alloys.

While the theory of surface superconductivity is quite
complete within the framework of GL theory, there re-
main several interesting unanswered questions and prob-
lems which can only be addressed within a microscopic
theory. (1) In a microscopic theory the natural bound-
ary condition for the quasiparticle wave functions is that
they vanish at the superconductor-vacuum interface, so
that superconducting pair potential also vanishes at the
interface. If we naively apply this microscopic boundary
condition to the macroscopic GL equations, and solve the
linearized GL equations subject to the boundary condi-
tion that the order parameter vanishes at the interface
(rather than its derivative) we find H, s ——H 2, i.e., there
is no surface superconductivity. However, we cannot go
back and infer that the microscopic equations do not
possess surface superconducting solutions; by the same
token, it cannot be taken for granted that the surface-
superconducting solutions of GL theory (with the zero
derivative boundary condition) prove the existence of
surface-superconducting solutions of the microscopic the-
ory. The two approaches, valid at different length scales,

utilize different boundary conditions, and it is generally
diKcult to connect the two. Whether surface supercon-
ductivity exists within a realistic microscopic model of
superconductors remains an open question. (2) The GL
equations are derived using the quasiclassical phase ap-
proximation, which neglects the effects of Landau-level
quantization of the electronic states, and is valid in low
fields. In very high magnetic fields the Landau-level
quantization can become important. Recent theoretical
work has predicted de Haas —van Alphen oscillations in
H, 2(T), as well as possible reentrant superconductivity
in very high magnetic Gelds. Might there be reentrant
surface superconductivity which precedes the reentrant
bulk superconductivity? Again, the answer would require
a microscopic calculation which does not invoke the qua-
siclassical phase approximation. (3) On a parallel note,
Landau-level quantization in the presence of a surface
produces magnetic edge states, which have been the sub-
ject of intensive study in the context of the integer and
fractional quantum Hall effects. Understanding the role
that edge states play in surface superconductivity may
help us in answering the basic question: Why is super-
conductivity favored at a surface'? (4) In the mixed state
of type-II superconductors the spatial variation of the
pair potential can produce a rich structure in the local
density of states (LDOS), ' which can be measured di-
rectly using a scanning-tunneling microscope (STM).io
Analogous structure in the LDOS will be produced by
the superconducting surface sheath, which should be ob-
servable using a STM. Such STM studies would provide
the first direct image of the surface sheath, and provide
valuable information about the pair potential proGle and
local electronic structure; all of the previous experimental
studies have only explored averaged properties, such as
the pair potential averaged over the sample. We note
that previous attempts at a microscopic theory of surface
superconductivity have been conGned to analytical
or numerical solutions of the linearized gap equation.
All of these works invoke the quasiclassical phase approx-
imation, and make approximations which are equivalent
to assuming that the derivative of the pair potential van-
ishes at the surface; they therefore do not address the
issues which we have raised above. There have been no
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I. THE BOGOLIUBOV —de GENNES EQUATIONS

The BdG equations2 for the quasiparticle amplitudes
u;(r) and v;(r) with. excitation energy e; ) 0 (measured
relative to the Fermi energy) are

'R. A(r) & /' u;(r) l /' u, (r) )~

(A*(r) -'R,* ) ( v;(r) )
'

( v;(r) ) '

with b, (r) is the pair potential. The single-particle elec-
tron Hamiltonian is

1 . e—iM7 ——A(r) + V(r) —E~,2m* C
(2)

calculations of the LDOS.
In this paper we will discuss our first attempts

at addressing some of the questions raised above
by numerically solving the microscopic Bogoliubov —de
Gennes (Bdc) equations self-consistently, in a mag-
netic field with realistic boundary conditions at the
superconductor-vacuum interface. We retain fully the
Landau-level (and edge-state) structure. To make the
calculations computationally tractable we assume a two-
dimensional geometry, which is also a good approxima-
tion for many layered superconductors (see below). Our
results show that the microscopic BdG equations do in-
deed admit a superconducting solution localized near the
surface, for fields H & H, 2. The pair potential van-
ishes at the surface, but rises rapidly and eventually looks
like the GL solution; there is a narrow "boundary layer"
near the surface in which the GL solutions break down.
However, unlike the GL solution we find large-amplitude
Friedel-like oscillations in the pair potential. Our LDOS
calculations show a suppression at low energies in the re-
gions where the pair potential is a maximum; it should
be possible to resolve this structure in a STM measure-
ment. The remainder of this paper is organized as fol-
lows: Following a brief review of the BdG formalism, we
will discuss our numerical methods. We will then present
our results for the self-consistent pair potential and the
LDOS, for a particular choice of parameters. Further
details of these calculations will appear in Ref. 15.

states,

with f'(e) = 8f/Be T. his quantity is proportional to
the local difFerential tunneling conductance which is mea-
sured in a STM experiment.

We now take the magnetic field H = Hz to be parallel
to the vacuum-superconductor interface at x = 0, with
the superconductor occupying the half-space x ) 0. As
we will eventually be interested in modeling quasi-two-
dimensional materials, we will neglect dispersion in the z
direction. Assuming the interface to be perfectly impen-
etrable, we have u(z = 0) = v(x = 0) = 0 [and therefore
A(z = 0) = 0]. In the Landau gauge A = (0, Hx, 0)
the BdG equations are translationally invariant in the y
direction, and so we factor out this dependence as

i2Ãoy/l

Here l = hc/eH is the magnetic length, Xo is the or-
bit center for the pair potential, —oo ( xo & oo is the
orbit center for u (—xs is the orbit center for v), and
n = 0, 1, 2, . . . is a Landau-level index which counts the
number of nodes of the wave functions; the sums in Eqs.
(3) and (4) are over all (zo, n). We are left with a set
of coupled one-dimensional equations for u, „(x) and
v, „(x).Because of our boundary condition at x = 0 the
corresponding eigenvalues e (xo, Ao) will depend upon
the positions of the orbit centers, unlike the bulk case
in which the energies are degenerate with respect to xo.
The efFort involved in solving these equations can be sub-
stantially reduced by finding both positive and negative
energy solutions for xo & 0 and. taking advantage of the
transformation e -+ —e, u(r) -+ v*(r), v(r) + —u'(r)
to convert the negative energy solutions for xo & 0 into
positive energy solutions for xo ( 0.

where E~ is the Fermi energy, V(r) is the surface poten-
tial, and A(r) is the vector potential (we do not consider
any effects of spin). Any effects of the band structure
of the material are subsumed into the efFective mass m*.
The pair potential must be determined self-consistently
&om the solutions of the BdG equations as

A(r) = g ) v,'. (r)u, (r) [1 —2 f(e;)],

where g is the BCS attractive coupling, cuD is the Debye
frequency, and f(e) is the Fermi function. The vector
potential must also be determined self-consistently using
Amperes law with the current density determined by the
quasiparticle wave functions. ' Once the quasiparticle
wave functions have been computed self-consistently, we
can calculate the thermally broadened local density of

II. METHOD OF SOLUTION

The BdG equations are solved iteratively, as follows.
We start with an initial guess for the amplitude and the
phase of the pair potential, taken from GL theory, for in-
stance. We then fix the orbit center xo and calculate the
wave functions and energies in the range 0 & e & Leo,
by writing the BdG equations as a set of finite-difference
equations. The lattice spacing is determined so that vari-
ations on the scale of 7r/k~ can be resolved. The result-
ing matrix equations are sparse, and can be diagonalized
using standard packages (we use LapAGK). This pro-
cess is then repeated for new values of xo. The range
of values of xo is determined so that the highest energy
states (of energy hen~) are approaching their bulk be-
havior, i.e., becoming independent of xo, which occurs
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at xp = I[2(Ey + fur~)/fuu, ] /2, with Ru, = heH/m*c
the cyclotron energy. The spacing between these points
is again determined by requiring that structure on the
scale of 7r/k~ can be resolved. Once all of the wave func-
tions have been determined, the amplitude of the pair
potential is recalculated from Eq. (3) by summing over
xo and n. The phase of the pair potential is also re-
calculated by using the self-consistency condition for the
vector potential. ' The entire process is then repeated
until the relative error in the order parameter between
successive iterations is less than 0.02.

Several cases were tested to determine the reliability
of the algorithm. When A(r) = 0 we have reproduced
the wave functions and spectrum for electrons in a con-
stant magnetic field in the presence of an impenetrable
surface. ~ The eigenvalues for states with orbit centers at
the surface (xp ——0, Xp = 0) were within 1%% of those
found analytically; for x0 large the usual bulk Landau
levels were obtained. We have also used several difI'erent
initial guesses for the pair potential, including the GL
form and a constant pair potential. The final results are
insensitive to the form of the initial pair potential, but
convergence is expectedly slower for the constant pair po-
tential. In the results shown here we have used a Gaus-
sian profile centered near the surface x = 0 for the initial
pair potential amplitude, and we have used for our initial
X0 the value obtained in GL theory.
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The range of x0 is not limited to lie within the sample; in-
deed, the states with xo ( 0 are precisely the edge states.
We use 800 orbit centers ranging from x0 ———35l to 351,
which ensures that all of the states in question have at-
tained their bulk values. Convergence was reached after
five iterations, requiring 10 h on an IBM RS 6000/370
workstation.

FIG. 1. The pair potential amplitude calculated from the
BdG equations, compared with the Gi result (Ref. 18), at
H/H, 2(T) = 1.83 and T/T, = 0.28. The BdG solution van-
ishes at the surface and exhibits strong Friedel oscillations as
a result of the impenetrable wall at x = 0.

III. R,ESULTS IV. DISCUSSION

We have chosen to model a layered (i.e., two-
dimensional) material whose parameters obey the weak-
coupling BCS relations. We took the Fermi surface to be
cylindrical with m* „&( m* and m* „=2m, where
m is the electron mass. Assuming the zero tempera-
ture gap A(0) = 1.1 meV and the zero temperature co-
herence length ((0) = 100 A. yields a Fermi velocity of
v~ = mE(0)((0)/ti = 5.27 x 10 cm/s, k+ ——11.0 A. , and
Ep = 15.8 meV. With ~rp = 15 meV and gX(0) = 0.30,
the zero field critical temperature is T = 7.25 K, and the
zero temperature quasiclassical critical field is H, (0z) =
0.722 go/2m( (0) = 2.38 T. These parameters are sim-
ilar to those used by Gygi and Schluter in their study of
the core structure of vortices in NbSe2, which showed
good agreement with STM measurements. Our Fermi
energy is probably unrealistically low; it was chosen to
make our computations tractable, and thus represents
a compromise between numerical eKciency and realistic
modeling. We do not expect any qualitative changes in
our results for larger values of E~.

We have chosen to present results for a temperature
of 2 K (T/T, = 0.28), and a magnetic field of 4 T
[H/H, 2(T) = 1.83], so that I = 128 A. and hu,
0.23 meV. With the parameters given above this means
that we must keep a total of 134 bulk Landau levels. Us-
ing the criteria stated above, we need 350 lattice points in
a sample 30l wide. A second impenetrable wall is placed
at x = 301 to aid in normalization, but we ignore any nu-
cleation at that surface. The finite difFerence version of
the BdG equations is then a 700 x 700 matrix equation.
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FIG. 2. Thermally averaged local density of states as a
function of position (normalized to the normal local density
of states), at H/H 2(T) = 1.83 and T/T, = 0.28. For E = 0
the electron states have been pushed away from the material
surface by the nucleation of the pair potential. At higher en-
ergies (E = 1.1 meV) the efFect becomes smaller, and vanishes
altogether at very high energies.

Our result for the amplitude of the self-consistent pair
potential is given in Fig. 1; this result is plotted against
the GL theory result, taken from Ref. 18. The pair po-
tential does indeed vanish at the material surface and
exhibits large Priedel oscillations away from the surface,
with a period which is approximately vr/k~ ——34 A. Such
oscillations of the pair potential near a surface also oc-
cur in zero field, ' and in the vicinity of a magnetic
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FIG. 3. Thermally averaged local density of states as a
function of energy (normalized to the normal local density of
states), at H/H, 2(T) = 1.83 and T/T, = 0.28. Close to the
surface (x = 0.1, 0.5) there is a significant depletion in the
LDOS at low energies, as well as an enhancement at energies
above the bulk gap of A(0) = 1.1 meV. When x = 1.5 the
LDOS approaches its bulk normal-state value.

FIG. 4. Schematic diagram for the proposed STM mea-
surement of the local density of states. The magnetic 6eld
is parallel to the edge of the sample; the pair potential will
vary spatially in the x direction, with a maximum at about
a coherence length from the surface. The STM tip would be
swept across the top of the sample, and measure the local
density of states N(E, x), which will exhibit a depletion at
low energies in regions where the pair potential is the largest.

impurity, and are the result of pair-breaking by the
surface and impurity. The self-consistent orbit center
for the pair potential is Xo ——0.191, which is close to
the position of the first maximum of the amplitude of
the pair potential. The existence of a surface sheath at
these relatively high magnetic fields is not inconsistent
with variational calculations at T = 0, ' which give
H, s(0) & 1.95H,z(0). We have repeated our calculations
at a field of 4.5 T, and find that the maximum amplitude
of the pair potential is decreased. Likewise, increasing
the temperature results in a smaller amplitude. We have
not been able to pin down H,s(T) using our method,
as achieving self-consistency becomes delicate when the
pair potential is small. The phase boundary is best de-
termined by direct numerical solution of the linearized
gap equation, which will also enable us to attack the
question of reentrant behavior in H,3.

The resulting change in the electronic structure can be
seen in the thermally broadened local density of states,
N(x, E), which we have plotted at constant energy, Fig.
2, and constant position, Fig. 3. In Fig. 2 me see that
at low energies the wave functions have a reduced ampli-
tude in the vicinity of the maximum of the pair poten-
tial. Due to the presence of local superconducting order,

in Fig. 3 we see that close to the surface there is a sup-
pression in the density of states at low energies, with a
corresponding enhancement at energies above the bulk
gap. Farther from the surface we obtain the bulk normal
density of states. We expect that this structure could be
resolved by a STM measurement which would scan from
the interior of a sample to a surface parallel to the applied
magnetic field; we have illustrated this schematically in
Fig. 4. Such a measurement would provide the first di-
rect observation of the superconducting surface sheath.

ACKNOWLEDGMENTS

We would like to thank Dr. S. Girvin, Dr. A. Mac-
Donald, Dr. C.-Y. Mou, and Dr. J. D. Shore for useful
discussions, and Dr. W. Pesch for bringing Ref. 14 to our
attention. This work was supported by NSF Grant No.
DMR 92-23586 and Jefr'ress Trust Grant J-289. A.T.D.
gratefully acknowledges the Alfred P. Sloan Foundation
for financial support.

' Present address: St. Anne's Belfield School, 2132 Ivy Road,
Charlottesville, VA 22901
D. Saint-James and P. G. de Gennes, Phys. Lett. 7, 306
(1963).
P. G. de Gennes, Superconductivity of Metals and Alloys
(Addison-Wesley, New York, 1966).
D. Saint-James, G. Sarma, and E. J. Thomas, Type II Su-
perconductivity (Pergamon, New Y'ork, 1969).
W. J. Tomasch, Phys. Lett. 9, 104 (1964); E. Guyon et al. ,

Phys. Rev. 138, A746 (1965).
Recent microscopic calculations for superconductivity at

surfaces in zero magnetic 6eld indicate serious discrepan-
cies with GL theory for short coherence length supercon-
ductors; see B. P. Stojkovic and O. T. Valls, Phys. Rev. B
47, 5922 (1993).
For a review, see M. Rasolt and Z. Tesanovic, Rev. Mod.
Phys. 64, 709 (1992).
See, for instance, Quantum Hall Egect, edited by M. Stone,
(World Scientific, Singapore, 1992).
J. D. Shore et aL, Phys. Rev. Lett. 62, 3089 (1989).
F. Gygi and M. Schliiter, Phys. Rev. B 41, 822 (1990);
Phys. Rev. Lett. 65, 1820 (1990); Phys. Rev. B 43, 7609



11 732 ROBERT J. TROY AND ALAN T. DORSEY

(1991).
H. F. Hess et a/. , Phys. Rev. Lett. 62, 214 (1989); Phys.
Rev. Lett. 64, 2711 (1990); Ch. Renner et al. , Phys. Rev.
Lett. 67, 1650 (1991); A. A. Golubov and U. Hartmann,
Phys. Rev. Lett. 72, 3602 (1994).
A. A. Abrikosov, Sov. Phys. JETP 20, 480 (1965).
I. O. Kulik, Sov. Phys. JETP 28, 461 (1969).
C.-R. Hu and V. Korenman, Phys. Rev. 178, 684 (1969);
185, 672 (1969).
P. Scotto and W. Pesch, J. Low Temp. Phys. 84, 301
(1992).
R. J. Troy, Ph.D. Thesis, University of Virginia, 1995.

When A = 0 the energies are determined as the zeros of
parabolic cylinder functions; see, for instance, A. H. Mac-
Donald and P. Streda, Phys. Rev. B 29, 1616 (1984).
This is the value obtained in the quasiclassical phase ap-
proximation, which can be obtained by suitably generaliz-
ing to two dimensions the results of E. Helfand and N. R.
Werthamer, Phys. Rev. 147, 288 (1966).
H. J. Fink and R. D. Kessinger, Phys. Rev. 140, A1937
(1965).
R. Kiimmel, Phys. Rev. B 6, 2617 (1972).
C.-Y. Mou and A. T. Dorsey (unpublished).


