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A numerical approach to disordered two-dimensional superconductors described by BCS mean-
field theory is outlined. The energy gap and the superBuid density at zero temperature and the
quasiparticle density of states are studied. The method involves approximate self-consistent solutions
of the Bogolubov —de Gennes equations on finite square lattices. Where comparison is possible,
the results of standard analytic approaches to this problem are reproduced. Detailed modeling of
impurity efFects is practical using this approach. The range of the impurity potential is shown to be
of quantitative importance in the case of strong potential scatterers. We discuss the implications
for experiments, such as the rapid suppression of superconductivity by Zn doping in copper oxide
sup erconductors.

I. INTRODUCTION

It is well established that chemical substitutions on
copper oxide superconductors can qualitatively alter the
properties of these materials in both their normal and su-
perconducting states. In the normal state, impurity sub-
stitution can be used to test models of electronic trans-
port. In the superconducting state, impurity scattering
effects are sensitive to order parameter symmetry as well
as other properties. It is well known that nonmagnetic
impurities are pair breakers in d-wave or other nontrivial
pairing states with nodes of the energy gap on the Fermi
surface. They produce a finite lifetime of the quasiparti-
cles around the gap nodes and a finite density of states
at low energy.

In order to parametrize impurity scattering, a phys-
ical picture for the normal state, the superconducting
state, and the impurity is required. In this paper we are
motivated by Zn-doping experiments in cuprates which
we assume can be treated as a pure potential scatterer
of fermions which obey Luttinger's theorem. Since d or-
bitals of Zn + are fully occupied, it is naively expected to
behave as a nonmagnetic impurity. However, electronic
correlations may modify this picture somewhat. Nu-
clear magnetic resonance measurements by Mahajan and
co-workers show that the copper spin correlations are
severely modified on neighboring Cu sites, which could
in principle give rise to efFects analogous to the spin-Qip
scattering process of conventional magnetic impurities.
As discussed recently by Borkowski and Hirschfeld, the
unknown relative strength of spin-Hip and impurity scat-
tering rates in Zn-doped systems poses an obstacle to the
quantitative analysis of experiments involving Zn even
within the conventional BCS formalism.

Even if spin-Hip scattering is negligible, the modifi-
cation of copper spin correlations in the vicinity of an
impurity site has the effect of increasing the range of
an effective scattering potential. Information about the
efFective potential in YBa2(Cui Zn )sOe s can be ob-
tained from the residual sheet resistance estimated by

extrapolation from the normal state. The residual resis-
tance from two-dimensional potential scattering is given
by the approximate expression

1 h,
Ap = —x—

2 ) sin (b~ —b~+i).

b~ are the phase shifts which are constrained to satisfy
the Friedel sum rule AZ = —Pt b't. AZ is the dif-
ference in the number of conduction electrons in the sys-
tem without impurities and with one impurity. If we as-
sume Zn removes one electron &om the conduction band
(i.e. , AZ = —I) and the effective potential is an iinpen-
etrable disk of radius a, we estimate that the residual
sheet resistance is 0.12 kO for x = 0.01 in the 1 = 0
dominant scattering channel (a 0.54/kt), which is a
factor of 3 smaller than the experimental value 0.34 kO.
This discrepancy may indicate appreciable phase shifts
in one or more higher angular momentum channels. In
fact the l = 2 "near-resonant channel, " which requires a
larger radius of the scattering potential (a 2.8/ky),
yields = 0.36 kO for x = 0.01. Recently, Poilblanc,
Scalapino, and Hanke have investigated the effects of
nonmagnetic impurities in antiferromagnetically corre-
lated systems. They find that the scatterings in / & 2
channels are strong in that system.

The above discussion suggests that detailed structure
of the impurity potential is important in making a quan-
titative study of Zn-doped materials. As seen below, lat-
tice effects may also be of quantitative importance for
short-coherence-length superconductors. Recently, in a
brief report, we presented a numerical study of the dis-
order effect in two-dimensional superconductors of var-
ious pairing symmetries in the limit of strong impurity
potentials. We demonstrated that a short- but finite-
range potential has a much stronger effect than an on-site
("b-function" ) potential. In fact the finite range of the
potential may be the primary reason for the rapid sup-
pression of pairing correlations with impurity concentra-
tion in YBa(Cu, Zn)O. The importance of finite potential

0163-1829/95/51{17)/11721{7)/$06.00 11 721 1995 The American Physical Society



11 722 T. XIANG AND J. M. WHEATLEY 51

range has been pointed out recently by Balatsky et al.
in connection with the nonuniversal behavior of the low-
frequency conductance in d-wave superconductors.

In this paper we present a more detailed study of the
disorder eKect in two-dimensional superconductors. The
model used here is a lattice BCS mean-Beld Hamiltonian
with disorder defined by

II[6„]= t Q— ct c, +) (b., cttct+ ~+H.c.)
(rr') cr r~

+) ) V„. , —p ct c, , (2)
)

where (rr') denotes nearest neighbors and p, is the chemi-
cal potential. V, , is a scattering potential of an impurity
at r;. Lacking detailed knowledge of the scattering po-
tential in high-T cuprates, we assume a model potential
form for it: V, , =Vo8.. .+ Vj(b.. .~~+A, , ~g). When
Vi ——0, it is a b-function potential; otherwise, it is finite
ranged. L, is the superconducting gap parameter. For
a given filling factor of electrons n„L, and p should be
determined self-consistently from the relations

= J(c,gc,+~))~, ,

1
A& = —

C&~Crier Ar~ (4)

where J is the coupling constant (assumed disorder in-
dependent), N is the system size, and (A)~, means the
average of A in the ground state of II[A, ]. Without
disorder 4, is independent of r and has a particular
symmetry with respect to w. In this paper only the on-
site s-wave pairing state 4, = Lb o and the d-wave
pairing state K, = E(8 ~- —b ~y) in two dimensions
will be considered.

The Hamiltonian (2) is bilinear in fermion operators
and can be diagonalized by solving a one-particle prob-
lem. 4, and p should be determined self-consistently
from Eqs. (3) and (4), which amount to solving the
Bogolubov —de Gennes equations for the disordered su-
perconductor. For simplicity in calculation, we perform a
particle-hole transformation for the down-spin electrons,
i.e. , c,~ ', ', c,&, and reexpress (2) as

H'[A, ] = t ) (c,~—c, g
—c,~c, g) + ) (A, c,~c,+ g+ H.c.)

(rr') I'T

+ ) ) Vr, ,r p (czgcrg czgcrg) + const.

H' has the usual tight-binding model form, but the hop-
ping constant, the chemical potential, and the impurity
potential have opposite signs for the up-spin electrons
and the down-spin electrons. In the remainder of the
paper we set the hopping constant t = 1.

In Sec. II, the numerical method and essential approxi-
mation are outlined. Results for the disorder dependence
of the zero-temperature gap and superQuid density p, as
well as the quasiparticle density of states p are presented.
In Sec. III, a concluding remark is given.

II. NUMERICAL METHOD AND RESULTS

A. Cap parameter and superHuid density

In the presence of disorder, the energy gap is space
dependent. We determine A by iteratively solving H'
with the self-consistent conditions. We start from an ini-
tial gap function 4, with a certain pairing symmetry.
After diagonalizing H', we find a new gap function L~
from the self-consistent equations and then use it as input
to repeat the above process until the self-consistent con-
ditions are satisfied. This is a strict self-consistent itera-
tive process. However, since the gap function at every site
needs be adjusted to satisfy the self-consistent equations,
this is excessively time consuming when an average over
a large number of impurity configurations is required.
We shall, however, perform this strict self-consistent it-

eration procedure only for studying the properties of a
single-impurity system and for checking the accuracy of
the approximation used in many-impurity cases.

As mentioned above, to solve the self-consistent equa-
tions, the Hamiltonian needs be exactly diagonalized.
This can be done, however, only on small lattices in the
presence of disorder. For a superconductor, a characteris-
tic length scale is the superconducting correlation length

hv~/7rA. If ( is larger than the dimension of the sys-
tem, the finite-size efFect is large and the analysis of the
disorder efFect may be subtle. To avoid this situation, we
shall limit our calculations only to cases where ( is much
smaller than the dimension of the system.

The existence of a finite superHuid density p, is a defin-
ing property of superconductors. Experimentally p, is
determined from the microwave measurement of the pen-
etration depth. p, on a finite lattice can be evaluated di-
rectly from the current-current correlation function, us-
ing the eigenfunctions obtained from the iteration proce-
dure described above,

—'=(—K) —A (q =p, q„-+p, (u=p),

where (A) = Tr(Ae P )/Tre ~~, (K ) is the kinetic
energy along the x direction, and
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1 A„, „,(—q)A„, „,(q)(( t
A1 ~1V ~+ih+ E„, —E„,

7l 1 +7l2

—(c„,c„,)),
the quasiparticle operator andwith c„=~, ~„&r, o-&~c,~

A„(g) = ) e'~'[P„(r+ xo-)P (ro)
re
P„(r—o)P (r + xo-)].

Before studying disordered systems, we consider a one-
im urity sys em. e rt W first consider the change of the gap
function induced by an impurity. g

p
. Fi ure 1 shows the self-

consistent energy gap for an 8-wave supercon uct-
in state with one impurity on a 21 x 21 lattice. Since
the scattering potential is short ranged, g pd the a function
changes only in the vicinity of the impurity. Far away
from the impuri y, , at 4 approaches to the value of t e
energy gap wi ou ith t disorder. In a region with a engt

~ ~

scale of the range of scattering potential around t e im-
't, L l gely reduced due to the strong sup-

~ ~

pression of the probability of an electron hopping to t is
b the impurity scattering. Beyond t is region,

comparable with the superconducting correlation lengt

This oscillation is due to the interplay between the im-

purity scattering an d the superconducting correlations.

It is relatively strong along the diagonal direction. ong
other ciirections, i is oci' t, 't ' too weak to be resolved rom the
fi ure For the d-wave state, similar results have een
found. But the oscillation of L,~ along two axes seems
more apparent in this case.

ing correlation functions ~c,gc,+~g&~ p
only a simplified self-consistent equation

need be solved. This approximation is to ignore the Huc-
tuatxon of E,~ (but not (crgcr+~g))» space.

The errors resulting from the above approximation can
b f d b directly comparing the results obtained withe oun y ire
and without the approximation. We have ca cu ate e
errors for the pairing amplitude for several ar itrari y
chosen con gura ions o ifi t' f 'mpurities in both strong and
weak scattering potential limiits. For all the cases we
have stu ie, we n aci d, fi d th t the relative errors in the av-

com ared with the combinederage energy gap are sma comp
errors pro uce y e id d b the disorder average or the finite-size
effect. For example, for a randomly chosen system o
three impurities on a 14x 14 lattice the relative errors in

0.6 0 in a weak poten-the average energy gap are 0.1% (0. 0

tial Vo ——2 and Vj ——0 and 2% (2%) in a strong potential
Vo ——20 and Vj ——0 for the s-wave (d-wave) pairing
state. As the impurity concentration increacreases the error
increases s ig y.l' htl The errors for the local pairing corre a-

re lar er than that for the av-tion functions (c,tc,+~~ are larg
erage gap, but still small. Figure 2, as an example, shows
h l t pattern for the local correlation func-

~ for a 8-wave pairing state. We fin t attlon ycrgcr+~T or
the errors for (c,gc,+ g) are largest a ou 0 a

, is overestimated in theimpurity sites. Clearly (c,gc,+~~
ity of impurities and underestimated far away from

the impurities. Nevertheless, it i g gs encoura in that the
error ma e in ned eglecting off-diagonal disor er is small.

luated theU the above approximation, we have evaluate e
L f both 8- and d-wave pairing states in

cases we havedifferent scattering potentials. For all the cases we ave
studied, we find that 4 decays almost linearly with 2; for
sma x. igure s owsll . F' 3 hows L as a function of the impuri y
concentration x orf both pairing states in a strong
function scattering potentia = 20 on a 14x14 lattice.
All four curves shown in the figure are nearly parallel to

quite different. This remarkable behavior indicates t at
the reduction of 5 by disorder (dA/dz) is determine
only by the scattering potential to a first approximation
and is independent of the pairing symmetries and the

relative error
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FIG. 1. Self-consistent gap function for the s-wave super-
a 21x21 lattice. Only half of the latticeconducting state on a x a

is shown. The impurity is located at the center of the attice.

FIG. 2. Relative errors of the local pairing correlation func-

(c ~c t) a are the results obtaine wet an wicry erg ~ a
c c in space)imation, an c~g ~g

x14 lattice with three im-for the s-wave pairing state on a 14x 1 a ice wi
= 0. The impurities't and a potential Vo ——20 and Vi ——puri ies an

st eaks emerge.are located on the sites where the three highes pea s e
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lengths which in turn is determined by the properties of
the eigenfunction on the whole lattice.

Figure 5 shows A(x)/A(0) and p, (x)/p, (0) as func-
tions of x for the 8- and d-wave pairing states in three
potentials. For a weak 8-function potential, b, (2:)/6(0)
and p, (2;)/p, (0) decrease very slowly with z and the dif-
ference between the 8- and d-wave pairing states is also
small. With increasing Vo, the difFerence between these
two pairing states increases. The disorder has a stronger
eR'ect on the d-wave state than on the 8-wave state; in
particular, p, falls much faster in the d-wave state than
in the s-wave state. This property may be useful for dis-
tinguishing a d-wave pairing state from an 8-wave pairing
state in the unitary scattering limit from an experimen-
tal point of view. But if an ofI'-site scattering potential
(i.e. , Vi term) is present, this difference will be eventually
reduced. The disorder eKect is clearly strongly enhanced
in a finite-range potential than in a b-function potential.

Figure 6 shows A(Vp, Vj)/A(0, 0) as functions of Vp

for the 8- and d-wave pairing states with x=0.02. The
qualitative behaviors of A(Vp, Vi)/A(0 0) are similar for
all the cases shown in the figure. A(Vp, Vi)/A(0, 0) de-
creases with Vo for small Vo, but soon becomes saturated
when Vp surpasses the bandwidth. dA/dx for the s- and
d-wave states can be very large depending on the value
of Vj.

B. Density of states

Now we consider the effect of disorder on the density
of states of quasiparticles. We calculate the density of
states using a recursion method. This method addresses
the local density of states of an infinite lattice. In this
method, the density of states p(E) is obtained from the
imaginary part of the one-particle Green's function G(E),

that the error is minimized. We truncate the continued
fraction at a step when the difFerence between the result
obtained at that step and that with five more steps is
smaller than the error demanded. In using the recursion
method, the values of L and p obtained previously on
finite lattices will be used. When the impurity concentra-
tion is finite, the approximation 4, = 4 is assumed.
For a one-impurity system, the strict self-consistent so-
lution for L, on a small lattice around the impurity is
used, while for the remainder of the lattice 4 are ap-
proximated by the average value of 4, on the edges of
the small lattice.

As discussed by Byers et al. and Choi the densities
of states in the vicinity of the impurity are in principle
Ineasurable via the spatial variation of the tunneling con-
ductance around an impurity with a scanning-tunneling-
microscope study of the surface of a superconductor. In
continuum space, the local density of states (or the tun-
neling conductance) around an impurity has been calcu-
lated by Byers et al. for both the s- and d-wave pairing
states and by Choi for the d-wave pairing state. They
find that the density of states for a given energy oscil-
lates in space and depends strongly on the anisotropy
of the gap parameter. When the energy is larger than
4, the oscillation is largest in the directions of the gap
maxima and smallest in the directions of the gap min-
ima. In lattice space, however, we find that their results
are partly altered. Figure 7 shows the impurity-induced
density of states as a function of distance from an im-
purity along two directions for the 8- and d-wave pairing
states. (Here the fully self-consistent isolated impurity
result for the gap function on a 21 x 21 lattice shown in
Fig. 1 is used as an input. ) The density of states oscil-

1
p(E) = lim ——ImG(E+ ie).:0 (10)

s-wave—

Given a starting state l0), the recursion method is de-
fined by the recurrence relations

0.05—

Hlo) = nolo)+ t, l1)

and

IIln) = t-ln —1) + ~-ln) + ~-+iln+1) (n&0),
(12)

where (ln)) is a set of normalized bases generated auto-
matically from Eqs. (11) and (12). From the a's and 6's
generated, G(E) can be expressed in a continued fraction
form

-0.05—

C

0.1

0.05—

0—

-0.05—

(E —ap)—
g2

1

b
(E —ai)—

(E — ) —. .

-0.1
0 10 20 30

In a real calculation, this continued fraction is truncated
at a certain step and the remainder of the continued frac-
tion is replaced by a parameter which is determined such

FIG. 7. The local density of states induced by an impu-
rity as a function of distance r from an impurity along both
the x-axis direction (0') and the diagonal direction (45') at
energy ~ = 1.5& „.Vo ——2 and Vz ——0.
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lates in space with an energy- and direction-dependent
wavelength in agreement with the results of Ref. 15. In
the 8-wave case, the oscillation along the diagonal direc-
tion is much larger than that along the x-axis direction,
in contrast to the isotropic 8-wave pairing state in con-
tinuum space. Since the energy gaps are the same on the
Fermi surface for s-wave states, this difFerence is purely
a lattice efFect. For the d-wave pairing state, the oscilla-
tions along two directions are not so di8'erent as shown in
Refs. 15, 16. The impurity-induced density of states de-
cays slightly faster along the x-axis direction than along
the diagonal direction.

To compute the density of states with finite doping of
impurities, we have used the results of the average gap 4
obtained previously. The fluctuation of 4,„ in space is
ignored. in this calculation. Figure 8 shows the density of
state@ for the 8- and d-wave pairing states with difFerent
potentials and x. The main results are summarized as
follows.

(a) For s-wave pairing with a weak or strong poten-
tial with very small x, p has no qualitative change with
respect to the case without disorder. In particular, the
energy gap still exists and is hardly changed by disorder
in agreement with Anderson's theorem.

(b) For the d-wave pairing state with a weak scatter-
ing potential, the change of p with respect to the case
without disorder is small. But p at the Fermi energy E~

becomes finite, consistent with the nonmagnetic impurity
scattering theory in the Born scattering limit.

(c) For the d-wave pairing state with a very strong on-
site potential, p shows a peak around E~. This result
agrees very well with the self-consistent t-matrix theory
for the d-wave superconductor in the unitary scattering
limit. On the other hand it also shows that the ap-
proximations made in the self-consistent t-matrix theory,
such as ignoring the vertex corrections and the energy
dependence of the self-energy, are valid for the d-wave
state.

(d) For the d-wave pairing state with a strong on-site
potential or both pairing states with a finite-range poten-
tial, p at E~ grows quickly with increasing z and becomes
comparable with the average density of states at some
critical x. For the 8-wave pairing state with a strong b-
function potential, a finite gap remains when x is smaller
than a critical value x within numerical errors. When
x & x„ the gap vanishes (but p, and 3, are nonzero); p
at Ey is small and increases slowly with increasing x.

(e) All singularities of p are suppressed by the disorder
average in these calculations. We have not found any
evidence for the singular behavior predicted recently by
Nersesyan et a/. within numerical error.

III. CONCLUSION
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FIG. 8. Density of states as functions of energy E for s-
and d-wave superconducting states with different impurity
conceritrations x. The parameters A obtained in Fig. 5 are
used in calculations here. More than 1000 configurations of
impurities are used in the disorder average.

We have discussed a straightforward numerical tech-
nique which allows detailed eKects of various impurity
potentials on superconductors to be investigated with a
BCS mean-field framework. In particular we evaluated
the gap parameter, the superfluid density, and the den-
sity of states for the s-wave and d-wave superconduct-
ing states with nonmagnetic impurities, as functions of
impurity concentrations and scattering potentials. For
one-impurity systems, the local density of states induced
by impurity oscillates in space, in agreement with known
analytic results. For 8-wave pairing, the energy gap and
the density of states are hardly affected by weak disorder
(i.e. , either weak scatterers or dilute strong scatterers),
consistent with Anderson's theorem. In the dilute impu-
rity limit, our results agree well with the self-consistent
t-matrix theory in both the Born and unitary scattering
limits, and in both 8- and d-wave pairing states. For the
d-wave pairing state, the density of states at E~ becomes
finite even for the weak scattering potential, consistent
with the Born scattering theory of the d-wave supercon-
ductor. For the d-wave pairing state with a strong on-site
potential, the density of states is in good agreement with
the self-consistent t-matrix theory for the d-wave super-
conductor in the unitary limit. For strong scatterers, the
energy gap of the 8-wave state disappears beyond a crit-
ical doping level which is sensitive to the range of the
impurity potential. A finite-range potential is shown to
have a stronger eKect than a short-range potential in ei-
ther pairing state. For Zn-doped YBaCuO, experiments
find that T varies almost linearly with x and drops about
25'% for 2%%uo Zn doping. If we assume the change of T
is equivalent to the change of L at zero temperature, we
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find that dA/dx in a b-function potential is too small to
fit quantitatively with experiments even in the unitary
scattering limit. However, for a finite-range potential, no
such difhculty exists.
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