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optical conductivity of the infinite-dimensional Hubbard model
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A Monte Carlo maximum-entropy calculation of the optical conductivity of the infinite-
dimensional Hubbard model is presented. We show that the optical conductivity displays the
anomalies found in the cuprate superconductors, including a Drude width which grows linearly with
temperature, a Drude weight which grows linearly with doping, and a temperature- and doping-
dependent mid-IR peak. These anomalies arise as a consequence of the dynamical generation of
a quasiparticle band at the Ferxni energy as T ~ 0, and are a generic property of the strongly
correlated Hubbard model in all dimensions greater than one.

I. INTRODUCTION

The discovery of high-T superconductors based on
CuO compounds has led to a large amount of theoretical
work about the peculiar properties of these materials. A
major eKort has focused on the normal-state properties
of these compounds. This research was largely motivated
and. substantiated by experiments that revealed striking
anomalies in the normal-state properties. Most promi-
nent among these are the linear resistivity, a linear NMR
relaxation of the Cu spins, and a Hall angle that be-
haves T over a rather wide temperature region. Fur-
thermore, the optical conductivity shows a Drude peak
with a width 1/7 T, consistent with the linearity of
the resistivity, and. a Drude weight which grows linearly
with doping, consistent with the notion of holes acting
as the charge carriers. In addition, there is a pronounced
temperature- and doping-dependent mid-IR peak at fre-
quencies above the Drude peak.

It was argued from the beginning that most of these
anomalous properties can be explained by two special
features appearing simultaneously in these materials: (i)
They are strongly correlated, i.e. , their (effective) local
Coulomb interaction is comparable to or larger than the
characteristic kinetic energy of the relevant carriers; and
(ii) they are highly anisotropic with the electrons being
in principle confined to the CuO planes characteristic for
these compounds. Furthermore, it has been argued that
the CuO planes can be accurately described by a planar
single-band Hubbard model. The great interest in this
class of materials has led to a number of new theoretical
conjectures, that, although based on the assumption of
strongly correlated carriers, focused mainly on the two-
dimensional (2D) character of the CuO planes.

In two earlier publications, we found that several of
these anomalies can be understood from a Kondo-like ef-

feet in the infinite-dimensional Hubbard model. In par-
ticular, the density of states develops a sharp peak at
the Fermi surface as the temperature is lowered. The de-
veloprnent of this quasiparticle peak coincides with the
screening of the effective local moments and anomalies in
the transport. For example, the resistivity of the model
displays a distinct linear in T behavior with a slope that
increases in inverse proportion to the doping b, consistent
with experiment. The NMR relaxation rate 1/Tq dis-
plays a pronounced linear in T region, with a slope that
increases with doping, also consistent with experiment.
Finally, the qualitative features of the Hall resistivity are
consistent with experiment, including a Hall angle that
increases quadratically with the temperature. Recently,
a sharp Kondo-like peak at the Fermi surface has also
been seen in the two-dimensional Hubbard model as the
temperature is lowered. This suggests that these anoma-
lous normal-state properties are intrinsic to the Hubbard
model, independent of dimensionality.

In this contribution, we address the anomalous normal-
state properties of the Hubbard-model optical conductiv-
ity. The optical conductivity a'(w) is an important probe
of the excitations of a strongly correlated system. It mea-
sures the rate at which electron-hole pairs are created
by photons of frequency cu. In a perfect (translation-
ally invariant) metal, photons couple only to electron-
hole pairs with vanishing momentum and energy; o (u) is
proportional to a Dirac b function [o (w) = Dv„g„tb(w)j
with Drude weight D~,g„t ——7re n/m, (we set h = 1).
Electron-electron correlations modify this picture at zero
temperature: The charge and. spin Quctuations induce a
dynamic disorder to the lattice potential which reduces
the free-carrier Drude weight by the inverse of the quasi-
particle renormalization factor Z (D = Z Dv„t,t) and
transfers the remaining spectral weight to a frequency-
dependent component of o (cu) reflecting the incoherent
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charge and spin Huctuations; the total spectral weight
is, however, conserved. Finite-temperature efFects will
broaden the zero-frequency b function into a Lorentzian
and can modify both the quasiparticle renormalization
and the higher-frequency excitations. This simple picture
is further modified when restriction is made to a single
(or finite number) of electronic bands. In this case, the
total spectral weight can vary as a function of tempera-
ture or interaction strength because the projection onto
a restricted basis set disregards all excitations to elec-
tronic bands that are higher in energy than those that
have been kept in the model.

If the on-site Coulomb repulsion U is large enough,
then the system will be a Mott insulator at half filling.
The single-particle density of states N(w) consists of two
symmetric bands, separated by U (called the lower and
upper Hubbard bands) with the Fermi level lying in the
middle of the gap. The renormalization factor Z diverges
since there are no quasiparticles at the Fermi level. The
optical conductivity will consist of a charge-excitation
peak centered at w U, whose width is the order of the
bandwidth. As the system is doped away from half filling,
a quasiparticle resonance appears at the Fermi energy as
T —+ 0. The weight of the quasiparticle peak increases
with doping. In this case, the optical conductivity will
have a Drude peak (from the "&ee" quasiparticles at the
Fermi energy) and a mid-IR band (because of excitations
between the lower Hubbard band and the quasiparticle
peak) in addition to the charge-excitation peak. The
Drude weight can be estimated as follows: when b holes
are doped into the half-filled band, the total electron con-
centration is (1 —h), and the quasiparticle renormaliza-
tion factor behaves roughly as Z oc 1/h, so the Drude
weight is expected to be

DD,„g, oc Z n oc b(1 —b) (1)
which increases linearly for small and large doping, and
is peaked near quarter filling (n = 0.5). In addition, the
weight of the mid-IR peak should also behave qualita-
tively like Eq. (1) because it involves excitations between
the quasiparticle peak and the lower Hubbard band,
which also should grow as the density of holes in the
half-filled band. The "holelike" nature of the charge exci-
tations near half filling results from the strong Coulomb
renormalizations that create the Mott insulator at ex-
actly half filling.

In this contribution, we investigate the optical con-
ductivity of the Hubbard model in infinite dimensions.
Our methodology is detailed in Sec. II, where we dis-
cuss the formalism and calculational techniques. Sec-
tion III contains our results, which include a Drude peak
whose width 1/w grows linearly with temperature, a mid-
IR peak that becomes more visible at low temperatures
and dopings, and a charge-excitation peak that decreases
with doping and is weakly dependent upon T. Compar-

ison of our results with experiment is presented in Sec.
IV, and conclusions are given in Sec. V.

II. METHOD

Motivated by the observations of Anderson and Zhang
and Rice we will study the single-band Hubbard model
in d dimensions, with

II = — ) ct c, + U) n,gn, g, (2)2d
as a model for the CuO system. Our notation is the fol-
lowing: c,. is an electron creation operator for an elec-
tron in a localized state at lattice site i with spin 0',
n; = c, c; is the corresponding electron number oper-
ator; t* is the rescaled hopping matrix element; and U is
the Coulomb interaction strength. We choose t* = 1 as
a convenient unit of energy. This model may be solved
in the limit of high dimensions, using the observations
of Metzner and Vollhardt that with increasing coordi-
nation number of the underlying lattice the many-body
renormalizations due to a two-particle interaction like the
Hubbard U in (2) become purely local.

The solution of the model (2) may be mapped onto
the solution of purely local correlated system coupled
to an effective (self-consistently determined) bath.
The quantum Monte Carlo (QMC) scheme based on
the work of Hirsch and Fye ' ' has proven to be
the most effective method for solving this strongly cor-
related local problem. Dynamical properties of the
model are then obtained using numerical analytic con-
tinuation (employing maximum-entropy techniques). 24

This method requires a default model. To obtain the
single-particle density of states we use the finite-U non-
crossing approximation (NCA) result for the infinite-
dimensional Hubbard model as a default model at high
temperatures, where it is essentially exact. At low tem-
peratures, where the NCA fails, we use the numerically
continued result of the next higher temperature as a de-
fault model. The posterior probability of the final result
is employed to determine which default model should be
used. Generally, we find that the crossover temperature
between using the NCA default model and the higher-
temperature continuation lies at T = 2TO, where To is
the Kondo-like scale for this model. Once the density
of states is determined, the self-energy Z(~) may then
be found by (numerically) inverting the Fadeev function
i'(z) in the relation

N(cu) = Re(zv[(u+ p, —Z(u~)]) /~m.
With the knowledge of the one-particle self-energy, one

can calculate transport quantities. For example, the op-
tical conductivity can be calculated exactly in the local
approximation. It is given by the simple bubble only,
whose evaluation leads to

o. (~) = de
e ~ f(e) —f(e+(u) 1 . t'& pie—) ~

"
~

A(eg, e)A(ei-, e+ ~)N igk )
f(e) f(e+ ~)

—OO Cd
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where V is the lattice volume, n = e /(VC) and defines
the unit of the conductivity, the spectral weight satis-
fies A(eg, w) = ——Im[G(k, w)], and the noninteracting
density of states is p(y) = exp( —y )/~m.

As the temperature is lowered, the Hubbard model in
infinite d is found to always be a Fermi liquid, ' ex-
cept for the region of phase space where it is magnetic.
A Fermi liquid is defined by a self-energy that has the
following structure:

ReE(~ + i0+) = ReE(0) + (u(l —Z) + O(al )
ImZ(~+ i0+) = —I'+ O(~ )

with I" oc T for temperatures T (( To, the characteris-
tic Fermi temperature. [The Fermi temperature To de-
creases to zero as half filling is approached, and the
Fermi-liquid-theory form of Eq. (5) still holds for moder-
ate temperatures, with the only change being F oc T for
T ) To.] The spectral weight then assumes the form

Matsubara-frequency current-current correlation func-
tion using the method proposed by Scalapino et aLso (D
measures the "free" quasiparticles in the system). This
method determines the Drude weight of a metal by exam-
ining the asymptotic form of the current-current suscep-
tibility in the z direction, A (q, iu ). More specifically,
D is given by

D = lim 7r[e' (—T ) —A (q = O, 2iirT)],
T—+0

where the limit T ~ 0 is taken after first setting the
momentum transfer to zero (q = 0). Note that this lat-
ter method of determining the Drude weight is a much
better defined procedure than trying to fit the optical
conductivity to the generic form of Eq. (7) because of
the uncertainty left in trying to fit cr;„,(cu).

III. RESULTS

with the Fermi level defined by e~ = p —ReZ(0) and
A;„,(y, al) denoting the (rather structureless) incoher-
ent contributions to the spectral function. The spec-
tral function includes a b function at zero temperature
[A(y, al) i 8(wZ+e~ —y)+A, „,(y, w)] because the broad-
ening F vanishes in that limit.

If the Lorentzian form for the Fermi-liquid-theory spec-
tral function [Eq. (6)] is substituted into the expression
for the optical conductivity found in Eq. (4), and the
temperature satisfies T (( To &( t*, then the optical con-
ductivity becomes

0'(M) D 7 0'i~g(LO)

+ ~27.2 (7)

with Drude weight D = Z harp(e~), relaxation time w =
1/(2I') oc 1/T, and cr;„,(tu) containing the contributions
from the incoherent pieces of the spectrum.

The noninteracting Drude weight for the single-band
model (Z = 1) satisfies D„„=7rp(ey). As the inter-
action U is turned on in a single-band model, the total
integrated spectral weight is not conserved but becomes
U dependent because spectral weight that would be
shifted to higher bands is "lost" in any single-band model.
The total spectral weight satisfies

cr(w)Cku = —ere (T ) (8)

where (—T ) is the kinetic energy per site, divided by
the number of lattice dimensions. It should be stressed
that the modification of the sum rule in Eq. (8) will pro-
duce some systematic modifications to the behavior of
the optical conductivity as a function of temperature, in-
teraction strength, and doping. These systematic efFects
must be kept in mind when one is comparing the results
of a single-band calculation to experiment.

The Drude weight D for the interacting system, may
also be determined (at T = 0) by extrapolation of the

We present here our results for the optical conductivity
of the single-band Hubbard model in infinite dimensions
with U = 4t* Figure . l(a) shows the optical conductivity
obtained from Eq. (4) when b = 0.068 for a variety
of temperatures. One finds the Drude peak at w = 0
developing with decreasing temperature. In addition, a
shoulder develops adjacent to the Drude peak at w

1 which is strongly temperature dependent and clearly
visible only for the lowest temperatures. The last feature
in o (w) is a roughly temperature-independent peak at
~ = U. In order to compare our results to experiment,
the three features in o'(cu) are fitted to a Lorentzian plus
(asymmetric) harmonic-oscillator forins for the higher-
energy peaks

lT(~) D + OMIR ~ I MIR
~ 1+~ ~ ~ ~ FMiR+ (~ ~MrR)

&c 4) Fc+
7r Cd I g + (ld —(dc)

(10)

with 7 the relaxation time of the quasiparticles, and the
constants CMiR, alMIR, and I'MIR (Cc ~c and I c)
the weight, center, and width, respectively of the mid-
IR (charge-transfer) peak. The Drude width 1/7 ob-
tained from this fitting procedure is plotted in the inset
to Fig. 1(b). Note that for temperatures on the order of
T&, it is well approximated by a straight line (the line is a
guide to the eye), while for T « To the Drude width must
change its behavior to w oc T according to the general
properties of a Fermi liquid. By subtracting ofI' the fit-
ted Drude portion from the optical conductivity, we were
able to isolate the mid-IR portion. , as shown in Fig. 1(b).
Note that the "double-peak" structure emerging in the
mid-IR peak at the lowest temperature is an artifact of
the fitting procedure which is not perfect in extracting
the parameters for the Drude peak. The mid-IR peak is
temperature dependent, growing in size and moving to
slightly lower frequencies as the temperature is lowered.

Comparison of the Drude weight D determined by the
fitting procedure in Eq. (10) and the independent method
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of calculation in Eq. (9) produces only qualitative agree-
ment. We have tried more sophisticated fitting routines
in which we fit the Fermi-liquid-theory parameters (Z,
I', and e~) in the spectral function of Eq. (6) and then
determine the Drude contribution to the optical conduc-
tivity by employing the full expression in Eq. (4), and the
fit improves, as does the comparison of the Drude weight,
but the quantitative agreement still has a systematic er-
ror on the order of 10—20% (where the fitting procedure
always overestimates the Drude weight), because of the
simple form chosen for the mid-IR peak. Our conclu-
sion is that the method of Ref. 30 is superior to any ad
hoc fitting procedure in determining the low-temperature
Drude weight. Note, however, that the charge-transfer
peak is uniquely determined by the above fitting proce-
dure (in the sense that the results are independent of
what fitting procedure is employed), indicating that the
harmonic-oscillator form is a reasonable approximation
to that peak.

The existence of the Drude and charge-excitation
peaks has been reported previously. These results were
obtained with the NCA and were thus restricted to tem-
peratures T & 2TO. The mid-IR bump, however, becomes
clearly visible only for temperatures below this scale. We
can presently resolve this feature because of the refined
numerics employed in the QMC and the numerical ana-
lytic continuation at lower temperatures.

In Fig. 2, the optical conductivity is plotted as a func-
tion of doping for fixed temperature P = 43.2. The
different dopings are best identified by their decreasing
charge-transfer peaks (b = 0.068, 0.0928, 0.1358, 0.1878,
0.2455, 0.3, 0.35, 0.4, and 0.45). The solid lines indicate
the electron concentrations where the optical conductiv-
ity increases with doping in the lower-Hubbard-band re-
gion of u & 2 (h & 0.25) and the dotted lines are where
o.(io) decreases with doping in the same region (h & 0.25).
One can see that the mid-IR peak is strongly doping de-
pendent, being most distinct from the Drude peak at low
dopings, and merging with it as the doping and the width
of the Drude peak increase. In the inset, we show that
the Drude weight D increases linearly with b. This lat-
ter result shows that the "&ee" carriers in a doped Mott
insulator are holes in the half-filled band. As the doping
is increased further, the Drude weight eventually satu-
rates, and then decreases with doping, as the character
of the "free" carriers changes from being holelike to being
electronlike.

The optical conductivity clearly displays an isobestic
point, where o'(w) is independent of doping (wiB 2).
The isobestic point marks the boundary between the re-
gions where the weight of the optical conductivity in-
creases as a function of doping (cu & xiii), and the re-
gions where the weight decreases with doping (~ & ~iB).
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FIG. 1. (a) Optical conductivity vs u for various temper-
atures when U = 4 and b = 0.068 in units of o. = e /(Vd).
Note that at low temperatures, when the Kondo peak be-
comes pronounced in the DOS (see Fig. 5), a mid-IR feature
begins to appear in o (u). The mid-IR feature is isolated in (b)
by fitting the Iow-frequency data with Eq. (10), and subtract-
ing off the Drude part. As the temperature is lowered, the
mid-IR peak becomes more pronounced and shifts to lower
temperatures. Note that the double-peak structure in the
mid-IR peak is most likely due to the inaccurate fitting form
for oMia(cu). As shown in the inset, the width (1/x) of the
Drude peak is found to increase roughly linearly with T.

FIG. 2. The doping dependence of the optical conductivity
when U = 4 and P = 43.2. Note that for larger b the mid-IR
and Drude peaks begin to merge, so that the latter is less
distinct. The different dopings are identi6ed by their decreas-
ing charge-transfer peaks, respectively (b = 0.068, 0.0928,
0.1358, 0.1878, 0.2455, 0.3, 0.35, 0.4, aud 0.45). The solid
lines correspond to the case where the optical conductivity
increases with doping in the lower-Hubbard-band region of
u & 2 (8 & 0.25) and the dotted lines correspond to the case
where o (u) decreases with doping (8 & 0.25). The inset shows
the evolution of the Drude weight D as a function of doping,
which is computed using Eq. (9) at P = 20. For 8 & 0.4, the
Drude weight increases linearly with doping.
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FIG. 5. One-particle density of states (DOS) of the Hub-
bard model. In (a) the DOS is plotted for difFerent dopings
8 = I nat P = 43.2. In a—ddition to the lower and upper Hub-
bard bands, which are fairly doping independent, a resonance
occurs at the chemical potential that becomes broader with
increasing b and Anally merges with the lower Hubbard band.
In (b), the temperature evolution of the density of states is
plotted for U = 4 and b = 0.188. As the temperature is low-
ered, a sharp peak, distinct from the lower Hubbard band,
develops at the Fermi surface. As shown in the inset, the de-
velopment of a sharp peak at the Fermi surface is correlated
with the reduction of the screened local moment and hence is
associated with resonant Kondo screening of the spins.

temperatures. We have shown previously that while this
peak is developing (i.e. , in the region T ) To), the scat-
tering rate (as measured by the resistivity) increases in
proportion to the temperature. Thus the Drude width
also increases in proportion to the temperature. We at-
tribute the mid-IR peak to excitations from the lower
Hubbard band to the quasiparticle band at the Fermi
energy. Note that the quasiparticle resonance is only
sharp and distinct from the lower Hubbard band at low
T and small b. Thus the mid-IR peak will only be vis-
ible in the optical conductivity at low T and small b as
well. On the other hand, the upper peak at u = 4 is due
to the charge excitations from both the lower Hubbard
band and the quasiparticle band to the upper Hubbard
band. Since the upper Hubbard band is distinct from the
quasiparticle weight at the Fermi surface, and since the
weight in the upper Hubbard band does not change as
significantly with doping, the upper peak in 0 (cu) has a

weaker temperature and doping dependence, but is ex-
pected to disappear as the system becomes uncorrelated
in the low-density limit.

IV. COMPARISON TO EXPERIMENT

Many experimental measurements have been made of
the optical conductivity in doped cuprates. Kramers-
Kronig analysis is used to determine o (w) from re-
flectivity measurements in La2 Sr Cu04 (LSCO),
in ' YBa2CusOs+~ (YBCO), in ' Bi2Sr2CaCu20
(BSCCO), and in Nd2Cu04 „(NCO); reviews have
also been published. Photoinduced absorption is also
employed to measure the optical conductivity in YBCO
and in both LSCO and NCO. It is interesting to com-
pare the theoretical calculation of the optical conductiv-
ity with these experimental results.

The experiments yield six trends for the cuprate su-
perconductors: (I) The mid-IR peak maximum moves to
lower frequency, and merges with the Drude peak as the
doping increases; its spectral weight grows very rapidly
with doping near half filling; (2) at a fixed value of the
doping, spectral weight rapidly moves to lower frequency
as T ~ 0, but the total weight in the Drude and mid-
IR peaks remains approximately constant; the width of
the Drude peak decreases linearly with T; (3) the in-
sulating (or undoped) phase has a charge-transfer gap;
when doped, the optical conductivity initially increases
within the gap region, but eventually saturates and then
decreases with doping; (4) there is an isobestic point or
nearly isobestic behavior (in that the optical conductiv-
ity is nearly independent of doping) at a frequency that
is approximately one half of the charge-transfer gap; (5)
the eIII'ective charge has a constant value with respect to
doping near the charge-transfer edge; and (6) more than
one peak is observed within the mid-IR region.

Most of these trends are reproduced by our theoretical
model. In particular, Fig. 2 illustrates how the mid-IR
peak moves to lower frequency and joins the Drude peak
(I), how the optical conductivity initially increases with
doping at low frequency, but then saturates and decreases
(3), and how there is an isobestic point (4). Figure I
shows how the spectral weight is transferred to lower fre-
quencies as the temperature is lowered, but we And that
the total (Drude plus mid-IR) spectral weight does not
remain constant as in (2) because the temperature de-
pendence of the expectation value (T ) produces some
temperature dependence to the total Drude plus mid-
IR spectral weight (it actually decreases as T increases).
Figure 3 does not display the trend of point (5), possibly
because the restriction to a single-band model reduces
the optical conductivity at higher frequencies to such an
extent that the e8'ective charge must depend on the dop-
ing level for the theoretical model. We do not see the
multiple peaks in. the mid-IR region of point (6).

These experimental features are usually attributed to
phonons or impurities present in the system, but judging
from our results the low-energy feature may also be due
to excitations from the lower Hubbard band to a dynam-
ically generated quasiparticle band at the Fermi energy
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(which is generated by Kondo-like screening of the mo-

ments). Naturally, the single-band model fits the exper-
minental data much better at lower frequencies, where
the single-band approximation is relevant, but fails in re-
producing some of the higher-energy trends found in the
cuprates, because of the neglected bands. A comprehen-
sive theory should include both the effects of strong elec-
tron correlation (which reproduce the insulator at half
filling, and give a holelike character to the charge excita-
tions near half filling) with the effects of electron-phonon
coupling (which are necessary to explain similar mid-IR
features in nonsuperconducting perovskites).

V. CONCLUSION

A quantum Monte Carlo and maximum-entropy cal-
culation of the optical conductivity of the infinite-
dimensional Hubbard model has been presented. The
Mott-insulating character of the ground state at half fill-

ing drives many anomalous behaviors in the normal state
near half filling that are similar to those observed in the
cuprate superconductors. In particular the system is al-
ways a Fermi liquid away from half filling, but the Fermi
temperature vanishes and the quasiparticle renormaliza-
tion factor diverges as half filling is approached. As a
result, the free carriers in the system initially have a
holelike character (that changes to an electronlike char-
acter at approximately quarter filling). The Drude width
for these carriers grows linearly with temperature for
temperatures above To, the Drude weight grows linearly
with doping, and there is a doping- and temperature-

dependent mid-IR peak. These anomalies arise naturally
from the presence of a strongly temperature-dependent
quasiparticle peak, whose origin is a Kondo-like screening
of the magnetic moments, and which appears to occur in
the Hubbard model for all dimensions greater than 1.

The anomalous features in the experimentally mea-
sured optical conductivity for the cuprates are usually
attributed to either polarons or impurities. However, any
purely polaronic theory has di%culty in explaining the
magnetic insulating character of the ground state at half
filling. The Hubbard model naturally describes such an
insulating state, and appears to also describe many of the
anomalous features present in the experimental data. In
light of this fact, it is worthwhile to try to incorporate
both the egects of strong electron correlation, and the
electron-phonon interaction into a comprehensive theory
for the normal state of the cuprate materials. Work along
these lines is in progress.

ACKNOW jL EDGMENTS

We would like to acknowledge useful conversations
with W. Chung, J. Keller, Y. Kim, D. Scalapino, R.
Scalettar, D. Tanner, and G. Thomas. This work was
supported by the National Science Foundation Grant No.
DMR-9107563, the NATO Collaborative Research Grant
No. CRG 931429, and through the NSF NYI program.
In addition, we would like to thank the Ohio Supercom-
puting Center, and the physics department of the Ohio
State University for providing computer facilities.

J. G. Bednorz and K. A. Miiller, Z. Phys. 64, 189 (1986).
For reviews of relevant experiments, see C. H. Pennington
and C. P. Slichter, in Physical Proper ties of High Temper
ature Superconductors, edited by D. M. Ginsberg (World
Scientific, Singapore, 1992), Vol. 2; N. P. Ong, ibid. ; Y. lye,
ibid. , Vol. 3 ~

D. B. Romero, C. D. Porter, D. B. Tanner, L. Forro, D.
Mandrus, L. Mihaly, G. L. Carr, and G. P. Williams, Phys.
Rev. Lett. 68, 1590 (1992); see also L. Forro, G. L. Carr,
G. P. Williams, D. Mandrus, and L. Mihaly, ibid. 65, 1941
(1990).
For a review, please see T. Timusk and D. B. Tanner, in
Physical Properties of High Temperature Superconductors,
edited by D. M. Ginsberg (World Scientific, Singapore,
1989), Vol. 1, pp. 339—407; G. A. Thomas, in Proceed
ings from the 99th Scottish Universities Summer School in
Physics, edited by D. P. Tunstall, W. Barford, and P. Os-
borne (Adam Hilger, New York, 1991), pp. 169—206, and
references contained therein.
P. W. Anderson, in Frontiers and Borderlines in Many
Particle Physics, Proceedings of the International School
of Physics "Enrico Fermi, " Course 104, Varenna, 1987
(North Holland, Amsterdam, 1987), p. 1; Science 235, 1196
(1987).
F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).

G. Baskaran and P. W. Anderson, Phys. Rev. B 37, 850
(1988).
J. Solyom, Adv. Phys. 28, 201 (1979).
P. W. Anderson, Physica C 185, ll (1991).
C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abra-
hams, and A. E. Ruckenstein, Phys. Rev. Lett. 63, 1996
(1989).
M. Jarrell and Th. Pruschke, Phys. Rev. B 49, 1458 (1993);
Th. Pruschke and M. 3arrell, Physica B 199&200, 217
(1994).
Christoph Quitmann, Ph. D. thesis, Aachen, 1992 (unpub-
lished).
N. Bulut, D. J. Scalapino, and S. R. White, Phys. Rev.
Lett. 72, 705 (1994).
J. Hubbard, Proc. R. Soc. London Ser. A 276, 238 (1963);
M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963); J.
Kanamori, Prog. Theor. Phys. 30, 257 (1963).
W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324
(1989).
U. Brandt and C. Mielsch, Z. Phys. B 75, 365 (1989); 79,
295 (1990); 82, 37 (1991).
V. Janis, Z. Phys. B 83, 227 (1991).
C. Kim, Y. Kuramoto, and T. Kasuya, J. Phys. Soc. Jpn.
59, 2414 (1990).
V. 3anis and D. Vollhardt, Int. J. Mod. Phys. B 6, 713



51 OPTICAL CONDUCTIVITY OF THE INFINITE-DIMENSIONAL. . . 11 711

(1992).
M. 3arrell, Phys. Rev. Lett. 69, 168 (1992).
A. Georges and G. Kotliar, Phys. Rev. B 45, 6479 (1992).
3. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521
(1986).
M. Jarrell, H. Akhlaghpour, and Thomas Pruschke, Quan
turn Monte Carlo Methods in Condensed Matter Physics,
edited by M. Suzuki (World Scientific, Singapore, 1993).
J. E. Gubernatis, M. Jarrell, R. N. Silver, and D. S. Sivia,
Phys. . Rev. B 44, 6011 (1991); M. 3arrell and J. E. Guber-
natis (unpublished).
H. Keiter and J. C. Kimball, Int. J. Magn. 1, 233 (1971);
N. E. Bickers, D. L. Cox, and J. W. Wilkins, Phys. Rev. B
36, 2036 (1987); Th. Pruschke and N. Grewe, Z. Phys. B
74, 439 (1989).
Th. Pruschke, D. L. Cox, and M. 3arrell, Phys. Rev. B
4'7, 3553 (1993); Th. Pruschke, D. L. Cox, and M. Jarrell,
Europhys. Lett. 21, 593 (1993).
A. Khurana, Phys. Rev. Lett. 64, 1990 (1990).
J. K. Freericks and M. Jarrell, Phys. Rev. Lett. 74) 186
(1995); P. G. J. van Dongen, ibid. 74, 182 (1995).
P. F. Maldague, Phys. Rev. B 16, 2437 (1977).
D. J. Scalapino, S. White, and S. Zhang, Phys. Rev. B 47,
7995 (1993).
H. Eskes and A. M. Oles, Phys. Rev. Lett. 7$, 1279 (1994);

H. Eskes, A. M. Oles, M. B. J. Meinders, and W. Stephan,
Phys. Rev. B 50, 17980 (1994).
S. Uchida, T. Ido, H. Takagi, T. Arima, Y. Tokura, and S.
Tajima, Phys. Rev. B 43, 7942 (1991);S. Uchida, J. Phys.
Chem. Solids 53, 1603 (1992).
J. Orenstein, G. A. Thomas, A. J. Millis, S. L. Cooper,
D. H. Rapkine, T. Timusk, L. F. Schneemeyer, and J. V.
Waszczak, Phys. Rev. B 42, 6342 (1990).
D. B. Romero et al. (unpublished).
G. A. Thomas, D. H. Rapkine, S. L. Cooper, S.-W. Cheong,
and A. S. Cooper, Phys. Rev. Lett. 67, 2906 (1991);G. A.
Thomas, D. H. Rapkine, S. L. Cooper, S.-W. Cheong, A.
S. Cooper, L. F. Schneemeyer, and J. V. Waszczak, Phys.
Rev. B 45, 2474 (1992).
S. Uchida, H. Takagi, Y. Tokura, S. Koshihara, and T.
Arima, in Strong Correlation and Superconductivity, edited
by H. Fukuyama, S. Maekawa, and A. P. Malo zemo8'
(Springer, Tokyo, 1989), pp. 194—203.
G. Yu, C. H. Lee, D. Mihailovic, A. J. Heeger, C. Fincher,
N. Herron, and E. M. McCarron, Phys. Rev. B 4S, 7545
(1993).
Y. H. Kim, S.-W. Cheong, and Z. Fisk, Phys. Rev. Lett.
67, 2227 (1991).
A. S. Alexandrov, V. V. Kabanov, and D. K. Ray, Physica
C 224, 247 (1994).


