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Low-angle resistivity anomaly in layered suyerconductors
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The pinning e6'ect of vortex lines by the layered structure (intrinsic pinning) on the resistivity of high-

T, superconductors in the mixed state is investigated by means of perturbation theory. A sharp drop in

the resistivity at small angles for which vortex lines are almost aligned with the ab planes is shown to
occur even in a high-temperature region where the pinning potential is reduced by thermal fluctuations.

The phenomenon of intrinsic pinning in high-T, super-
conductors (HTSC's), i.e., the confinement of vortex lines
between Cu-0 planes, has recently attracted a great deal
of attention. The possibility of intrinsic pinning, which is
one of the most appealing manifestations of the layered
structure of the copper oxide superconductors, was sug-
gested by Tachiki and Takahashi and Barone, Larkin,
and Ovchinnikov. They pointed out that since the
coherence length along the c direction, g„ is comparable
to the interplane distance s, it is more favorable for vor-
tex lines to locate between the Cu-0 planes in order to
minimize their core energy. This implies that vortices
parallel to the ab planes experience a periodic potential
with maxima corresponding to positions of the cores of
the vortex lines at the Cu-0 planes. The amplitude of the
periodic pinning potential is determined by the ratio
g, /s. For g, /s «1 the magnitude of the pinning poten-
tial is nearly as large as the condensation energy
(H, /8~)sg, b, whereas when g, /s ))1, the amplitude of
the periodic pinning potential drops very rapidly with

g, /s [for example, as exp( —I g, /s)]. The behavior of
the intrinsic periodic potential for a vortex lattice near
the upper critical field H, 2 has been investigated in detail
in Ref. 3 within the framework of mean-field theory.

The most direct way to investigate intrinsic pinning is
to perform resistive measurements at small misalign-
ments of magnetic field with respect to the Cu-0 planes.
Strong evidence of the intrinsic pinning was given in ex-
periments by Refs. 4 and 5, where sharp increases in the
critical current were observed in Y-Ba-Cu-0 thin films
for H~~ ab planes. Very precise angular measurements of
the linear resistivity have been done for Y-Ba-Cu-0 single
crystals and for thin films of Bi-Sr-Ca-Cu-O. In both
compounds below some typical temperature a very sharp
drop in resistivity appears at very small angles 0 between
H and the ab planes, where 0(O. S . This anomaly be-
comes more pronounced with decreasing temperature.

Two difFerent temperature regimes of vortex motion
through a periodic pinning potential can be dis-
tinguished. At low temperatures (the exact criterion will
be specified below) the motion of the vortex lines along
the c axis is completely suppressed and the onset of resis-

tivity at finite misalignment is expected to be due to a
lock-in transition, i.e., the multiple creation of kinks in
the vortex lines at angles above some critical angle Oo.

These kinks can move parallel to the ab plane and dissi-
pate energy, giving rise to finite resistivity. At high tem-
peratures the periodic potential is suppressed by thermal
fIuctuations of the vortex lines, and is to be considered
rather as a small perturbation for the vortex motion.
Note that the resistive measurements by Kwok et al.
were done mainly in this high-temperature region which
is the subject of this paper. We show that even a smaH
periodic potential, being treated within perturbation
theory, can produce a noticeable anomaly in the angular
dependence of the resistivity.

We consider the correction 5p to the resistivity p aris-
ing from the intrinsic pinning in the regime of ohmic
resistivity: p=E/J, where E is the electric field induced
by the vortex motion with velocity v and
E= (1/c) [8X v] in the presence of the transport current
J. The Ohmic resistivity reAects the viscous motion of
the vortex lines. In the absence of pinning, the vortex ve-
locity is determined by the viscous friction rl:v =BJ/crt.
In order to find 5p one has to calculate the correction to
vortex velocity v due to the intrinsic pinning potential.
We assume the pinning potential to be small; therefore
the most adequate method is the dynamic approach in-
troduced in Refs. 9 and 10 and explored successfully in
investigations of vortex dynamics in HTSC s. An addi-
tional pinning force per unit volume due to a pinning po-
tential V(r) is of the form"'

F,„=—( n (r, t)V V (r vt —u) ), —

where n (r, t) =g; 5(rj Ro; (z, t) ) i—s the vortex density,
and brackets denote averaging, both spatial and thermo-
dynamic.

Ro, (z, t) are the positions of the vortex lines (which are
assumed to be parallel to z axis) in the absence of pinning,
but accounting for their thermal Auctuations, v is the
mean velocity of vortex configuration, and u(r, t) is an ad-
ditional distortion field due to the pinning potential.
Since the displacement field u varies slowly from vortex
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X (V V V(r —vt)VIVIV(r' —vt')) .

The structure factor is given by

S(r, t)=(n(r, t)n(0, 0)) .

(3)

(4)

We choose the z axis to lie along the vortex lines and to
constitute the angle 0 with the ab planes, the x axis to en-
close the angle 8 with the c axis, and the y axis being in
the ab plane and perpendicular to the magnetic field (see
Fig. 1). We take the pinning potential to be of the form
V(r) = Vo[1 —cos(2mr n, /s)], where n, is the unit vector
along the e direction. The chosen form of the pinning po-
tential is justified for the temperature range where g, )s
(e.g. , Ref. 2). Substituting this potential in Eq. (3) and ex-
panding with respect to the velocity we find

5p Fpin

P 'gU

4
~0 2~ f dz dttS(qi;z, t)
2'g s

XG„„(ri=0;z,t)exp(iq, z) . (5)

The vector q describes the periodicity along the c axis
and to first order in 8 is given by q=(2m/s, 0,2m8/s).
The Fourier transform of the structure factor is given by

S(k, t)=n, f dz g expI ik, z+ik[R—p~(z t)

—Roo(0, 0) ]J, (6)

to vortex, it can be treated as a continuous function.
Within the linear approximation one has

u (r, t)= fd r'dt'G &(r r—', t t—')F;„&(r',t'),
where a=x,y and G &(r, t) is the response function for
the vortex configuration. Expanding the expression for
the friction force (1) with respect to small distortions
u(r, t) and using (2) one obtains

F;„(v)=—f d r'dt'G &(r—r', t t')S—(r r', t ——t')

where n„=B/@o is an average density of vortex lines. In
deriving Eq. (5) we used the condition s/2m «a„,a„be-
ing the vortex lattice parameter in the x direction.

One can distinguish two di6'erent contributions to the
integral in Eq. (5). The first one, 5pi(8), comes from the
small spatial and temporal scales at which mean fluctua-
tional displacements uI(z, t)= ( [u (z, t) —u (0,0)] ) '~ be-
come of the order of the interplane separation s. On
these scales, fluctuations of vortex lines are uncorrelated,
and the corresponding contribution can be viewed as
from the individual vortices. Note that this single-vortex
contribution should exist also in the vortex lattice phase.
The second contribution, 5p2(8), stems from the correlat-
ed long-range deformations of vortex lines with charac-
teristic time ~

&
and corresponding spatial scale I. j along

the z axis. This correction diverges as temperature ap-
proaches the melting point.

Let us consider first the single-vortex contribution. At
times scales shorter than the typical phonon time of the
vortex lattice the interaction between vortex lines can be
neglected and the structure factor transforms into

k
S(k„,k =0;z, t)=exp — ul(z, t)

z 1 & dt'
u/(z, t) = T —+ exp

Oi t'
'9 z

4e)t'

rt, =g/n, is the friction associated with the motion of a
single vortex. The response function acquires the form

exp( rt, z /4e, t)—
G(ki;z, t)=

n, +4m.g„e,t
(9)

e& is the linear tension of the single vortex with respect to
tilting deformations along the x direction which with log-
arithmic accuracy can be estimated as

The fluctuational displacement of a single-vortex line
u (z, t) is given by

X@o 1
ln

(4m.k,,b )
(10)

where A,,b is the London penetration depth, y is the an-
isotropy factor, and k, is the characteristic scale of vor-
tex deformations. Substituting expressions (7) and (9)
into Eq. (5) one finds [recall that the angular dependence
is given by the factor exp(iq, z) in the integrand in Eq. (5)]

5p)
rF(8/8, ), —

p

6 sr= v'~ 2~

with the amplitude of the anomaly,

p"2 ~20 1

T4 (12)

FIG. 1. Layered superconductor in tilted magnetic field.
Choice of axes.

The universal function F ( a ) is given by

du exp( —u )

[(1/i m)exp( —u )+u erf(u)+iau]
(13)
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with the error function erf(u)=(2/&vr) f ds exp( —s ).
0

The angle 8, =(2m. /s)(T/2e, ) defines the characteristic
tilt above which the pinning-induced single-vortex fric-
tion drops rapidly. A plot of the function F(a) is given
in Fig. 2. The condition for the applicability of the per-
turbation theory is given by rF(0) «1 which reduces to
T »0.4s+ Voei. Taking temperatures slightly above
the melting temperature T =e,Q@o/8cl, where cI is
the Lindemann number, one easily finds that this condi-
tion is well satisfied in the experimental range of fields.

Now we turn to the singular contribution from larger
scales and times. This contribution is important for a
strongly correlated vortex liquid in the vicinity of the
melting temperature, where the remnance of crystalline
order in the vortex configuration comes into play. In the
solid vortex phase this contribution would give rise to a
divergent correction to resistivity, but in the liquid phase
the Auctuations at very large scales cut off this diver-
gence. Slightly above the melting temperature the residu-
al of the crystalline order gives rise to a considerable
enhancement of 5p. Additional complications arise from
the effective mass anisotropy that leads to a complex
form of the elastic energy in the vortex crystalline state.
It is useful to perform scaling transformations analogous
to those used in Refs. 13 and 14, x, =y x„
x, b =y ' x, &, to avoid these complications. In the fol-
lowing we note all quantities related to the new coordi-
nate system by the sign —.In this new set of coordi-
nates, the system under consideration becomes isotropic
and the elastic properties of the vortex crystal are de-
scribed by the shear and nonlocal tilt module
C66=@()B/(8~X), C44=8 /4'/[I+(Xk) j+BZi/@0,
with A, =y' k,b and B =y B.

We assume that the melting occurs via the weak first-
order transition. This means that the vortex liquid in the
vicinity of the transition is expected to be strongly corre-
lated, i.e., to behave as a solid at times not exceeding the
characteristic plastic deformation times ~„~ and for dis-

1 0.00 i i i i i » i « i ~ i i « i i i s

8.00

6.00

tances along the z direction less than the corresponding
spatial scale L&&. The relation between these quantities
can be estimated from the equation of dissipative motion
of vortex configuration: The dissipative force gu/r~i is of
the same order of magnitude as the elastic restoring force
C44u /L i, where u is the characteristic displacement cor-
responding to the time ~z&. As a result we find

I/r„, -C~/gL i. Such "viscoelastic" behavior can be
quantitatively described by means of the k, - and co-

dependent shear modulus C66(co, k, ) analogous to that in-
troduced in the Maxwell description of very viscous
liquid':

1 —I /(i cow~, k, L—
~i )

(14)

Within this approximation the structure factor in the re-
gion ki »(8/4o)'~ is given by Eq. (7). The behavior of
uf(z, t) at large spatial and time scales t &r„b, z &L i„
where r~i, '=4~C«8/40ri, L~i, =(ei/C«)', is affected
by the intervortex interaction. At t -r~i, (z -L~i, ) the
Auctuational displacement achieves its "Lindemann"
value' ' (i.e., the fiuctuation displacement in the crystal
state in the vicinity of the melting transition)

iaaf (t ) = uL = T/( 2& lr t/ E,C66 ), but in contrast to the
behavior of the distortion in the crystalline phase, in the
liquid phase uf(z, t) keeps growing slowly, the growth
rate being determined by parameters ~„& and L ~. Time
dependences of the Auctuation displacements in the crys-
talline and the liquid states are illustrated in Fig. 3.

The strength of correlation in the liquid is determined
by the dimensionless parameter r„,/~„i, . At t & r~„
z &L, the fiuctuational displacement uf(z, t) and the
response function G(0,z, t) behave like those for a single
vortex but with renormalized expressions for the linear
tension Z,s=4mC«L i /ln(4'(BR

~ /40) and the vis-
cous friction g,it= 2~C«r»/In(4~BR ~, /4o), where

R~~=QC66/C44L„, (if nonlocality in C4~ is relevant,
this gives R

~

=QaL
~
). In other words the effect of in-

teractions gives rise to the "dressing" and the effective
stiffening of the vortex line on large scales. This
stiffening results, in particular, in the renormalization of
the diffusion coefficient of the single-vortex line in a
liquid state discussed in Ref. 16. Therefore, the large-
scale contribution is once again given by Eq. (11) with re-
normalized ei and reduced by the Debye-Wailer factor

u (t)

2.00 tal

0.00
0.00 1.00 2.00 3.00 4.00 ph Cpf

FIG. 2. Universal function F (cz) (see text).
FIG. 3. Schematic time dependences of the fluctuation dis-

placements in the crystal and strongly correlated liquid.
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amplitude of the periodic potential:
2 2

6p2 E ff 1 27TuL=r exp
p 2 s

F(8/82), (15)

L )
(16)

dH, )

dT
Tc

8, =(2~)
@Ops

1

Tc T

For typical values of these parameters for Y-Ba-Cu-0
dH„/dT=10 Oe/K, y=8, s =13 A, T, —T= 1 K, and
0&

——16. The latter estimate means that the range of the
angular variation of 5p& is the same as for the angular
dependence of the Aux flow resistivity po(8) governed by
anisotropy:

po(8)=p(8 ){cos (8)+y (sin8) I'~

This means that the resulting experimental angular
dependence at large angle scales can be observed as a dis-

J ~

90

FIG. 4. Schematic angular dependence of the resistivity.
The angular width of the anomalous correction 5p2(0) is exag-
gerated for clarity.

where 8& =2m /s ( T/2e, s) « 8&. The latter equation is al-

ready written for the real coordinate system. For com-
parison with the single-vortex contribution it is con-
venient to rewrite the formula for e,ff as

2 2
y@o L„)

e ff= ln
(4~&) Lpi, Lpg

The value of the Debye-Wailer factor is determined by
the Lindemann fluctuation displacement near the melting
point which can be estimated as uI =cL a, where
cl -0.1 is the Lindemann constant.

The result (15) holds as long as 5pz/p«1. One can
see that near the melting temperature this condition may
be violated if L &(T ) grows too large.

Equations (11) and (15) represent the main result of our
paper. The resulting angular dependence p(8) is the su-
perposition of the conventional angular resistivity depen-
dence due to anisotropy and corrections (11) and (15)
(Fig. 4). The correction from (11) varies over a wider an-
gular interval than the correction from (15). The correc-
tion 6p2 typically has a smaller amplitude due to the
Debye-Wailer factor; however, it diverges quickly as the
temperature approaches the melting point due to the
divergent behavior of e,ff.

The upper characteristic angle 0& may be connected to
the experimentally accessible quantities as follows:

—1

P(8),
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torted and enhanced anisotropic resistivity behavior with
a temperature dependent ratio p(0')/p(90').

The behavior of the second correction 5p2(8) is deter-
mined by the critical behavior near the melting point T
The growth of correlations near the transition leads to a
decrease of the typical angle Oz and to an increase of the
amplitude of the anomaly. In fact, the correction 5p2 is
noticeable only if the regime of strongly correlated vortex
liquids takes place. Therefore, the observation of this
correction would mean that the transition from a vortex
solid to a vortex liquid is almost continuous. For the
first-order phase transition both the typical angle 6I2 and
the resistivity at 0=0 should jump to zero at T=T
from finite values.

Real samples always have some misorientations of the
c axis which tend to smear out the angular anomaly in
resistivity. The anomaly can be resolved only in the tem-
perature region where the typical angle 02 is larger than
the typical misorientation angle 0 . In the opposite case
Oz(t9 the intrinsic angular behavior is averaged out by
misorientation. In this case the angular dependence is
determined by the angular distribution function
P (8 )[P (8 ) gives the probability to find a crystallite
which constitutes the angle 8 with average orientation].
In this region the angular dependence of resistivity sim-

ply follows that of P (8):
2 2

p2 Q~ff 1 2~uL=Cr 02 exp (19)
p g) 2 s

with C= fdaFa=2m. ~ /3=11.66. The width of the
angular anomaly is given by the temperature-independent
misorientation angle 0, whereas the amplitude of the
correction still grows as the temperature approaches the
melting point from above. Such a behavior has been ob-
served experimentally in the resistive measurement of
Kwok et aI.

In conclusion, we have calculated the corrections to
Ohmic resistivity due to the intrinsic periodic potential
associated with the layered structure. We have found the
complex angular dependence of the resistivity for small
angles between the magnetic field and the ab planes. The
sharp dip in p(8), 5p2(8) originates from the correlated
motion of large vortex bundles in a vortex liquid, and can
be found on the bottom of the wider dip in the resistivity
5pi(8) resulting from the pinning of single vortices (see
Fig. 4). The obtained results describe qualitatively the
observe shape of the angular dependence of the resistivity
and can be used to infer quantitative information about
the magnitude of the intrinsic pinning potential and the
correlations in the vortex liquid state near the melting
transition.
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