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Quasiparticle efFective mass in the superconducting phase of heavy-fermion systems
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Quasiparticles with an anomalously large effective mass (m *=ym, ) become superconducting in the
heavy-fermion systems. Since the phase transition is a second-order transition, the quasiparticle just
below T, must still have the large m *. Using a simple model, we show that the m *
[=(l—BX/Bto) =om] in the superconducting phase decreases with decreasing temperature from T, .
Furthermore, it is predicted that dy/dT at T, is proportional to an initial slope of a critical magnetic
field —dH, /d T.

I. INTRODUCTION we consider the model without orbital degeneracy,

In heavy-fermion systems, quasiparticles with anoma-
lously large efFective mass m ( =ym, ) become supercon-
ducting. ' In the normal phase of these systems, the m * is
caused by the scattering of the quasiparticles, and it in-
creases with decreasing temperature. Normally, this
large m is deduced from the conduction-electron
specific heat.

When the temperature passes through T„properties of
the system change drastically. However, since the phase
transition is a second-order transition, it is likely that the
quasiparticles just below T, still have anomalously large
m . (If the quasiparticle participates in the condensate,
its m reduces to the free electron mass. ) In the super-
conducting phase, since the specific heat is strongly
inAuenced by the temperature dependence of the order
parameter, no information on m * can be obtained from
the specific heat.

Recently, de Haas —van Alphen (dHvA) oscillations
have been observed in the vortex state of the supercon-
ducting phase as well as the normal phase. It is natural
to inquire what occurs in the m * at T & T, . As the tem-
perature is decreased from T„ the number of the quasi-
particles that participate in the superAuid condensate
grows progressively. Since the condensate does not con-
tribute to scattering, the interaction between the quasi-
particles will change. This change will suppress the mass
enhancement mechanism. Thus, a possible picture is as
follows: As the temperature decreases from T„ the m*
of the quasiparticles decreases progressively. In this pa-
per, we deal with the problem using a simple model.

II. FORMALISM

The heavy-fermion systems are described by the
periodic Anderson model. In this paper, for simplicity
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We assume (I) the Fermi level e~ falls in the upper or
lower bands, and (2) the dominant low-energy excitations
occur within the upper band, or within the lower band.
Hence, the Cooper pair is composed of two quasiparticles
belonging to the upper band, or that belonging to the
lower band. Thus, we find, for the upper band,

where sf is an f-electron level.
Above the Kondo temperature (T) Tz ), this system

behaves like a magnetic system, which has itinerant elec-
trons with a conventional mass and well localized f elec-
trons, whereas at T & Tz, the conduction electrons and
the f electrons are combined into quasiparticles that
scatter against one another. The hybridization of the
conduction and f electrons yields two new bands with an
energy Ek*'.
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and for the lower band,
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Experimental results suggest (1) antiferromagnetic spin fluctuations play an important role, and (2) the pairing is of
an unusual kind with a line of zeros of the gap functions on the Fermi level. From these results, it is likely that the at-
tractive force responsible for the pairing is strongly dominated by the spin fluctuations.

Let us obtain gap and self-energy equations for the quasiparticles. We assume (1) the spin-fluctuation interaction is
responsible for the pairing of the quasiparticles, and (2) the pairing is a d-wave spin singlet. (Experimentally, there still
remain uncertainties in the symmetry type: d-wave spin singlet or p-wave spin triplet. To describe a relevant physics for
the effective mass simply, the d-wave spin singlet is appropriate. An extension to the spin-triplet pairing is straightfor-
ward. ) Although the attractive interaction due to the spin fluctuation depends strongly on the model structure, we as-
sume for simplicity (3) isotropy of the system, (4) electron-hole symmetry with a cutoff frequency co, (we set c, =O at the
Fermi level on the upper or lower band), and (5) constant density of states N.

We study a leading-order term. Thus, we find,

X(p ) =—g —U + +q+ —g Uk k+q ~ ~+q [G(k+q )G(k )+F'(k+q )F(k )] G(p+q ),1 1

k
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and p =(iso„,p) for fermions and q =(ieq) f,or bosons.
In applying the Bardeen-Cooper-Schrieffer (BCS) theory to the Fermi-liquid theory, one usually makes the problem

simpler by treating the mass enhancement process and the formation of the off-diagonal long-range order separately.
However, Eqs. (6) say that both processes depend on each other, and that they manifest themselves in a complicated
manner as illustrated in Fig. 1: The formation of the superQuid state modifies the pairing interaction between the quasi-
particle, and this pairing interaction determines the superAuid state, leading to a feedback effect. ' The self-consistency
scheme beyond the Gor'kov decoupling is needed. "'

Let us study the effective mass m* ( = [1—BX(co)/Bco]„om ) at T (T, . From now on, we focus on the behavior of
the system near T„and obtain the Ginzburg-Landau (GL) theory. The interaction between the quasiparticles, Eqs. (3b)
and (4b), depends strongly on the particle momentum. However, the fact that Eq. (3b) and (4b) are written as the prod-
uct of the different momentum components allows us to treat it simply. We redefine new Green's functions G'(p) and
F'(p) by multiplying G(p) and F(p) by a factor with a same momentum: sin 8& for the upper band, and cos 8 for the
lower band. Hence, Eq. (6a) is rewritten for the upper hand,

X(p)=sin 8 —g —U+U —g [G'(k+q)G'(k)+F"(k+q)F'(k)] G'(p+q)1 21 (7)'P, Pk
and for the lower band, sin 0& must be replaced by cos l9p.

Normally, G(p) and F(p) are expanded in powers of the order parameter and are integrated along a radial direction
as follows

G(co„)=iNm. sgn(co„) 1—,Ib(p)l'+, l~(p)l'
2' 8'~

F(co„)=Nm. sgn(co„) b, (p) —
3 lh(p)l b,(p)

~n 2'

b(p) [=b(T)f (0)] is a renormalized and frequency-averaged d-wave order parameter Z P(p). [f (0) is a normal-
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ized basis function in d-wave symmetry. p is a unit vector, and 5 is assumed to depend only on the direction of p.]
In this paper, we assume that the cutofF frequency of the spin fluctuation co, is small compared with ef and V. Thus

sin 8's or cos 8's in Eq. (7) can be approximated by a value at the Fermi level (a=0). Corresponding formulas for the
G'(p ) and F'(p ) are given by

T

G'(co„)=iNm sgn(co„) 1 — lb(p)l2+ lg(p)l4 w(sf, V), (9a)
2co~ sco4

F'(co„)=Nn sgn(co„) b(p) — lb(p)l2&(p) w(ef, V),
~n 2'~

where parameters in the periodic Anderson model appear in the factor,

(9b)

p2
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E,f
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V +sf

L

(9c)

[See Appendix A. If co, is not small, extra terms that have complicated the co„dependence appear in Eqs. (9a) and (9b).
These terms will be discussed in a future paper. ]

Since we focus on the co dependence of X(p), the spin-fluctuation interaction U y, (q, ie ) in Eq. (7) where

X, (q, ie )=—g [G'( k+q, iso„+i e )G'(k, iso„)+F"(k+q, ice„+is )F'(k, iso„)], (10)

is spatially averaged. Substituting Eqs. (9) into it yields the following Ginzburg-Landau expression (Appendix B):
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Here 4 is the digamma function, and 4"', 4' ', and 4' '

are its derivatives, and

I

factor y( T ) [ = 1 —BX(co) /B~ l 0] is obtained using Eqs.
(7), (9a), and (1 la) (Appendix B),

,.=J lf.(II)l'",
(1 le)

y(T)=y(T, )

NU 'N
2Nco, w (Ef, V) — g lb(T) I

B c ~ B c

A Ginzburg-Landau form of the mass enhancement (12a)
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FIG. 1. The self-consistency scheme in Eqs. (6). The lines
with two parallel arrows represent the normal Green's function
G and that with two opposite arrows the anomalous Green's
function F, themselves being under the inhuence of the self-
energy X and the order parameter P.

where

1 a„
g(x )=—g (n —0.5)

dD, (y)
Gg y=n

(a„=l. 5 for n &X/2, and a„=—0.5 for n )X/2). g(x )

is a positive monotonically increasing function: As an ex-
ample, g (x ) for a d-wave basis function of one-
dimensional representation of D4, '

f(Q)=k —k (c=O c=—' c=O c=—")
is depicted in Fig. 2.

Equation (12a) says that, as the temperature is de-
creased from T„ the quasiparticle effective mass progres-
sively decreases. Figure 3 illustrates this schematically.
The solid curve at T & T, in Fig. 3(b) represents y(T ) in
Eq. (12a). For reference, y(T) extrapolated naively from
T & T, to T & T, is depicted as a dotted curve. The pre-
diction in Sec. I is confirmed in this model. '

Once the GL-type expression of y(T) is obtained,
d y /d T can be combined with temperature dependence of
other thermodynamic quantities such as the critical mag-
netic field H, . For this, the Ginzburg-Landau free energy
must be obtained. The self-consistency mechanism in
Eqs. (6) involves the effect beyond the Gor'kov decou-
pling, which leads to a strong-coupling effect 5 in the GL
free energy. To the fourth order of 5, the free energy is

given by

+b (1—5) I a(T)I', (13a)

where T, must be determined using higher-order dia-
grams in the random-phase approximation (RPA), ' and

7$(3)c4
~BCS

(4m.ks T, )
(13b)

5= w (Ef, V)(NU) NksT, h
7 3 7T

(13c)

[h(x) is a positive monotonically increasing function.
For k„—k, it is depicted in Fig. 4. See Appendix C.]

A combination of Eqs. (12a) and (13a) leads to a simple
relationship between d y Id T and dH, /d T at T, . Substi-
tuting b,(T), which is obtained by Eq. (13a), into Eqs.
(13a) and (12a), we find at T„

FIG. 3. Schematic picture of the temperature dependence of
(a) the critical magnetic field 0, and (b) the mass enhancement
factor y {=1—BX/Geol =z). A solid curve at T& T, in (b)
represents y(T), predicted by Eq. (11a), and a dotted curve at
T(T, represents y( T) extrapolated naively from T & T, to
T & T, The in. itial slope of H, at 'i, [a thin straight line in (a)],
and that of y [a thin straight line in (b)], are related by Eq. (14).

2¹o,tc (Ef, V) (NU)2v'N
dT +8nbacs(1 —5) ka T,

CO~

g uk~ T,

(14)
0

0 2 3

FIG. 2. Plot of g(x) for k„—k» vs x. [g(x) is depicted as if
it is a continuous function of x.]

This means that the temperature dependence of the m '
at T & T, manifest itself through the initial slope of the
H, as illustrated in Fig. 3. dH, /dT at T, [a thin straight
line in Fig. 3(a)] is related to dy /dT at T, [a thin straight
line in Fig. 3(b)] by Eq. (14). This dependence is detect-
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FIG. 4. Plot of h(x) for k„—k» vs x. [h(x) is depicted as if
it is a continuous function of x.].

ining the validity of the assumptions in this paper using
more rigorous theories.

The most important assumptions in this paper are as
follows: (1) The quasiparticles made of the conduction
electron and the f electron interact with each other
through the Coulomb repulsion, and (2) the antiferro-
magnetic spin Auctuation plays an important role in the
quasiparticle interaction. It is worth examining the
behavior of m * at T & T, using theories that start from
the U= ~ periodic Anderson model such as variational
theories and slave-boson theories. In contrast to the
above assumptions, other assumptions in this paper are
made to avoid complications, not affecting the con-
clusions qualitatively. However, to explain the variety of
heavy-fermion compounds, careful calculations without
such assumptions will be needed.

able especially in materials with an enormous initial slope
of the upper critical magnetic field H, 2.

' To test Eq. (14),
the measurement of the m * at T & T, by the dHvA effect
is expected especially in materials such as UBe,3.

' (If
the spin-triplet pairing is assumed, the coefficient in Eq.
(14) is slightly modified, but its sign is not changed. )
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APPENDIX A

III. DISCUSSION

The heavy-fermion superconductors exhibit two re-
markable features: (1) The quasiparticles with anoma-
lously large effective mass m * in the normal phase
(several hundred times m, ) become superconducting. (2)
In spite of relatively low T, ( & 1 K), they show an enor-
mous initial slope of the upper critical magnetic field
dH, z/dT. Since the BCS theory is based on the free-
fermion picture, the first feature seems strange. To ex-
plain the second feature within the BCS theory, unnatur-
al adjustment of the model parameters is needed. In this
sense, this superconductivity is unusual.

Experiments such as inelastic neutron scattering sug-
gests that the spin Auctuation plays an important role
both for the pairing and the large effective mass, which
gives a clue to clear understanding. Thus, an effective in-
teraction Hamiltonian is

H;„,= 2+ g J(k —k')cr~iicrrsa& ~a+& ra» sa» &
. (15)

k k'

J(q) is a quantity determined by the dynamics of the
quasiparticles at T & T„and by that of the Cooper pairs
at T & T, . If J(q) is assumed to be a phenomenological
parameter, the mass enhancement mechanism and the su-
perconductivity are treated separately. To gain an in-
sight into a relationship between them, it is necessary to
begin with a microscopic model, which underlies Eq. (15),
and to incorporate the mass enhancement and the super-
conductivity into a new self-consistency scheme. In this
paper, an attempt is made along this line.

This paper predicts decreasing m* at T& T, . The
large m' comes from (1) the band structure and (2) the
many-body effect. The inhuence of the superconductivity
on m* must appear through the latter process. If this
prediction is confirmed experimentally, it is worth exam-

The self-energy X(p) in Eq. (6c) is renormalized into a
renormalization factor Z. Isotropy of the system allows
us to integrate Eq. (6c) along a radial direction, leading to
6(co„)and F(co„).

(a) The Ginzburg-Landau form of 6(co„), Eqs. (8), is
obtained by expanding it in powers of P as follows:

G(co„)=NJ de[Go(co„,e) —6,(a»„,e)lg(p)l'
C

+6 (a»„,s)14(p)l'],
lZcon +c

Go(c»„,e) =
(Zco„) +s

lZCO„+ E,

6~(co„,s) =
[(Zco„) +c, ]

lZCO~ + E,

64(co„,s ) =
[(Zco„) +e ]

(A 1)

(A2)

where

+ 64(a»„,s)lg(p) '], (A3)

f(s)=

p'2
(the upper band)

V +(c,—ef )

(e —sf )
(the lower band) .

V +(e—ef )

(A4)

For a small co„f (c.) in Eq. (A3) can be approximated by
f(0). Substituting

(b) A similar formula for the new Green's function
6'(co„) is given by

6'(co„)=Nf '
ds f(s)[Go(co„s) 6, ,(c—o„e)ly(p, )l'

C



il 674 SHUN-ICHIRO KOH

J Go(co„,e)d e =2i tan
ZCOn

C N
G2(co„,E)d e~ tan

C (Zco„) ZCOn

(A5)

(A6)

J G&(co„,e)de~ ~ tan ', (A7)
N 4(Zco„)

into Eq. (A3), and using b, =Z 'P yields Eq. (9a).
[tan '(1/x) is approximated by sgn(x)m/2 for a small
x.] For the E'(co), Eq. (9b} is obtained similarly.

APPENDIX 8

(a) Integration along a radial direction in Eq. (10) yields y, (q, e~ ). Substituting Eqs. (9a) and (9b) into it results in a
GL-type expression of y, (e ) as follows:

2

y, (e }= N w (ef, V) ——gsgn[co„(co„+e )]

+ —g sgn[co„(co„+e )]
1 C1C1 C2 1 1

co„(co„+e ) 2 co„(co„+e }

3Cg

8

1 +
COn

1 1 C1C3

(co„+E ) 2 co„(co„+e ) co„(co„+e

2+, , Ia(T)l'
co„(co„+e )

(81)

where integrating f (Q) over the direction of k+q or k yields the c„s.
Since y, (s ) depends strongly on the cutofF energy co„we perform the co„summation in the leading-order term of

Eq. (81}in the range ~ co, . For a positive m,

x —m toe
sgn[co. (co, +co )]=2&—3lml for Iml ~&, »d —X+lml for X~ lml ~2&

n= —x 7T J
(82)

which leads to the first term in the right-hand side of Eq. (1 la). As for the next order terms in Eq. (81), we let x —+ oo as
in the Gor'kov theory. We decompose Eq. (Bl) into following partial fractions,

p'"(n, m) =
I

COn

1
for odd l

(co„+e )'

1 1+ for even lco'„(co„+e )'
(83)

using

1

co„(co„+e ) &m ~n
I

1

(co„+e )

1 + 1

co„(co„+s } co„(co„+e ) COn
3

1

(co„+e )

1 1 1 1 1 1

(co„+e )

1

con(con+ em ) 2
m

1

(co„+E )

2 1

COn
3

1

(co„+e )
(84)

Summation over n in the right-hand side of Eq. (Bl) for positive m is

For even I,

sgn[co„(co„+e )]p'"(n, m ) =
m —1 —1 oo

+ g p'"(n, m)=
n= —oo n= —m n=0

L
n = —ec

—1

p'"(n, m) .
n= —m

(85)

n= —m

m —1

p'"(n, m ) =4
n=0 n=0 ~n

OQ

=4 g
n=m ~n

(86)
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and for odd l,
—I —1—2 g p~ '(n, m)= —2 g p' '(n, m)

n= —m n = —rn

—m —1

l
COn

1

(co„+E )'

m —1

n=0

4 ( 1) (i i) 1

(2~k~ T )' (/ —1 )! 2
™n=O

g{l—1)

2
(B7)

As for negative m, similar results are obtained. Using Eqs. (Bl)—(B7),D, and D2 in Eqs. (11c)and (1 ld) are obtained.
(b) Integrating Eq. (7) with respect to p, and substituting Eqs. (9a) and (1 la) into it yield a GL-type expression of

X(co). To second of
~ h~, it is given by

N(NU) rr Do(m —n) D (i~ m—n~)
X(co )=Xo(co )+2Nco, w (ef, V) g sgn(co„) 2 ks T+ ~h(T)~2'„(2n.) k~ T

(B8)

To obtain y( T), a component that varies linearly with a small m must be extracted from Eq. (B8). For the first term
in the coefficient of ~b, ~, we find

sgn(co„)-=g, for a small m .~m n~
— " (n —m)

n= —x ~n n= —x ~n

For the third term,
X X X

Di(lm —nI)sgn(~, )=Di(ImI)+ g Di(Im —n I)—g Di(lm+n'I)
n&1

(B9)

(B10)

Since Di( ~x
~

) is singular at x =0, a first term does not contribute to y(T). Thus, for the small m, Eq. (B10) is approxi-
mated by a part that varies linearly with m as follows:

T

X X

Di( ~m n~ )sgn—(co„)—= —2 g
dD, (y)

dp y=i
(Bl 1)

Substituting Eqs. (B9) and (Bl 1) into Eq. (B8), and differentiating it with respect to co ( =2mmks T), yield Eqs. (12),
y(T) ( = [1—BX(a))/Bco]„0).

APPENDIX C

To consider thermodynamic properties, it is appropriate to formulate a thermodynamic functional 0 in such a way
that it is stationary if Eqs. (6) are satisfied. Such a functional 0 is obtained by following steps. (In this appendix, we
abbreviate Ui, & q, by U. )

First, Q must include a part equivalent to the BCS theory, which was derived by Eliashberg as follows

Qi= ——g ln[ —X(p)]+—g [X(p)G(p)+P'(p)F(p )]+ g g U[G(p)G(p')+F*(p)F(p')],1 2 1 (Cl)
13 p 13 p

where X(p)= ~iso„—e~
—X(p)~ ~iso„+ z+eX( —p)]—~(()(p)~ . An approximation in Eq. (Cl) is equivalent to the

Gor kov decoupling. This is refiected by the third term on the right-hand side of Eq. (Cl), where a four-operator prod-
uct is factorized into two Green's functions.

Second, it is necessary to include terms beyond the Gor'kov decoupling. When we calculate the Gor*kov equation
one step further than usual, not only an expectation value of the four-operator product but also that of an eight-
operator product appears. It is necessary to incorporate this into Q as well. This expectation value of the eight-
operator product must be factorized using that of the four-operator product I . There are three possible combinations:
(1) one I and two G's, (2) one I and two F's, and (3) two I"s.

For the one I and two 6's, and for the one I and two I"s, we find a contribution to 0,

0 = g g U[G(p)l (p —p')G(p')+F*(p)I (p —p')F(p')],1
(C2)

and for the two I"s, we find
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Q3= —g I'(q)l ( —q) .1 (C3)

The total potential 0( =0,+Q2+03) is a natural extension of the Gor'kov decoupling to the higher-order terms.
The 0 is stationary with respect to the variations in X(p), P(p), and I (q ), if these quantities are given by

X(p)= —g [ —U —UI (q)]G(p+q),1
(C4)

P(p)= —g [ —U —UI (q)]F(p+q),1

I (q)= ——g U[G(k+q)G(k)+F*(k+q)F(k)] .1

(C5)

(C6)

Equations (C4) —(C6) are the same as Eqs. (6).
Substituting Eqs. (9a), (9b), and (1 la) into Eqs. (Cl) —(C3) yields the Ginzburg-Landau energy Eqs. (13a), where the

effect beyond the Gor kov decoupling, 02+03, appears in the T, and the 5. h (x ) in Eq. (13c) is given by the coefftcient
of the

~ P ~

term in Qz+ 03 as follows:

1 x x
h(x)= g g sg (neon@„.)[2cz (a2, 2)+3 ca(4, 0)+3 c4(a0, 4)+4 cc3a(1,3)+4c&c3a(3, 1)]DO(n n')—

16
n = —xn'= —x

X X

+—g g sg (neo„c„o)[c 2(a2, 0)+c 2(a0, 2)+2c
& c,a(1, 1)] D&(n —n')

4 n= —xn'= —x

1
2X

+—g g sgn(a)„co„)D2(n n') ———g [D,(n)D, ( n)+Do(—n)Dt( n)+—Do( n)D2(n)], —
n= —xn'= —x n=0

where

1a(i,j )=
(n + —,

' )'(n'+ —,
' )~

(C8)
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