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Undulating vortices in layered superconductors

1 MAY 1995-I

Stavros Theodorakis
Department of Natural Sciences, University of Cyprus, P.O. Box 537, Nicosia, Cyprus

Abdel Mouneim Ettouhami
Laboratoire d' Etudes des Proprietes Electroniques des Solides, * Centre National de la Recherche Scientigque,

B.I'. 166, 38042 Grenoble Cedex 9, France
(Received 11 October 1994)

We present the detailed structure of vortices normal to the layers in layered superconductors, assum-

ing only that the order parameter varies continuously between the layers. The magnetic field along the c
axis undulates due to the reduced screening between the layers. The radial magnetic field also undulates,
becoming zero on the layers, as well as midway between them.

Recent works' have proposed that the nonzero order
parameter between the layers should be taken into ac-
count in the phenomenological description of layered su-
perconductors, and they have incorporated explicit spa-
tial variations of the order parameter in the z direction,
normal to the layers. This was achieved by adopting z-
dependent coefficients in the phenomenological
Ginzburg-Landau (GL) free-energy functional, such that
the superconductivity be maximal on the layers. The cor-
responding upper critical fields were determined, as were
some new physics resulting from these new models.

Clearly, the particulars depend on the choice of these
spatially varying coefficients. However the structure of
the vortices should not depend on these particulars, but
rather on the periodicity of the spatially varying order
parameter. We describe in detail the structure of these
vortices in this paper, making no assumption about the
particular form of the z-dependent coefficients in the GL
free energy.

Indeed, we make a reasonable ansatz for the order pa-
rameter between the layers, for vortices normal to the
layers, and we then solve the field equations for the mag-
netic fields analytically. Our solution depends only on
the periodicity of the order parameter along the z axis,
and not on the detailed form of the GL free energy. We
find that the magnetic field h, along the z axis undulates.
Its value at the core is greater on the layers than in be-
tween them, while its value away from the core is least on
the layers. This happens because the total magnetic Aux
passing through a given slice normal to the z axis is con-
stant. Thus, in slices of reduced order parameter (and
hence reduced screening) there will be more magnetic
fiux away from the core, and less magnetic Aux at the
core. This means that the magnetic field h, at the core
undulates, acquiring its maximum value on the layers.

As for the radial magnetic field h along the layers,
which must be zero at the core in order to be well defined
there, it also presents undulations. It is zero on the lay-
ers, and it undulates in the space between two neighbor-
ing layers, Gipping direction midway between them.

The above-mentioned behavior of h, and h is indepen-
dent of the precise form of the free energy, and it depends

only on the periodicity of the order parameter along the c
axis. In other words, it results from the undulation of the
order parameter along the c axis.

Such an undulation will result typically from a GL
Gibbs free-energy functional of the form

f f f d»dydz «z, »l+I'+Pl+I'/2

+h /Sir —hH/4ir

Here I'(x, y, z) is the order parameter, V~~% is the gradient
of 4 along the layers, z is the direction normal to the lay-
ers, A is the vector potential, h is the magnetic field, and
II= i V (—2ejfic—) A. In the absence of magnetic fields,
and for M~ ~, we would have IVI = —a(z, T)/P.
Hence l+l follows the periodicity of a (z, T), which fol-
lows the periodicity of the layered structure.

We can write the GL Gibbs free energy in dimension-
less form, by measuring x,y, z in units of the distance d
between the layers, A in units of Ac/2ed, H and h in
units of A'c/2ed, 4 in units of &a jp, and the free ener-
gy in units of d a /p, where a is a positive constant with
the dimensions of a (z, T) This consta. nt is taken out of
a (z, T), so as to render it dimensionless. In other words,
a (z, T)/a=a(z, T) where a(z, T) is dimensionless. Note
that the constant n may be a function of T, but not of z.

Then, if we define the dimensionless constants
I =Mjm, v=4 /2Mad, A =mc P/16ire a, and

t~=P(iric/2ed ) /47ra =2vt A /d

the GL Gibbs free energy takes the dimensionless form

f f f«dy dzta(z T)I+I'+ I~III'/2

+vl'Ill„el'+ vlrl, el'
+ t~( h —2hH )/2],
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where II= —iV —A. The length A corresponds to the
penetration depth in the standard GL theory, while v
corresponds to g, /d, where g, is the coherence length
along the z axis. However this correspondence should
not be considered as an identification with the quantities
of the standard GL theory, except in the limit that
a(z, T)= —1, when the free energy does become the stan-
dard GL one.

The field equations that minimize the above Gibbs free
energy are

(V X h)ll vr'e*lIl~II+

a(V Xh), =v%'II, ql+c. c.

(3)

(4)

We shall examine the case of a single vortex in an applied
magnetic field Hz along the z axis. In that case, we shall
have, in terms of cylindrical coordinates, %=/(p, z)e'~
and

A= A(p, z)P,

h= —p +z— (pA ) .„aa 1a
Bz p Bp

Equation (4) is identically satisfied, while Eq. (3) becomes

BA 8 1 i) d+ — pA = f (p, z)[A —1/p) .
Bz2 ~p p ~p A2

(7)

If we define the quantity Q = 1 —p A, then

BQ 8 1BQ d

Bz i)p p ~)p A

We see that A =(1—Q)/p. Since A must not be singular
at the origin, we expect that

Q~l as p~0 .

+=g(p, z)e'~ =aoe'~~cosh[y(z n —1/2) ],— (10)

as long as n ~ z ~ n +1, with R =+p +b . Here the lay-
ers are located at z =n and z =n + 1. We shall think of y
as a given parameter that is determined by a(z, T), while
ao and b will be variational parameters. This ansatz can
describe the usual case of a uniform superconductor

We also require that the order parameter be continuous
along the z axis, in which case Eq. (7) indicates that A

and BA/Bz must be continuous. Otherwise 8 3/Bz
would involve 5 functions, and g would not be continu-
ous.

Our approach then will be to make a reasonable
periodic ansatz for the order parameter, and then solve
Eq. (8) to find the magnetic fields, subject to the boundary
condition that Q and BQ/Bz be continuous along the z
axis, and Q~ 1 as p —&0.

We expect that g will be maximal on the layers, and
that it is independent of p away from the origin. We also
expect that g is zero at the origin. These requirements
are independent of the details of a(z, T), and are valid for
any vortex in a layered structure.

We adopt thus the ansatz:

Qz 2 Qp p Qp
(12)

for n ~z ~n +I, where t=y(z n ——
—,'). Due to the

periodicity and continuity of Q along z, we expect Q to be
an even function of z n ——

—,'. Hence BQ/Bz will be an
odd function of z n ——

—,'. Then the continuity of BQ/Bz
will require that BQ /Bz =0 at z = n and z = n + 1.

Outside the core, R —+p, and hence f becomes a func-
tion of z only. In that case Eq. (12) is separable. We can
easily verify that the solution that will not diverge at
infinity is Q =NqpK, (qp)Q, (z), where N is a constant of
proportionality, and where

;)'Q d 'a 'g,
+q Q, = cosh t .

Bz A
(13)

If A~oo, then Qi is proportional to cos q(z —n —
—,').

But BQ, /Bz=0 atz =n, so q —+0 and Q, ~l as A —+0O.

Typically, d &&A, so we shall assume that q and
d ao/A are small, and we shall neglect their higher
powers. Then we can easily integrate Eq. (13) to obtain

Qo
Q, =1+ S(z), (14)

where

sy2 4y

and where q = ( d a o /A )(y +sinhy ) /2y. Indeed, as

y —+0, q~qo and Q, ~1, giving us thus the solution of
Clem away from the core [see Eq. (11)). Furthermore, Q,
is indeed an even function of z n —

—,', and —BQ, /Bz is

zero at z =n and z =n+1, as expected. Thus the solu-
tion of the general Eq. (12) away from the core, for small
dao/A, is

Q=NqpK, (qp)[1+d a(P(z)/A ] .

Actually, we can solve Eq. (13) even for large dao/A, but
in this case we have to assume that y is large. We can
then easily verify that for large y, and any value of
dao /A, the solution Q, of Eq. (13) is proportional
to exp[d aP'(z)/A ], so long as q =(d ao/A )(y
+sinhy )/2y. We note that this exponential gives indeed
the expression of Eq. (14) when dao/A is small.

Having thus seen the behavior of Q away from the
core, we now attack that full problem of solving the gen-
eral Eq. (12), which is valid everywhere. We define

[y =0,a(z, T)= —1], as well as the case of a well layered
structure (large y), and its g is manifestly continuous
along the z axis.

The limiting case of a uniform superconductor (y =0)
has been considered by Clem. The solution for y =0 is
given in terms of modified Bessel functions:

qoRKi(qoR )

qo bKi (qob)

where qo =dao/A.
In the general case we have to solve the equation
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Q =NqRKi (qR )f(p, z), (17)

where N is just a proportionality constant. Then Eq. (12)
becomes

We recall that Q, and hence g and g, must be even in
z n ——

—,', while BQ/Bz, and hence Bg/Bz and Bg/Bz,
must be zero at z =n and z =n+1. The function g that
satisfies Eq. (21), as well as these boundary conditions, is

t}f+qP fBz2 R2
2q Ko(qR)

qRK, (qR) Bp Bp p Bp

a p
Gos11 tf

AR
We try the solution

d2a2
f (p, z) =1+ pg(p, z) .

A
(19)

Then, assuming that d a0/A and q are small, and
dropping higher-order terms, we obtain from Eqs. (18)
and (19}the equation

2 2 2 2
q A 2y + cosht

d a k k (ki —4y ) 4y —k

coshk (z n ——1/2) y sinhy
k2 —4y2 k sinh(k/2)

The inverse Hankel transform then yields g:

g (p, z) = f kg(k, z)J, (kp)dk .
0

We note however that, as k —+0,

(22)

(23)

a'g+ a'g+1 Bg g p h q A

az' ap' p &p p' R' "' d'a,'

We introduce Hankel transforms to solve this equa-
tion. We shall make use of the fact that
10"pJ,(qp)J, (q'p}dp=q '5(q —q'). So, if we define the
Hankel transformg(k, z)= J o pJ, (kp)g(p, z)dp, we get

$2 2+2—k g = cosh t — bKi(kb) . (21)
d a

Q

q
~ = (y+ sinhy ) /2y,

A
(24)

a relation that must be familiar by now.
Then the exact solution of Eq. (20) can be written in

the form

g~k [q A /d ao —1/2 —(2y) 'sinhy] .

So the integrand of Eq. (23) will diverge logarithmically
at the origin, unless the coefficient of k is zero. Hence

sinhy + cosh2t + coshk (z —n —1/2) y sinhy
kz g 2 2k2 k2 —4y2 k sinh(k/2)

(25)

We note that g ~0 as y~O, and q ~dao/A, in which
case we recover Clem's solution. Also g —+0 as p~0,
which means that the proportionality constant N of Eq.
(17) must be equal to [qbKi(qb)] ', in order to ensure
that Q~1 as p —+0. Thus Eqs. (17), (19), and (25) give
the full solution for Q, from the origin out to infinity, as
long as we keep terms of at most first order in d a 0/A .

It is difficult to evaluate the integral of Eq. (25) analyti-
cally. Thus we seek a reasonable approximation. We
note that the expression pS(z)/b is even in z n —

—,', —
while its derivative with respect to z is indeed zero at
z =n and z =n+1. Furthermore, it satisfies Eq. (20)
when p « b. So we are led to assume that

0, 15

0.10

0.05

0.00

—0.05

p=0.01

g(p, z) =pS(z)/R

and that

(26)
—0.10

qRK, (qR) d ao»
Q(p, z)= 1+ S(z)

qbK, (qb }
(27) 0.0 0.2 0.4 0.6 0.8 1.0

where the quantity q is defined through Eq. (24). We note
that if p )&b then we recover the solution away from the
core of Eq. (16), while if p«b the g(p, z) of Eq. (26)
reduces to pS(z}!b, which does satisfy Eq. (20). Fur-
thermore, Q ~ 1 as p~O, and Q and BQ /Bz are continu-

FIG. 1. The radial magnetic field h as a function of z, for
various values of p. The numbers used were chosen for the sake
of clarity.
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ous along z, while BQ/Bz is zero at z =n and z =n+1.
Finally, for y~0 it yields the Clem solution of Eq. (11).

In other words the assumption of Eq. (27) satisfies the
equations away from the core and at the core, as well as
all the appropriate boundary conditions. It is a very
good approximation, for small d ao/A, to the correct
solution for the fields that corresponds to our original an-
satz of Eq. (10) for the order parameter.

The corresponding radial magnetic Geld is

qRK, (qR) d ao
h

qbK (qb)
(28)

sinh2t sinhy

4y 2y2

h, = Ko(qR) d ao S(z+
qbK, (qb) p~ qbK, (qb )

We note that h —+0 as p —+0, and that h =0 at
z =n, z =n+ —,

' and z =n+1 (see Fig. 1). Since h is
odd in z —n —

—,', there is no net radial Aux between z =n
and z =n +1, and f „"+'2mph dz=0. Thus h undulates
between neighboring layers, Gipping its direction midway
between them.

As for the magnetic field along the z direction, it is
equal to

10

0.00 0.25 0.50
i

0,75 1.00 1.25 'l .50

Hence

P 2 2bX q Ko(qR) —qRK&(qR)
R R

(29) FIG. 2. The magnetic field h, along the z axis at z =n and
n +1, and at z =n+ ~, as a function of p. The numbers used

were chosen for the sake of clarity.

q Ko(qb ) 2d Q

b A
(30)

Thus the value of the magnetic field h, at the core is
greatest on the layers. While the value of h, far from the
core is greatest at z =n +—,

' (see Fig. 2).
Indeed, the fiux along z is fo"h,pdp=l, in units of

hc/2e. Hence it is constant for every slice normal to the
z axis. But there is less superconductivity between the
layers, and thus h, is screened less between the layers,
than on the layers. Consequently h, spreads out further
towards infinity in the region between the layers, and it
must lower its core value in that region, to compensate
for this spreading of the magnetic Aux.

Equations (10), (27), (28), and (29) are the main results

of our paper. These results enable us to calculate the to-
tal energy for a single vortex in an externally applied field
Hz. We need to note first that

82~ 8 18~ d ~o ' 8b2
+p — = Q cosh t — S(z)

Bz' Bpp Bp A' R'
~

R'

(31)

for the Q given by the ansatz of Eq. (27), having neglected
terms of order d a o /A . Furthermore, since we expect
a(z, T) to be symmetric with respect to the layers, we
shall assume that it is an even function of z —n —

—,'. I.e.,
a(z, T) is really a(t, T). We can then calculate the total
energy, after making use of Eq. (31). We obtain

q K'o(qb)

qbK, (qb)
L +b+aaoE( T) L b ln—

$2

d ~o 2 2

(y+sinhy)/4y+mvyao(sinhy —y)(2) L b ln—2 —i 2 2 L+b
2A $2

~ao 2 2 L'+&'+ (6y+ 8 sinhy+ sinh2y ) L +b —2b ln
32y $2

(32)

where l(T)=(2 /)yf or~ a(t, T)cosh t dt. Here we kept
terms up to, and including, order d ao/A, and we took
qb to be quite small. Indeed, b is expected to be of the or-
der of the coherence length. The integration over p has

I

been performed from 0 to L, with L ~~.
Straightforward minimization of the energy gives

z I ( T)—vy(sinhy —y—)/2
(6y + 8 sinhy +sinh2y ) /16y

(33)
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and

br= 1 1+ sinhy

X [ I (—T)—vy(sinhy —y ) /2] (34)

3H„= K (qb)+ (35)

which reduces to the H„of Ref. 2 when
y~o, ao 1. b 2vI

We have thus managed to obtain the fully detailed

Minimization of the part in the energy that is proportion-
al to I, will give y. This y will, of course, depend on
a(t, T). For example, for y~O and a(z, T)~ —1, we re-
cover the Clem results a 0

= 1 and b =2vt, or, in dimen-
sionful units, b =v 2g~~. For the example used in one of
the works of Ref. 1, a(z, T)= 1 —o.'( T)+„5(z n),—we find
b = [—1+a( T) l2v'v j 'vt, i.e., a coherence length
that diverges at T„as it should.

At H, &
the minimized energy should be equal to the

Meissner energy, i.e., the energy of the state with
V=aocoshy(z n ——

—,') and A=O. This Meissner energy
is the piece proportional to L . So we obtain

structure of a single vortex normal to the layers, in any
layered superconductor. Our analytic results, even
though approximate, are quite general, and they depend
on the details of the phenomenological description only
through the parameter y, that determines the extent of
the layering of the structure. These results are given by
the Eqs. (10), (27), (28), and (29). They describe fully the
variation of the order parameter and of the magnetic
fields h, and h, which undulate between the layers.
These undulations are weak when d «A. However they
are expected to be ubiquitous. Indeed, our results,
though derived perturbatively in the region d «A, will
be qualitatively correct even away from this region, as
discussed briefiy after Eq. (16). Such will be the case in
multilayers, where these undulations will be observable
when d is a sizeable portion of A. We also note that these
undulations will persist when we have many vortices, be-
cause they are simply the result of the variation of A
along the z axis in a periodic fashion, a variation that is
indeed present in a vortex lattice in a layered structure.
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