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We present theoretical results for the change 56 in the electrical conductance 6 of a mesoscopic sam-

ple due to the switching on of superconductivity. Due to competition between normal and Andreev
scattering, the sign of 56 depends in detail on the impurity configuration within a device. In contrast
with universal conductance. fluctuations, we demonstrate that 5G can scale with the system size and
therefore, as well as being negative, can have a magnitude much greater than 2e /h. For clean systems,
this anomalous behavior arises from low-angle quasiparticle scattering at normal-superconducting inter-
faces. For dirty systems it arises from the presence of normal-state conductance resonances. We also ex-
amine the magnetic-field dependence of 56 and show that fields on the scale of a Aux quantum through a
sample can change the sign of 5G and suppress its magnitude. For a superconducting order parameter of
magnitude A0, we present results for the 6 susceptibility yz=limz 086(60)/860. For clean systems,

0

where the normal-state conductance is quantized in units of 2e /h, we predict that yz diverges at
normal-state conductance steps. For dirty systems, it is shown that gz is sensitive to the local environ-
ment of single impurity atoms.

I. INTRODUCTION

While the separate fields of superconductivity and
normal-state mesoscopic physics are now relatively ma-
ture, the subject of mesoscopic superconductivity is a
new area of interest. Recent theoretical work has pre-
dicted that, when superconducting inclusions or boun-
daries are added to a phase-coherent normal sample, not
only are well-known mesoscopic phenomena such as
universal conductance fluctuations' (UCF's) changed
in character, but also familiar properties of superconduc-
tors such as the Josephson effect are fundamentally
affected. In addition, novel interference effects, which
couple to the order-parameter phase difference between
multiple super conducting islands are predicted,
along with zero-bias anomalies arising from particle-hole
syrnrnetry breaking at finite energies. ' '

When analyzing problems in mesoscopic superconduc-
tivity, the question of self-consistency is rarely addressed.
This arises in part from associated technical difficulties
and in part from the fact that for many experiments such
questions are of secondary interest. Consider, for exam-
ple, an aluminum island embedded in a phase-coherent
normal substrate such as silver. As the temperature or an
applied magnetic field is decreased, the aluminum eventu-
ally undergoes a transition and in the region occupied by
the island a superconducting order parameter h(r)
switches on. In the region outside the island, due to the
proximity effect, or, equivalently, Andreev scattering at
the normal-superconductor interface, a pairing field

f (r) = ( g&(r)f&(r) ) is induced, even though h(r) may be
negligible there. Thus the aluminum is a source of the
field f (r) in much the same way that a nearby capacitor
plate is a source of electric field. Provided one is not con-
cerned with the properties of the aluminum, such as its
critical field or temperature, questions of self-consistency
are not of primary interest. Adopting the view that b, (r)
should be treated on the same footing as other experi-
mentally accessible fields leads one naturally to ask how
measurable quantities, such as the electrical conductance
G of a phase-coherent normal host, are affected by the
switching on of superconductivity. Recently Hui and
Lambert' ' proved a simple theorem, which states that,
when the normal-state conductance of a mesoscopic host
is high enough, the introduction of superconductivity
necessarily decreases the electrical conductance G. The
main reason for highlighting this anomalous proximity
efFect (APE), which in clean systems is a consequence of
the fact that G is bounded from above, is that it
highlights the very different behavior of phase-coherent
normal hosts, compared with their macroscopic counter-
parts, and motivates studies of dirty hosts, to which the
theorem does not apply. For a superconducting order
parameter of magnitude Ao, it was noted recently' that
to lowest order the change in conductance 6G arising
from the switching on of a nonzero order parameter is of
order ho, and therefore the response coefficient

yt, =limt, oBG(ho)/Bbo was introduced. This "b, sus-
0

ceptibility" characterizes the change in G due to the on-
set of superconductivity and is independent of the magni-
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tude of the superconducting order parameter. In Ref. 19
numerical results were presented which demonstrate that
even dirty normal hosts can possess a negative yz. Fur-
thermore, it was noted that yz scales with the system size
and therefore conductance changes due to the onset of
superconductivity may be many orders of magnitude
greater than the quantum of conductance 2e /h. At first
sight, this is perhaps not surprising, because one intui-
tively expects the switching on of a superconducting or-
der parameter to yield a gross increase in the conduc-
tance. However, we predict that y& can have arbitrary
sign and therefore switching on superconductivity in a
mesoscopic sample can produce a macroscopic decrease
in conductance.

The aim of this paper is to present detailed theoretical
predictions for the change 56. Experimentally, conduc-
tance anomalies near a superconducting transition
have recently been observed and we believe the analysis
presented below and in Refs. 17 and 19 constitutes the
first explanation of these APE's, based on a microscopic
theory. An overview of the experimental situation will be
presented in the discussion. In Sec. II, a method for com-
puting 6 is outlined and in Sec. III, to highlight many of
the qualitative properties of yz, numerical results for
two-dimensional disordered systems are presented. The
existence of large negative values of gz is not in itself
sufficient to yield macroscopic negative changes in G, be-
cause the extent of the region over which G varies linear-
ly with hp may be infinitesimal. In Sec. IV, to demon-
strate that negative changes greater in magnitude than
2e /h do indeed occur, we examine 5G at finite values of
Ap and show that the regime over which 56 varies linear-
ly with hp can extend to finite values of Ap. In Sec. V,
we present analytic results for clean systems and examine
the relationship between steps in the normal-state con-
ductance and singularities in y&. In Sec. VI we examine
the sensitivity of y& to the local environment of single
atoms and demonstrate that for dirty systems single
atomic changes can lead to fine structure in y&. Finally,
in Sec. VII, the magnetic-field dependence of 5G is com-
puted and it is shown that the application of a field on the
scale of a flux quantum through a sample both suppresses
the magnitude and can change the sign of 5G.

II. CALCULATION OF THE ZERO-TEMPERATURE 6
SUSCEPTIBILITY

For normal mesoscopic structures, smaller than the
quasiparticle phase-breaking length, it is well known
that the precise value of the electrical conductance 6 de-
pends on the nature of the normal leads, connecting the
sample to external reservoirs. This situation persists in
the presence of superconductivity and is therefore
reflected in formulas for yz. In Ref. 27 it was shown that
the Landauer formula for the electrical conductance of
a scatterer connected to two normal probes could be gen-
eralized to incorporate Andreev scattering and, more re-
cently, generalizations of multiprobe formulas were ob-
tained. The two-probe result, ' ~ which has also
been noted by Takane and Ebisawa, contains the
boundary conductance formula of Blonder, Tinkham,

and Klapwijk and the normal-state conductance as
limiting cases. In what follows, we examine the 6 suscep-
tibility associated with the two-probe conductance only;
multiprobe formulas can be obtained by applying the ar-
guments which follow to the results of Ref. 28. Although
the analysis can readily be generalized to finite tempera-
tures, for simplicity we also restrict it to zero tempera-
ture.

The central quantity needed to compute transport
properties of a phase-coherent sample possessing a Ham-
iltonian H and connected to external current-carrying
leads is the quantum-mechanical scattering matrix
s(E,H), with submatrices sL'g (E,H) which describe the
scattering of excitations of energy E from all incoming P
channels of lead L' to all outgoing a channels of lead L
(where a,P=+1 for particles and —1 for holes). This
satisfies unitarity and time-reversal symmetry, s (E,H)
=s (E,H) and s (E,H*)=s'(E,H), while the submatrices
satisfy the particle-hole symmetry relation

Hp P(r) 1((r)
P(r) P(r) (2)

as outlined in Ref. 28. In what follows, we consider the
situation in which the magnitude of the order parameter
b, (r) within the scatterer is characterized by a real, posi-
tive quantity hp. Starting from Eq. (1), yz can then be
obtained by di6'erentiating with respect to Ap. In the case
of a spatially symmetric sample, where coefficients associ-
ated with left- and right-going quasiparticles are identi-
cal, Eq. (1) reduces to

sL'g. (E,H)=ap[sL L' ~( E,H)]*—.

From a knowledge of s(E,H), a matrix of reflection and
transmission coefficients can be constructed

PL~~. (E)=Tr[s ~
~ (s ~

~ )t]

from which a variety of transport coefficients can be cal-
culated. For example, the zero-temperature two-probe
electrical conductance, in units of 2e /h, is given by

2(R,R,' —T, T,' )6 =Tp+T, +
R, +R,'+T, +T,'

where we have noted that particle-hole symmetry at
yield~ P~~~ (0)=PL L ~(0). The coefficients

Rp=PL+, L+, (0), Tp =PL+. L (0)[R,=PL L+, (0), T, =P~ +
(0L)]

are probabilities for normal (Andreev) reffection and
transmission of quasiparticles from reservoir L, while
R p, Tp (R,', T,') are corresponding probabilities for quasi-
particles from reservoir L, '. In the presence of N open
channels per lead, these satisfy

R p + Tp +R& + Ta =R p +Tp +R+ + T& =1V

and Tp+ T, = Tp + T,'.
Given the spatial form of the superconducting order

parameter b,(r) and the normal scattering potential U(r),
the scattering matrix can be computed by solving the
Bogoliubov —de Gennes equation,
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G =To+R, =N —(Ro+T, ),
in which case

pa= lim (To+R, )=—lim 2(RO+T, ) .a a
o 860 ho —+0 /+0

(3)

(4)

conductance G ( b o,M, M', W) is first obtained with
50=0, then recomputed with ho=4X10, and finally
the derivative gz(M, M', W) estimated from the difference
between the two values. To aid comparison of results for
systems with different widths, it is convenient to intro-
duce the conductance per channel of the normal material,

Since the limit 50~0 is to be taken, h(r) can be treated
perturbatively and all scattering coefficients computed us-
ing the "golden rules" for Andreev scattering introduced
in Refs. 12 and 28. In Sec. V, this approach will be used
to obtain analytic results for a clean, normal host in d di-
mensions, while in other sections results obtained by nu-
merically solving Eq. (2) and difFerentiating Eq. (1) will be
presented.

III. NUMERICAL RESULTS FOR yg
IN TWO DIMENSIONS

In this section, we present the results of detailed nu-
merical simulations of a two-dimensional tight-binding
system, described by a Bogoliubov —de Gennes operator
of the form

ao
—H*0

(5)

/ //v

FIG. 1. Two-dimensional tight-binding system, of width M
sites and length M' sites (shown shaded), connected to normal,
crystalline, external leads of width M.

In this equation Ho is a nearest-neighbor Anderson mod-
el on a square lattice, with off-diagonal hopping elements
of value —y, and 6 is a diagonal order-parameter matrix.
The scattering region is chosen to be M sites wide and M'
sites long and is connected to external leads of width M,
as shown in Fig. 1. Within the scattering region, diago-
nal elements je; j of Ho are chosen to be random num-
bers, uniformly distributed between eo —8' and E'0+8,
while those of 6 are set equal to 60. Within the leads, the
diagonal elements of Ho are equal to a constant eo, while
those of 6 are set to zero. In what follows, for a given
realization of the Hamiltonian H, the scattering matrix is
obtained numerically, using a transfer matrix technique
outlined in Appendix 2 of Ref. 28. The quantum-
mechanical scattering states of energy E for such a sys-
tem are functions of E/y, 50/y, W/y, [e;/y j, M, and
M', although in what follows, for notational convenience,
this full parametric dependence will not usually be shown
explicitly.

Simulations of this model were reported in a recent
Letter. ' The results of Figs. 2—5 below both summarize
and generalize those of Ref. 19. For these figures, y =1,
all results are at zero energy, and, to avoid a discontinui-
ty in the number of open channels at E=0, the choice
@0=0.09 is made. To obtain results for a given width M,
length M', and disorder 8' a set of random diagonal ele-
ments [e;j of Ho is generated. For each such set, the

yg=XM' y~,
where

(ga) = 8+C[1—(G—(0) ) ],

(6)

(7)

with B and C positive constants, independent of M and
M . The solid line drawn in Fig. 2 is a graph of
(jz)M' obtained from Eqs. (6) and (7), with C =6 and
B =0.5.

Figure 3 suggests that for intermediate disorder plots
of o'pI' versus (G(0)) fall onto a single curve and
therefore o. is independent of the number of open chan-
nels N. The figure also shows that o. vanishes at zero
disorder and rises rapidly to a plateau region at inter-
mediate disorder. In the latter region, which spans
roughly the interval 0.99( ( G (0) ) (0.5, the fiuctuations
increase by only a factor of 2, whereas in the region
0.01((G(0))&0.5 they increase by an order of magni-
tude. At much larger values of disorder, where G (0)~0,
both (ja) and the fiuctuations vanish, as predicted by
the ultrastrong-disorder analysis of Ref. 19. The width of
G(0) over which this occurs is extremely narrow and
therefore these results would appear as a vertical column
of points on the G(0)=0 axis of Fig. 3. For clarity, we
have chosen to omit these points from the figures.

G(O, M, M', W)=G(O, M, M', W)/N .

It should be noted that the quantity plotted in Figs. 2—8
of Ref. 19 is the susceptibility per open channel,
f a=pa/N, not yz as stated in the figure captions therein.
Figures 2 and 3 show results for a variety of M, M', and
W, obtained by choosing a value of. 8' generating 500
sets of random diagonal elements, and computing the en-
semble averages (ga(M, M', W)) and (G(O, M, M', W)),
along with the rms deviations o'- = ( [fa

—(fz ) ] ) '~

and

OG=([G(O, M, M', W) —(G(O, MM', W)) ] )'

To highlight the system-size dependence, Fig. 2 shows
plots of (gz(M, M', W))/M' versus (G(O, M, M', W))
for three values of M and three values of M', while Fig. 3
shows corresponding plots of cr (M, M', W)/M' . In
view of the above-stated theorem in the zero-disorder
limit, where G(0)=1, one expects (fa) ~0 and cr =0
On the other hand, in the infinite-disorder limit, where
both G(0)=0 and G(bo)=0, one expects (ja) =or
=0. ' Between these two limits, (fa) passes through a
maximum. Figure 2 indicates that for intermediate disor-
der, where (gz) varies linearly with (G(0) ), the slopes
of the graphs of (fa)M' are independent of system
size and therefore the total susceptibility yz is of the form
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IV RESULTS FOR THE FINITE kp CONDUCTANCE

Having summarized and expanded the results of Ref.
19, we now examine the magnitude of the conductance
change 5G(b,o), due to the switching on of a finite order
parameter. In view of the scaling relation (6), we predict
that for diffusive hosts gz scales with the number of open
channels and therefore, as noted in Ref. 19, conductance
changes due to the onset of superconductivity can in
principle be much greater than 2e /h. To demonstrate
this convincingly, however, one must be sure that the re-
gion over which 56 varies linearly with 50 is finite. In
Sec. V, we give examples of systems for which
diverges, but with a linear region of infinitesimal width.
In this section, results are presented which we believe are
typical of homogeneously disordered systems in two di-
mensions. These demonstrate that, at least for weakly
disordered structures, changes 56(b,o) of magnitude
equal to many multiples of 2e /h and of arbitrary sign
can indeed occur.

For four different values of disorder W, Fig. 4 shows
results for 56 ( b o ) versus the ratio b ~ =ho/EF, where

5b,o (G (o) /IX& I
~ (9)

For large disorder, where G(0) is typically small com-
pared with unity, this condition can force 66 to vary
nonlinearly, even for small values of hF. In this case the

Ez=4y —eo is the Fermi energy. Results are shown for
values of hz up to AF-10, which is typical of a con-
ventional superconductor. For each value of W, the
figure shows results for several different realizations of
the disorder. For the weaker disorders of W=0.04 and
0.4, Figs. 4(a) and 4(b), respectively, show that 5G is typi-
cally a monotonic function of 50 and therefore the sign of
y& yields the sign of 56 at finite bo. For the larger disor-
ders of W=2. 9 and 3.9, corresponding to Figs. 4(c) and
4(d), respectively, if ga is positive, 5G is typically mono-
tonic. On the other hand, since the conductance is neces-
sarily positive,

N )56(bo)+ 6(0))0,
and therefore if g& is negative the width 56o of the linear
regime must satisfy

10
~

'i ~

sI

FIG. 3. Scaling curves of the standard devi-
ation crPf'

0
0
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-2

M= 50,M,= 20 0
M=50, /=50 +

M= 50,M =, 100 O
M=100,M = 20 X

fo(x)=u 'i exp(ikx)

+ v
'i f G+ (x,x', E)U(x') exp(ikx)

=v 'i exp(ikx)+go '(x),

-4

-6

-8 0

where k is given by trt k /2m =p+E and u =A'k/m is
the group velocity. The outgoing Green's functions of
the normal host are given by

E —Ho(x) 6+ (x,x', E) 0
-10 . 0 E+Ho (x) 0 6 (x,x', E)
-12

0.8 1 0
=5(x —x')

0 1
(12)

FIG. 6. Results for the total conductance change 5G versus
G(0), for systems of size M'=20, M =50 (squares) and M'=20,
M =100 {crosses). Each value corresponds to separate realiza-
tions of the site energies Ie;]. Since the disorder is weak, the
fiuctuations are small and therefore the results have not been
ensemble averaged. For this calculation 50=0.1, E =0, y=1,
and @0=0.015.

and satisfy

6 (x,x', E)=—G (x,x', E) . —

In the limit U(x) =0, these reduce to the Green's func-
tions for a clean host,

6 (x,x')=(iAu) 'exp(iaklx —x'I) . (13)

From Eq. (10), all reflection and transmission
coefficients associated with an incident particle from the
left can be written down by inspection. For example,

g(x)
P(x)

0o(x)

0

+ f'dx
G+(x,x', E)

0

0

G (x,x', E) and

L 2
=u f dx'6 (L,x')b, *(x')g(x')

0
(14)

0 h(x')
h*(x') 0

f(x)
P(x) (10)

In this equation, go(x) is an eigenstate of the normal host
described by 00, which for a unit incoming particle Aux
from the left is of the form

L 2
=u f dx'6 (O, x')b, '(x')g(x')

0

Similarly, if g'"'(x) is the outgoing component of P(x),
then

L 2
&o=ulg'"'(0)I = Irol =u Po"'(0)+ dx'6+(O, x')b(x')P(x')

0

=v go"'(0)+ f dx'dx" 6+( ,0x)b( x) 6(x', x")4*(x")f(x") (16)

and
L 2

T, =vip(L)l'= lrol'=u go(L)+ f dx'6+(L, x')&(x')y(x')

2
=v go(L)+ f dx'dx "6+(L,x')b(x')6 (x',x")b,*(x")Q(x")

0
(17)

(19)

For the case where b, (x) is equal to a constant b,o, in the interval 0 (x & L, replacing g(x) by go(x) on the right-hand
sides of these expressions yields to order A0

T, =Idol v f dx'G (L,x')go(x') (18)
0

&, = l~ol u f dx'6 (O, x')go(x')



51 THEORY OF ANOMALOUS PROXIMITY EFFECTS IN PHASE-. . . 11 641

aIld

Ra=Ra+ ~bo~ 2v Re [$0"'(0)]*f dx'dx "G+(O,x')6 (x', x")ito(x")
0

To=TO+ ~bo~ 2v Re [$0(L)] f dx'dx "6+(L,x')G (x',x")$0(x")
0

(20)

(21)

where R0 and T0 are the reflection and transmission
coefticients of the normal host. In what follows, we shall
be interested in evaluating these formulas at zero energy,
where k is replaced by k„=(2m@/A' )' and v by
vF =fikF /m.

In more than one dimension, corresponding formulas
for g& can be obtained from the multichannel golden
rules written down in Ref. 12. By symmetry, expressions
for coefBcients arising from an incident particle from the
right are obtained by substituting into the above expres-
sions the Green's functions and wave functions corre-
sponding to a normal potential U(L —x}. In general, if
U(x)=U(L —x) and 5(x)=b, (L —x), then left-going
and right-going coef5cients are equal and Eqs. (3) and (4)
can be used.

To obtain y& for a clean normal host, we first examine
a clean one-dimensional system and then generalize the
results to higher dimensions. For a clean embedding sys-
tem of length L in one dimension, for which U(x)=0,
go(x}=v ' expikx, Eq. (13}combines with expressions
(19) and (21) to yield to order

~
b.o~

and a corresponding longitudinal wave vector k„. In this
case, the above approach is valid for each separate
scattering channel n, provided VF is replaced by the
channel-dependent velocity v„. Reflection and transmis-
sion coefBcients, as well as y&, are then obtained by sum-
ming over all open channels, to yield

—sin k„L
xg= g

n=1 m Vn

(27)

E =co 4y+—4y sin k„(E)a/2+4y sin m n /M . (28)

This result is very general and can be applied to two or
more dimensions.

For a continuum system, v„=8k„/m, while for a two-
dimensional tight-binding system, v„=(2ya /fi)sink„a
In the latter case, for a system of width M sites, with
periodic boundary conditions in the transverse direction,
the transverse wave vectors are k„'"=2m.n/M and there-
fore the longitudinal wave vectors k„(E) of a quasiparti-
cle of energy E are given by

R, =
A VF

(22)

For a given energy E, this yields N real, positive values
for k„(E), which define the open channels of the system.
From Eq. (27), the total zero-temperature susceptibility is

and

T0=1-
A VF

~b,o~ sin k~L

m'vF4
(23)

These combine to yield

Sin kFL
XQ

m UF
(24)

Before generalizing this to more than one dimension, it
is interesting to note that a parallel analysis can be car-
ried out for a tight-binding system of length L =M'a, de-
scribed by a Hamiltonian of the form (5). In one dimen-
sion, the normal state possesses a dispersion relation of
the form E =@0—2y coska and one finds that R„T0,and

g& are trivially obtained by replacing VF and m in Eqs.
(22) —(24) by their tight-binding counterparts

sin k„(0)LX~=, g . 4 ~

4y „=) sin k„(0)a
(29)

G(O)

The qualitative behavior of the right-hand side of Eq.
(29) can be obtained by noting that the dominant contri-
bution arises from the smallest denominator, which may
be singly or doubly degenerate and which vanishes at
normal-state conduction steps. Small denominators arise
when the longitudinal velocity of one or more channels
tends to zero and are therefore associated with quasipar-
ticles incident at a grazing angle 8=sin (v„/v~). As an
example, Fig. 7 shows the behavior of the normal-state

and

2/Q
vF = sinkFa (25)

-2000

0
m=

2/Q
(26)

In more than one dimension, since the system is
translationally invariant in the transverse direction, each
scattering state has a well-defined transverse momentum

FICx. 7. The top figure shows the normal-state conductance
G(0) of a clean system as a function of the site energy e0. The
lower figure shows that the corresponding yz is negative and
diverges when steps occur in 6 (0). For these calculations y = 1,
E =0, and M =M'=5.
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conductance G(0) (upper graph) and yz as a function of
ep. For this system, M =M'=5 and there are two doubly
degenerate and one singly degenerate channels. There-
fore G (0) exhibits two conductance steps of magnitude 2
(in units of 2e /h) and one step of height unity. At each
of these steps, y& diverges. To quantify this behavior for
systems of much larger width, let n be a value of n corre-
sponding to the smallest denominator and let the degen-
eracy be d„( =1 or 2). From (28), the value of the small-
est denominator is

sin k (0)a =!1 —(eo/2y —cos2mn/M) ]

and therefore the value of ep at which the nth channel
closes is e„=cos2m. n/M+1. To approximate yz in the
interval E'

] &6'p & E' — where channel n —1 is closed and
channel n almost closed, it is convenient to expand ep
about e,. For small eo, n/(M/2) =m, where m is an

integer, so writing 2n =mM —l, where I/M «1, yields
for the dominant contribution to the right-hand side of
(29)

N

R, = gR„, (31)

energy excitations are Andreev reQected. The curves
shown in Fig. 9 are a result of competition between nor-
mal and Andreev scattering and for excitations incident
at a grazing angle it is readily shown that normal scatter-
ing dominates. To emphasize this feature and to obtain
an analytic result for the finite Ap conductance change,
we end this section by examining a long, clean N-S-X
structure in more detail. Provided the superconductor is
much longer than the superconducting coherence length

g =kF Ep /Ap there is negligible quasiparticle transmis-
sion through the S region and therefore the total resis-
tance reduces to the sum of two Blonder- Tinkham-
Klapwijk (BTK) boundary resistances. Since the boun-
daries are identical, this yields for the total conductance
G =R, and since the system consists of decoupled chan-
nels R, can be obtained by solving the Bogoliubov —de
Gennes equation at a one-dimensional N-S interface. By
insisting that scattered wave functions and their first
derivatives be continuous at the boundary, one finds

d- sin k„(0)L
64y' [,~/M'

I ~. ~„,—I /4y ]—'- (30) where

R„= 2

1+I 1+(6o/p ) ]' (32)

and p„=Pi k„/2m is the longitudinal kinetic energy of a
quasiparticle incident along channel n. Clearly, those
channels corresponding to low-angle quasiparticles with

p„&Ap possess a small Andreev reAection probability R„
and, since there is no transmission, the corresponding
normal reflection probability (1—R„) approaches unity.
Finally, one obtains for the finite 6 conductance change
due to the switching on of a uniform order parameter in a
clean system

N lv 1 —
! 1+(Q /p )2]1/2

56(ho) = R„—1 =
„=i 1+!1+(5o/p ) ]'

(33)

with a=+ Il!. This shows that for small n/M ya is an
oscillatory function of ep, bounded by an M-independent
envelope. Furthermore, the M dependence of the denom-
inator is removed by plotting ya/M versus eoM, as
shown in Fig. 8.

The physical origin of divergences in y& can be under-
stood by examining curves of 6 (b,o) versus eo for various
values of Lp, shown in Fig. 9. For arbitrarily small but
finite Ap, G becomes a continuous function of E'p. Com-
bining this with the theorem that y& is negative for clean
systems guarantees the occurrence of divergent negative
susceptibilities. It is important to note that the results
shown in Fig. 9 lie outside a standard quasiclassical
description of superconductivity, which at a clean
normal-superconductor (N 5) interface in-sists that zero-

0~10

!-50&&10

M=10M

0&&10

x)Q

Qxg Q

SQxqQ

coM

M='Mt10
Sx)Q

3

FIG. 8. This graph contains six plots of yz/M ( =yes%/M )

versus eoM2, for M = 1000, 10000 and M'=M/10, M, 10M, ob-
tained from the exact result Eq. (29).

It should be noted that this result has been obtained in
the limit of zero quasiparticle transmission and therefore
Eq. (27) cannot be recovered by expanding Eq. (33) to or-
der Ap. This is a reAection of the fact that the limits
L, ~DO and Ap~0 do not commute. Indeed, the lowest-
order contribution to Eq. (33) is obtained by replacing the
numerator of Eq. (27) by —1, reflecting the fact that in
the absence of quasiparticle transmission scattering pro-
cesses from opposite ends of the superconductor do not
interfere. It is interesting to note that, for both two- and
three-dimensional structures, in the limit that the system
width tends to infinity, the number of open channels with
p,„(ho is of order Nb, o/p. Hence Eq. (33) yields
56(bo)/6 (0)=Do/p, which demonstrates that 5G scales
with 6 (0).

VI. THE ROLE OF RESONANCES

In this section we address a question begged by results
of the form shown in Fig. 2(a), namely, why do systems
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30.0 3.5x10 0.025

G(t)) G(O)

10 0.0
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-25
-1

-1.8x10
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FIG. 9. Curves of the total conductance G(hp) versus E'p for
five values of Ap and a system of size M =50, M' =5. The upper
curve corresponds to hp = 10, the next three curves to
60=10, Ap=0. 1, and hp=0. 3, and the bottom curve to
Ap=0. 5.

with the same normal conductance possess markedly
different susceptibilities? The results of the previous sec-
tion go part way towards answering this question, since
they reveal that g& is sensitive to fine-scale structure in
the normal-state conductance. For clean systems this
structure takes the form of well-known conductance
steps. For strongly disordered systems, it is known '
that G(0) can exhibit sharp resonances and in this sec-
tion we examine the role of such features.

Resonances in G (0) can be obtained both by varying
the scattering potential at constant energy and by varying
the quasiparticle energy for a Qxed scattering potential.
Experimentally, resonances in G(0) reveal themselves
through the motion of two-level systems, which can cause
observable changes in G(0). ' For this reason, rather
than focus attention on the energy dependence of G (0)
and y&, we examine the sensitivity of these quantities to
the adiabatic motion of single atoms, which is modeled
by varying the diagonal elements e; of individual sites.
To this end, consider a rectangular scattering region of
width M and length M', containing M XM' sites. Let the
labels attached to the diagonal elements of the leftmost
column of sites be i = 1,2, . . . , M, those belonging to the
next column i =M +1,M +2, . . . , 2M, and so on. For a
given realization of the random elements I e; I, we select a
particular site j and vary ez between the limits —y and
+y. After plotting G (0) versus e, the latter is returned
to its original (random) value and the whole exercise re-
peated for the next value of j. For M =10 and M'=20,
the left-hand plots of Fig. 10 show results for the 25%%uo of
sites l j MM'/4 nearest the left end of the scattering
region, while the right-hand plots show results for sites
MM'/4+ l &j &MM'/2, which are closer to the center
of the scatterer. These results were obtained with a rath-
er large disorder, 8'=6. Figure 11 shows corresponding
results for a smaller disorder, 8'=4. The upper pairs of
graphs in these figures show results for the normal-state
conductance per channel, while the bottom pairs show

FIG. 10. For M =10, M'=20, and a disorder of 8'=6, the
left-hand pair of figures show results obtained by successively
varying the site energies e; of the 50 leftmost sites. The right-
hand pair show results for the next 50 sites. The upper pair of
graphs show results for the normal-state conductance and the
bottom pair of graphs show results for the corresponding values
of yz. For these calculations, y=1 and 6'p=0. 2. The latter
value is chosen such that the system is half way between discon-
tinuities in the normal-state conductance.

the corresponding values for yz. Sites located near the
center of the scatterer yielded larger and more narrow
resonances than their counterparts near the boundaries,
as predicted by a Breit-Wig ner formula for normal
transmission resonances. As noted above, such reso-
nances reveal themselves experimentally through the
motion of single defects and therefore Figs. 10 and 11
predict that the corresponding 6 susceptibility should
also be sensitive to such motion.

VII. BEHAVIOR OF yg IN A MAGNETIC FIELD

0.03 0.1

G(O)

0.0

G(P)

0.0
-1 1 p ]

j.
1000

1

900

XQ XQ

0 -13000

FIG. 11. As for Fig. 10, but with 8'=4.

Having analyzed the zero-field behavior of yz, we now
examine the effect of switching on a weak magnetic field
in a direction normal to the plane of the sample. The aim
of this calculation is to highlight the generic response of
g& to an applied magnetic field and therefore, as noted in
paragraph 2 of the Introduction, self-consistency is not of
primary interest. Nevertheless, any model employed
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must at least contain the qualitative features expected of
a self-consistent solution. In what follows, we consider a
type-II superconductor of size L greater than or of the
order of the coherence length g, but much less than the
magnetic penetration length A,. In this case the applied
field is not excluded and, since it costs condensation ener-

gy to create a vortex, a weak field is expected to have a
negligible effect on both the phase and the magnitude of
the order parameter. Indeed, textbook solutions for the
order parameter in a thin film of thickness L less than or
of the order of a critical thickness I., =1.8$ show that
the phase of the order parameter is unchanged by the ap-
plication of fields equivalent to many fIux quanta through
the sample. Since we are only interested in the response
of yz to fields of the order of a flux quantum through the
sample, any changes in the order parameter will be as-
sumed negligible and the field applied via a Peierls substi-
tution, by introducing appropriate phase factors into the
off-diagonal elements of Hp.

The left-hand graph of Fig. 12 shows plots of (fa)
versus the flux P passing through the sample, in units of
the flux quantum Pc=bc/e. The right-hand graph shows
corresponding results for the fluctuations. In these simu-
lations, the scatterer is chosen to be a square of size
M =M' =20 sites, with periodic boundary conditions and
X =17 open channels. For each of ten disorders 8', 500
sets of random diagonal elements e, are generated. For

100;
W=0.4

0

W=1.6
~ ~ ~ ~

1

FIG. 13. For W = 1.6 (left graphs) and 8' =3.2 (right
graphs), this figure shows the Aux dependence of the finite 5
conductance change for a 20X20 system, with a uniform order
parameter of magnitude 6=0.001. In these calculations, y=1
and to=0.2.

each of the 500 samples, the G(0) and fa are computed
for ten different values of magnetic Aux.

In all cases, one finds that the magnitude of both (fa )
and (5ya) is suppressed when P is of order unity and
therefore the typical size of a conductance change due to
the onset of superconductivity is diminished. For two
values of the disorder, Fig. 13 shows an example of the
Aux dependence of the finite 5 conductance change of in-
dividual samples and reveals that changes in the sign of
5G can occur, when (t varies on the scale of Po. Conse-
quently, the probability P of finding a negative value
for y& is expected to be field sensitive. This feature is il-
lustrated in Fig. 14, which shows plots of P versus P.

.8 VIII. DISCUSSION

In this paper, we have presented analytical results for
clean systems and numerical results for disordered sys-

W=O.O W=3.2

W=0.12

400 "
W=0.40 W=1.20

easing
rder

0

W=2.00 W=2.80

0

5 0

FICx. 12. graphs of the ensemble averages ( jz) (upper) and

(5gz) (lower), plotted against the flux P through the sample, in

units of the Aux quantum hc /e. For these calculations,
M =M =20, @=1,and co=0.2. Results are shown for seven

equally spaced values of disorder, ranging from 8'=0 to 3.2.

FIG. 14. For six values of disorder ranging from W =0.12 to
2.8, this figure shows how the probability P of obtaining a neg-
ative value of g~ changes with the applied magnetic tlux P. For
these calculations, M =M'=20, y = 1, and a&=0.2.
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tems, which describe the effect of a superconducting or-
der parameter on a phase-coherent normal host. Using a
microscopic description based on exact solutions of the
Bogoliubov —de Gennes equation, we have demonstrated
that the onset of superconductivity can be accompanied
by gross negative changes in the electrical conductance.
From results such as those contained in Fig. 2(a) we pre-
dict that negative conductance changes are likely to
occur for either dirty or clean systems, although for in-
termediate disorders the average conductance change is
positive. Both the susceptibility y& and the conductance
change 5G at finite 6Q have been examined. Figure 4
shows that for homogeneously disordered systems, with
ko/Ey 'c( 1, the sign of ya is typically a reliable guide to
the sign of 5G over a finite region of h, o. However, if the
ratio b,o/EF is increased to larger values, typical of cu-
prate superconductors, 5G can change sign. Analytical
results for clean systems predict that gz diverges at
normal-state conductance steps. This behavior is a
reAection of the fact that superconductivity suppresses
conductance steps and shifts plots such as G~eQ to
lower values of G, as predicted by a recent theorem. ' '
Since normal-state conductance steps are observable ex-
perimentally, this should be a striking property of clean
mesoscopic structures. In dirty structures, where two-
level systems can lead to observable changes in the
normal-state conductance, we predict that measurable
changes in y& and 5G will also occur. Finally, in Sec.
VII, we predict that a magnetic field on the scale of a Aux
quantum through the sample will suppress the magnitude
of g&. It should be emphasized that the results presented
in this paper are based on exact solutions of the
Bogoliubov —de Gennes equation and therefore go beyond
standard quasiclassical approaches to superconductivity.
This is necessary, because quasiclassical theory does not
contain known mesoscopic phenomena such as the trans-
port resonances of Sec. VI. Nor does it correctly describe
low-angle, normal scattering at clean interfaces as out-
lined in Sec. V.

During the past three years, there have been a number
of experiments reporting resistance anomalies due to the
onset of superconductivity in phase-coherent structures.
These can be divided into two classes; those such as Refs.

22, 23, and 3S, for which the external leads are normal,
and those such as Refs. 20, 21, 24, and 25, which have su-
perconducting external leads. The former yields a zero-
temperature conductance change 5G with a sample-
dependent sign, whose magnitude can be many times
larger than 2e /h and which (see, e.g., Fig. 3 of Ref. 34)
is diminished by the application of a weak magnetic field,
in broad agreement with our predictions. It should be
noted that, while we have computed g& by switching on a
uniform order parameter, the calculations reported here
could easily be repeated for small superconducting is-
lands embedded in the arms of phase-coherent normal
loops, as in Refs. 22 and 23. The effect reported here is a
generic phenomenon and arises even if b(r) is nonzero
over only a portion of the scatterer. It does not require
that a finite h(r) be induced in the normal host via the
proximity effect. The only requirement is that Andreev
scattering takes place at the interface and therefore f (r)
is nonzero in the host material.

In contrast to the anomaly of Refs. 22 and 23, which
persists to the lowest available temperature, the experi-
ments of Refs. 20, 21, 24, and 25 yield a conductance
anomaly near T, which vanishes at low temperatures.
This occurs because the external probes become super-
conducting at temperature T~ & T„ thereby destroying
the measurement. Vaglio et aI. have cautioned that
anomalies of this kind can arise through inhomogeneities
in the system and may have no direct relevance to mesos-
copic superconductivity. Nevertheless, for structures
which are phase coherent in the interva1 T & T & T„ the
theory outlined above should apply. Interestingly, the
experiments of Ref. 25 reveal that a magnetic field
suppresses the conductance anomaly, in agreement with
our theoretical predictions. However, sample-to-sample
Auctuations in the sign of 5G have not been reported.
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