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We study the strong-coupling limit of the Eliashberg theory of superconductivity, where the coupling
strength A, goes to infinity and the critical temperature gets large compared to a typical phonon energy.
This limit is of interest because it is both universal and simple, and we may hope to obtain from this
study a deeper understanding of the conventional strong-coupling regime of superconductivity. Our
work on this problem is both analytical and numerical. At T=O, we find that the excitation spectrum is
discrete. We interpret physically the excited states as bound states due to a type of polaronic effect. We
show that one can solve the Eliashberg equations essentially analytically by working fully on the real fre-
quency axis. At finite temperature we find a thermal smearing of the T =0 structure. Since the critical
texnperature is small compared to the zero-temperature gap, thermal effects can be treated as a kind of
perturbation over almost all the temperature range. In this spirit, we give a simple approximate solution
which reproduces almost quantitatively the exact numerical results.

I. INTRODUCTION

The Eliashberg theory of superconductivity' is of
basic theoretical and practical importance. On the
theoretical side, it stands for one of the few cases where
we have a well-controlled solution for a nontrivial many
body problem corresponding to a fairly realistic descrip-
tion of a physical system. On the experimental side it
serves as a very accurate theory of traditional phonon-
mediated superconductivity which describes very well all
experimental data; conversely it can be used to extract
microscopic information from experiment. Furthermore
Eliashberg theory is one of the competing theories for the
description of high-T, superconductors, since it is the
basic framework of all theories where pairing is due to
the exchange of low-energy bosons. It is therefore
worthwhile to have a physical understanding of this
theory which is as good as possible.

In order to gain a deeper understanding of a complex
theory one naturally has to study simple limiting cases.
The best understood limit of the Eliashberg theory is the
weak-coupling limit, where the coupling strength A, goes
to zero and the critical temperature is small compared to
a typical phonon energy. In this limit the Eliashberg
theory turns into the BCS theory, which is perfectly well
understood. Here we are interested in the opposite limit,
namely the strong-coupling limit, where the coupling
strength A. goes to infinity and the critical temperature
gets large compared to a typical phonon energy. This
strong-coupling limit has received rather little atten-
tion ' in early applications of the Eliashberg theory
mainly because the low-T, superconductors, the only
ones known until recently, correspond to the weak-
coupling limit of the theory. Strong-coupling effects were
considered at best as mere corrections to this limit. The
situation has changed somewhat with the discovery of
high-T, superconductors which stimulated investigations
of a variety of unusual mechanisms of superconductivity,

including superconductivity in systems with very strong
electron-phonon interaction. ' But naturally, as it is well
known, the situation for the high-T, superconductors is
still unclear. Actually in real situations we would expect
A, to be at most of order a few times unity, so the strong-
coupling limit seems to us practically irrelevant. More-
over it is a common expectation that structural instabili-
ties, or more generally a crossover to a different physical
behavior, would occur before we reach such a limit, al-
though these expectations need to be substantiated.

Nevertheless, though the strong-coupling limit does
not apply to any real superconducting material, it is of in-
terest because it is both universal and simple, as we will
see. This is our excuse for performing such a study
which could otherwise look pretty much as an academic
work. A good theoretical understanding of strong-
coupling theory goes necessarily through a perfect
knowledge of what happens when we take formally the
strong-coupling limit. In addition we may hope that an
expansion around this strong-coupling limit already gives
good semiquantitative results, and thereby allows a physi-
cal understanding of the strong-coupling theory in the
domain within experimental reach. Indeed the expansion
parameter turns out to be k ' . A reasonable value for
the coupling strength of a real strong-coupling supercon-
ductor could be A, -3, which means A,

' -0.6. There
are many examples in physics where a first-order expan-
sion is still good for a small parameter of order 0.6.
Therefore an expansion around the strong-coupling limit
is not unreasonable. Indeed we will see at the end of the
paper an example where in the strong-coupling limit the
behavior is very similar to the one known in the strong-
coupling regime, which leads us to believe that it is
universal and does not depend on the specific spectrum
which has been studied.

The strong-coupling limit has been studied recently by
Marsiglio and Carbotte (references to earlier studies can
be found in their paper). They found in their numerical
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studies a very structured energy dependence of the gap
function and of the density of states, which was unexpect-
ed. Specifically at T =0 they found very strong spikes as
a function of energy, and not at all the usual "smooth
structures. " Near T, there is still some structure left at
roughly the same frequencies, although it is very much
attenuated. The authors interpret these features in the
density of states as excitations involving broken pairs.
The strong-coupling limit has also been discussed recent-
ly by Karakazov, Maksimov, and Mikhailovsky who
presented an approximate analytical study of the T=O
case, which leads to anomalous 6-function spikes in the
gap function and in the density of states, in qualitative
agreement with Ref. 7.

The purpose of this paper is to present a detailed
analysis of the strong-coupling limit. We study this prob-
lem both analytically and numerically. In some sense our
paper makes a bridge between the findings of Marsiglio
and Carbotte, and those of Karakazov, Maksimov, and
Mikhailovsky. As we will see we obtain a complete
analytical understanding of the problem. This analysis
should lead to a deeper understanding of ihe anomalous
excitation spectrum of a superconductor in the strong-
coupling limit. At T =0, we find that the excitation spec-
trum is discrete. These excited states correspond to sim-
ple poles for the Careen's function located on the real axis.
We interpret physically these excited states as bound
states due to a self-trapping of an excited quasiparticle in
the oA-diagonal pairing field. In other words, the
discreteness of the spectrum is the consequence of a type
of polaronic e6'ect. We will show that, because of the ex-
istence of these simple poles, one can solve the problem
essentially analytically by working fully on the real fre-
quency axis. This analytic solution is of interest since the
real frequency Eliashberg equations are nonlinear singu-
lar integral equations which makes them impossible to
solve analytically in the general case (one has to obtain
the solution numerically). At finite temperature we find a
thermal smearing of this structure, which can be physi-
cally interpreted as the consequence of the decay of the
T=0 excited states, due to thermally excited phonons.
But because the critical temperature is small, thermal
effects can be treated as a kind of perturbation over al-
most all the temperature range, which explains the obser-
vation of Marsiglio and Carbotte that the structures sur-
vive up to T, . We make use of this remark and find a
simple approximate solution which reproduces almost
quantitatively the exact numerical results.

The paper is organized as follows. First we introduce
in Sec. II the strong-coupling limit of Eliashberg equa-
tions. We review the method of Marsiglio, Schossmann,
and Carbotte' for the analytic continuation of the imagi-
nary axis Eliashberg equations toward the real axis.
Their equations lead in the strong-coupling limit to an or-
dinary nonlinear differential equation, which serves as the
mathematically simplest and most transparent formula-
tion of the problem. This equation is the basis of our
analysis. In Sec. III we consider the T =0 case where the
differential equation takes a rather simple form, which
leads straightforwardly to the rigorous conclusion that
the excitation spectrum is discrete. We discuss the physi-

cal interpretation of this result. We then show that the
problem can be solved entirely on the real frequency axis,
without any input from the imaginary axis solution. Fi-
nally in Sec. IV we analyze the more complicated situa-
tion found at finite temperature.

II. THE DIFFERENTIAL EQUATION

A

(co„—co ) +II ) (co +b, )'i (2)

where co„=(2n +1)mT is the Matsubara frequency, 6„
and Z, the respective values of the gap function and of
the renormalization function at this frequency and Q a
phonon frequency. In these equations the bracket ( )
is an abbreviation for the following average over phonon
frequencies (2/A)f d 0, a F(0 ) /II where a F(Q) is
the Eliashberg function. Naturally we have not taken
into account any Coulomb repulsion or any impurity
e6'ect since in the strong-coupling limit they become ir-
relevant. When we let k go to infinity, all the relevant en-
ergy scales (like T, or the gap) will also go to infinity. It
is therefore convenient to rescale the energies. Or
equivalently we can let all the phonon frequencies 0 go
to zero at the same time as we let A. go to infinity, in order
to keep these energy scales finite. When we eliminate Z„
between Eqs. (1) and (2) (the term m =n drops out) and
take the above limit, we obtain the following equation:

b,„c+oA,(A )~T g (~ )2 (
2 +g2 )1/2

1=k(n2)co„vrT g
( )2 (

2 +g2 )li2

which depends only on the single energy scale
A, '~~(A )'~ . For convenience we set this energy scale
equal to unity. Therefore the strong-coupling limit is re-
duced to a universal parameterless problem. Hence we
may just as well consider that we started with an Einstein
spectrum with frequency Q satisfying kA =1. This is
what we will do in the rest of the paper. We note that the
critical temperature is T, =0.1827 with this convention,
since it is given ' by T, =0.1827K,'~ (0 )'~ when we do
not take our energy scale equal to unity. Similarly we
find immediately that the gap is proportional to

( 0, ) '~ (provided that we find, as we will do, a result

A first point to make when we look at the strong-
coupling limit is that the shape of the phonon spectrum
or more precisely of the Eliashberg function a F(co) be-
comes unimportant. This makes the strong-coupling lim-
it universal: there is no free parameter left. As we
stressed in the Introduction, this universality is a very in-
teresting feature of this limit. This result is easily seen
from the imaginary axis Eliashberg equations, namely

~m
co„(Z„—1)=i,vrT g (co„—co ) +0 (co +b, )
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I

which is not zero or infinity with our reduced unit}.
Therefore we have the A, dependence of the gap which is
in agreement with Ref. 7.

Equation (3) can be solved for b,„numerically by itera-
tion. The result is given on Fig. 6 of Marsiglio and Car-
botte [note that they take (A, /2)'~ Q as unity so all their
energy scales should be reduced by a factor &2 before
comparison with our results]. However we are interested
in real frequency axis properties. A convenient starting
point is the analytical continuation of Eq. (3) toward the
real axis as found by Marsiglio, Schossmann, and Car-
botte. ' Their result can also be obtained from the real
axis Eliashberg equations as pointed out by Karakazov,
Maksimov, and Mikhailovsky. Let us briefly rederive
these equations for completeness.

In Eqs. (1) and (2) we are faced, in the right-hand side,
with functions of z =iso„which we want to continue
analytically. The general form for these functions is
QF(i co )[z ico —+Q] ' with F(z) =8'(z) —=z[b, (z)—z ] '~ or F(z)=8(z)=b(z)[b—, (z) z] '~—. The
analytical continuation is not obtained by replacing mere-
ly iso„by z, because the result has simple poles for
z =i' +Q whereas it should be analytical for these
values of z. This problem can be cured by subtracting a
function which cancels on one hand all these singulari-
ties, and is zero on the other hand for all z =ice . The
unique answer is that one should subtract
(1/2T)F(z+Q)[(tanh[(z+Q)/2T] —coth(+Q/2T)]. In
this way one obtains' that Eqs. (1) and (2) are continued
analytically into

Q l Q)m
co[Z(co) —1]=A,mT g Q (co i—co )

—(co +5 )
'~

+ I [n(Q)+f(Q —co)]A'(co —Q)
2

+[n(Q)+ f(Q+co)]A'(co+Q) j, (4)

Q
b, (co)Z(co) =A,n T g Q (—co i—co ) (co +b. )

'

+ I [n(Q)+f(Q —co)]8(co—Q)
2

+[n(Q)+f(Q+co)]g(co+ Q)],

where f (E) and n (E) are the Fermi and Bose distribu-
tion functions, respectively. The interesting feature of
these equations is that the terms with the Mastubara
summations are actually perfectly regular when co is on
the real frequency axis. All the singular behavior is con-
tained in the other terms. When these Matsubara sum-
mations are transformed in the standard way into con-
tour integrals, and when these contours are deformed to
the real axis, one obtains

1 . 1, co' ImF (co')F leo~ dc@'tanh
co ico~ +Q 21TT —oo 2T co co +Q

tanh F(co+Q) . (6)
co+Q
2T

When this result is carried into Eqs. (4) and (5), one ob-
tains the equations used by Karakazov, Maksimov, and
Mikhailovsky. As they showed, these equations reduce
to the real axis Eliashberg equations when one makes use
of the dispersion relation mF(co) = J dco'ImF(co')/
(co co).

Let us now come back to the strong-coupling limit.
When we eliminate Z (co) from Eqs. (4) and (5), we obtain
for D (co) —= b, (co)/co:

coD(co)B(co, T, Q) —A (co, T, Q) = D (co Q) D(co)— —
[n(Q)+f (Q —co)]—[Q~ —Q]+D (co Q) 1——

In this equation we have made use of A,Q =1. We can
take now the limit of Q going to zero and we find the fol-
lowing second-order ordinary differential equation" for
D (co):

m T [D" 2D (D') /(D 1)—]—D'tanh(co/—2T)
2 (D2 —1)~»

=coB(co, T)D —A (co, T), (8)

where A (co, T)= A (co, T, Q =0) and B (co, T)=B (co, T, Q
=0}.Explicitly we have

b„(co„—co )
A(m~T)=2mT g„=o (co„+b.„) (co„+co )

00 CO~

B(CO, T)=1+4nTg, . (10)2 +g2 )1»( 2 + 2)2

Here D' and D" are the first and second derivative of
D (co) with respect to co.

This equation gets much simpler in the T=0 limit
where we obtain merely a first-order differential equation:

= A (co) coB (co)D, —D'
2 (D2 —1)~»

where we have set A (co)= A (co, T =0) and
B(co)=B(co,T=O). It is interesting to note that the
strong-coupling limit A,~~, Q~O and the zero temper-
ature limit T~O commute, which is not completely obvi-
ous at first. Indeed when we take the T~O limit first, we
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have no thermal phonon at all excited, while when we
take the limit Q~O first we will have an infinite number
of thermal phonons. However their effect is nonsingular
and still proportional to the temperature (that is to their
number). Therefore when we let T—+0 their effect disap-
pears.

III. THE ZERO TEMPERATURE CASE

The zero temperature equation Eq. (11) is even further
simplified if we introduce the function y(co) defined by
D(co) = 1/sin[@(co) ]. This leads to

[coB (co—) —A (co)sin(q))] .=2 (12)

N(co)=m g P„[5(co—y„)+5(co+y„)]
n=1

with

I/&„=y'(y„) =(2/~)[y„B (y„)+(—1)"3 (y„)] .

Similarly we find

(13)

(14)

Im[b, (co)]=m g Q„[5(co—x„)—5(co+x„)]
n=i

(15)

with 1/Q„=( —1)"+ y'(x„)/x„=( —1)"+ (2/vr)B (x„).
In order to find a physical interpretation for this re-

markable result, we note first that we can consider the di-
agonal part of the self-energy X(co)=co[1—Z(co)] as the
effective potential energy felt by an electron added to the
system, due to the electron-phonon interaction. It is then
convenient, since we are only looking for a qualitative in-
terpretation, to omit the structureless terms (with Matsu-
bara sums) in Eqs. (3) and (4) and to write the Eliashberg
equations on the real axis (for co )0) at T =0 as

On this very simple form all the properties of the solution
can be read off immediately, though one needs a little nu-
merical calculation in order to obtain the precise solu-
tion. Indeed we will see that A(co) is negative, while
B ( co ) is positive. Moreover (see below) we have
mB (co) )co+

~

A (co) ~. From its definition we have, in the
vicinity of co=0, p(co) =co/b, (0) and the boundary condi-
tion for y(co) is y(0)=0. Then the differential equation
implies immediately that q&(co) increases regularly with co,
with more precisely y(co))co /m. In particular qr(co) is
always real (in contrast to what we will find at TWO).
Therefore we obtain the surprising result that b.(co) has
an infinite set of poles for co=x„with q&( x)=nm and
n =1,2, . . . and is otherwise real on the whole real fre-
quency axis. Similarly co/(5 (co)—co )'~ =tan(y(co)) is
always real and the density of states
N(co) =Im [co/[b, (co) —co ]' ] is zero, except for a set of
delta functions corresponding to the poles of tan[y(co)],
located at co =y„with qr(y„) = (n —1/2)m and
n =1,2, . . . . Hence we come to the conclusion that the
spikes found numerically at T =0 by Marsiglio and Car-
botte for N(co) as well as for Im[b, (co)] are actually delta
functions. The weight of these delta functions for N(co)
are easily obtained from the differential equation and we
have explicitly

—X(co)=co[Z(co)—1]= 8'(co —0),
2Q

(16)

b, (co)Z(co) = D(co 0—, ) .20 (17)

We recall that 8'(co) =co/[4 (co) —co ]' and
8(co)=b,(co)/[b, (co}—m ]' . We note that in the nor-
mal state, we have merely 8(co')=i and the imaginary
part of X(co) reduces to the standard result —

m /20, cor-
responding physically to the very short lifetime of the ex-
citation due to phonon emission.

Now in the superconducting state the effective poten-
tial X(co) on the excitation depends on the off-diagonal
field h(co}. But from Eq. (17) the field b, (co) depends itself
on X(co). Therefore we have a situation where an excita-
tion interacts with a field it is itself creating (more pre-
cisely it is able to modify the value of this field). This
leads to the possibility of self-trapping of this excitation
in the off-diagonal pairing field when the interaction gets
strong enough. This situation is quite similar to the pola-
ronic effect where an electron gets trapped in the phonon
field it has itself created. This can perhaps be seen more
clearly if we take the Fourier transform of Eq. (16). This
gives for the time dependence of the retarded effective po-
tential

b (co)= 1

Z (co)

'2

2Q
+co [Z(co)—1]

When this is carried into Eq. (16), we find the equation
showing how X(co) or equivalently Z (co) feeds back on it-
self, leading to self-trapping:

where the last equality takes into account that we let the
phonon frequency 0 go to zero. We see that in this limit
the effective potential grows indefinitely when the retar-
dation time increases. It is therefore reasonable to find
self-trapping in such a potential. We note that this argu-
ment does not work in the normal state because g(co) is a
constant which makes P(t) proportional to a delta func-
tion in time, that is instantaneous. But 8'(co) is no longer
constant in the superconducting state which makes the
strong retarded potential possible.

Naturally the trapping in this very strong pairing field
leads to bound states and therefore it is not astonishing to
find a discrete spectrum. We note that the energy of
these states do not show any wave-vector dependence,
which means that the corresponding effective mass of
these states is infinite. This is again not so surprising
since a polaron has also an infinite effective mass in the
limit of infinitely strong coupling. The spatial extension
of these bound states can be obtained from the wave-
vector dependence of the Green's function. One obtains
that they are localized on a length which is very short, of
order of the coherence length divided by A,

' . This is
again what is expected from very tightly bound states.

We can obtain explicitly from Eqs. (16) and (17) how
the pairing field h(co) depends on X(co). We find
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(co+Q)[Z(co+Q) —1]=coZ(co) 1+ 20,
2

co Z(co)

(20)

where we have taken into account that Z(co) gets very
large in the limit 0—+0. When we expand
Z(co+Q)

=Z(co)+QUIZ/B~,
[this is just the equivalent

of the small Q expansion in Eq. (18)], we find for
z(co) =2QcoZ(co)/m the simple equation

8z 2=—co[1+z (co) ]
Qco 7T

(21)

which shows again simply that the growth of Z(co) is due
to Z(co) itself. When Z(co) diverges, the effective poten-
tial on the quasiparticle gets infinite and we obtain the
bound states. Equation (21) is easily solved as
z(co) =tan(co /m. ). This leads for the energy of the bound
states to the approximate asymptotic solution found
below. This is naturally due to the approximate nature of
Eqs. (16) and (17).

Marsiglio and Carbotte have interpreted their peaked
structure in terms of tightly bound pairs. They suggest
that the second pole yz corresponds to the energy neces-
sary to add an electron (requiring an energy equal to the
gap b, p) which breaks a pair at the same time (requiring
2b.p), in agreement with their finding that the second
structure in the density of states lies essentially at 350.
The higher poles would be only due to nonlinearity. This
proposal does not agree well with our results: we find (see
below) that ye=3. 04%3y, =3.48, therefore there is no
simple relation between the first and the second poles.
Moreover all the poles are completely equivalent in our
findings and we have no reason to consider that y„ for
n &2 are physically different from yz. We have also to
satisfy the physical requirement that the size of our
bound states stays larger than the Fermi wavelength.
This implies that A,Q«E. or equivalently keg))A. '

which makes the coherence length necessarily much
larger than the Fermi wavelength.

We come back now to our T=O result and study it
more precisely. In order to be more specific we have to
look in more details at A (co) and B(co). First from the
TWO expressions we obtain

dx)[h(ix)[x +b, (ix)] ' I= —1.55 for co —&0. Formu-
la Eq. (23) for 8(co) gives B(co)=1+I/co+0(co ) for
large co, while for co~0 one obtains coB(co)=(vr/2)l/
b,(0).

Therefore for small co, the differential equation Eq.
(12) reduces to q&'=1/b(0) which gives y(~) =co/b(0) as
it should from the definition of y(co). If we use this linear
approximation to find y& which is also the gap ho, and
b,(0)=0.75 from the imaginary axis solution, we obtain

yi =bp=(m/2)b(0) =1.18. This is a very good approxi-
mation compared to the result 60= 1.16 which we obtain
numerically (in agreement with Ref. 7). Similarly this
linear approximation gives x& =2.36 for location of the
first pole of b, (co), in reasonable agreement with the result
x, =2.20 from the numerical integration of Eq. (12). We
note that the existence of a fairly wide linear region for
p(co) around co=0 could be expected. Indeed since

y( —co) = —y(co), there are no even terms and in particu-
lar no co term in the expansion of y(co) in powers of co.

The behavior for large cu is also easily obtained since
the A(co) term becomes negligible in this limit. This
leads to p(co) =(co +21m')/m+C. The dominant term
in this limit, namely co /m. , has already been obtained by
Karakozov, Maksimov, and Mikhailovsky. We find the
constant C by comparison with our numerical results and
obtain C = 1.05. Very surprisingly, as it can be seen on
Fig. 1, this asymptotic form for y(co) agrees with our nu-
merical results [obtained by integrating Eq. (12) numeri-
cally] down to co=0.4 with a 3.5% maximum relative er-
ror. In particular this expression for y(co) gives b,p= l. 16
for the gap, and x, =2.26 for the first pole of h(co). Nat-
urally we can also obtain from this asymptotic form the
values of x„,y„,P„, and Q„with very good precision. For
completeness we have plotted b, (co) in Fig. 2 obtained
from the numerical calculation.

In our preceding solution of the T =0 case, we had to
make use of the imaginary axis numerical solution in or-
der to calculate A (co) and 8(co). In the present case this
solution is not very easy because the Eliashberg equations
Eq. (3) become singular in this limit T~O and A, ~ oo.
However we can now make use of the specific analytical

7 t

b.(ix)(x co )—
p [x2+g2(&x)]i/&(x&+~&)&

oo cok(lx)
de p (x +co )[x +b. (ix)]'/

8(co)=1+2 dx
p [x2+~2(&x)]1/2(x 2+~2)2

(22)

(23)

so A(co) and B(co) are easily obtained numerically from
the imaginary axis solution. Clearly both A(co) and
B(co) are very regular functions. Since it is the derivative
of a decreasing function, A(co) is negative and clearly

~
A(co)

~
decreases with co. From the above expression Eq.

(22) we have, for large co, A(co)= —a/co (with
a= jdxh(ix)[x +b (ix)] ' =1.27 from the imagi-

nary axis solution) while A (co) = j(dx/x)(d/

0

z~~L
0 0.5 1 1 5 2 2 5 3 3 5 4

FIG. 1. Solid line: p(co) from numerical integration of Eq.
(12); dashed line: y(co) =(co +21nm)/m+1. P5.
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FIG. 2. A(co) as a function of co. The dashed lines are +co.
Note that

~
h(ro)

~

~ co.

properties of h(ro) that we have found to bypass the
imaginary axis solution and solve directly and easily the
whole problem on the real axis, which is anyway of in-
terest in itself. Indeed we can use the real axis expres-
sions of A (ro) and B(ro). These can be obtained directly
by a small 0 expansion of the real axis Eliashberg equa-
tions. They can also be obtained from Eqs. (22) and (23):
we extend the integration in Eq. (22) over all the imagi-
nary axis by parity, then separate the result into two in-
tegrals with each one having only a single pole at ix =+co
(the two contributions are actually equal by x~ —x).
Then the integration contour is folded on the part of the
real axis which does not contain the pole. Exactly the
same procedure is used for Eq. (23). We find

OO b,(x)
„. ) /20 [x —b, (x)] x +co

(24)

00 p„
A (ro)=rr g ( —1)"

(ro+y„)
oo P

roB(ro)=ro+vr g„=, (co+y„)

(26)

(27)

Since y„ increases with n and P„decreases with n, it is
clear from these expressions for A (ro) and B(ro) that
A (ro) is negative and that coB(co)) ro+ ~ A (ro)~ as indi-
cated above.

We can now solve Eq. (12) iteratively. We start from
an initial guess p( )(ro) for q)(ro) and obtain the corre-
sponding set of poles [y( 'j by y' '(y„' ')=(n —I/2)rr,
with the corresponding weights tP( 'j. We can then ob-
tain A' '(co) and B' '(ro) through Eqs. (26) and (27).
Then we find the next order approximation y")(co) for

roB(ro) =ro+ dx Re
2 2 (&2 2 (25)

0 [x —b, (x x +co

When we substitute in these results the expression given
above Eq. (13) for N(ro)=ReIco/[ro 5(ro)]'~ j in-
terms of the y„, taking into account that
h(y„) = (

—1 )" 'y„, we obtain

y(ro) through Eq. (12) be merely integrating the right-
hand side. Generally we find the approximation
y' +"(ro) from the approximate y'P)(ro) by

y'P+"(ro) =—J droI roB' '(co) A—'P'((o)sin[y'P'(ro)] j
7T 0

(28)

then Iy„'P+"j is given by q&'" "(y„'P+")=(n —I/2)~.
The set {P(p+"j is obtained from Eq. (14) as

1/P(P+)) —(2/ )[y(P+1)B(P)(y(P+)))

+( 1)nA (P)(y(P+)))] (29)

Then A' +"(ro) and B' +"(ro) are given from Eqs. (26)
and (27) from Iy„' +"j and IP„'p+"j, and the whole pro-
cess is carried on to next order.

There is a small practical problem in carrying out this
program. Naturally we want to cut oA' the summation in
Eqs. (26) and (27) at some finite but large integer N. Be-
cause the alternating series Eq. (26) is rapidly converging,
A (co) is obtained quite precisely despite of the cutoff.
However this makes more problems for Eq. (27). For-
tunately we can sum up the series from n =N up to
infinity by making use of the Euler-MacLaurin formula,
since we have for large n the asymptotic expressions
y„=rr(n —1/2)' and P„=m./(2 y). This gives

px
+sr g„=) (ro+y„)' 2 (o)+y~)'

1
(oB (ro) =co+

CO+/~

(30)

We would have left out the term I/((o+y)v) if we had
stopped the summation at n =N. This term is important
since it gives the (2/n )Inco term in p(co) for large ro.

We have carried out the above iterative solution of the
real axis problem, taking the dominant term in the
asymptotic form y' '(ro)=ro /m as a starting guess, with
correspondingly y„' ) =m(n —1/2)' and P„' =sr/(2y„).
The convergence is not very fast: 30 iterations give a
good precision and 80 iterations an almost complete con-
vergence [in particular starting from a better q) (ro) does(O)

not improve markedly the convergence rate]. We have
taken N such that y)v=50 (i.e., N =254) and obtain in
particular Ao=y &

= 1.161, P, =0.709, yz =3.043,
P2 =0.482. However it is already possible to obtain quite
a very good solution by taking N =3 (this gives
5 = 1.142). Actually N =2 is reasonably accurate (it0
gives Do=1.21). It can be checked in particular that Eq.
(26) (cutoff at N =2) and Eq. (30), with y, 2 and P, 2

given above, produce results for A (co) and B (ro) almost
undistinguishable graphically from the actual values.
Even N=1 gives reasonable results. A)(co)= vrP)I—
(ro+y ) is typically 10% off (where it is not small). And1

2B((co)=co+I/(co+y()+0. 5vrP) /(ro +y) ) is more than
10/o ofF only for x &0.5. We can see that the N =1 ap-
proximation is reasonably good by making a simple esti-
mate of y) from A) (ro) and B(c)o), and making use of the
quasilinearity of y(ro) up to y). This linearity gives
qr'(y) )=m/2y( from y(y) )=sr/2, and P) =1/g'(y) )
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=2y, /~ (in very good agreement with numerics). Substi-

tuting this information into Eq. (12) together with

A, (y, ) = —1/2y, and B,(y, ) =y, +3/4y, gives

yi =(m. —5)' /2=1. 10 in satisfactory agreement with
the numerical result.

In conclusion of this section we have obtained for the
strong-coupling limit a full understanding of the solution
of the real axis Eliashberg equations, which is quite in-
teresting since these nonlinear singular integral equations
are in the general case uneasy to master. Our results are
actually rather close to a full analytical solution. As a
final remark let us note that in our case h(co) is singular
in the complex plane in the limit ~co~ —+ac. Indeed by
continuing analytically the imaginary axis solution we
have h(co) = —1.27/co for co~ ee in the upper half com-
plex plane. On the other hand, we have on the real axis
an infinite set of poles with an accumulation point at
infinity, and as we have seen, the asymptotic behavior of
b, (co) is quite different. In contrast the behavior of b, (co)
is regular at infinity in the generic situation, as well as for
TWO in the limit A,~ ae.

l2

10

0
0

FIG. 3. Re[y(co)] from numerical integration of Eq. (31).
Solid line: T=O, dashed line: T/T, =0.3, long dashed line:
T/T, =0.5, dashed-dotted line: T/T, =0.7, short dashed line:
T/T, =0.9.

IV. THE TAOCASE

We come now to the nonzero temperature case. We
will see that, compared to T=O situation, the effect of
the temperature can be described as a kind of perturba-
tion. This will give us a complete understanding of the
solution, both qualitatively and quantitatively. The basic
reason for this simple result is that the ratio b,o/T, =6.30
is large in the strong-coupling limit. Therefore the tern-
perature T is always small compared to the characteristic
energy of the T =0 system, namely 60, which allows us
to consider the effect of T as a perturbation.

As for T =0 we introduce 1p(co ) defined by
D(co)=b(co)/co= 1/sin[y(co)]. However qr(co) is now a
complex function of co in contrast with the T=0 case.
From Eq. (8) we obtain for q&(co) the equation

A(co, T)= cosh +A„g(co, T),2T

(
2 +g2 )1/2]( 2, 2)

A reg(co, T) = 2' T
(co„+b,„) (co„+co )

coB(co, T) co= — cosh +tanh
2 o 2 2

+coB„(co,T),
~n 1 1

«g ' + 2 2 2 2 2 1/2
o (co„+co ) (co„+5„}

(32)

(33)

—T[y"+ (y') tan1p ]+p'tanh(co/2T)

2
[coB(co,T) A(co, T—)sing]—, (31)

where A (co, T}and B(co, T) are given by Eqs. (9) and (10).
We want to understand in details the various features of
the solutions. Naturally this equation can be integrated
numerically. A quite remarkable feature of the numerical
solution is that the results for Re[1p(co)] show very little
dependence on temperature up to T, in the range which
is of interest for us as it can be seen in Fig. 3 (the
behavior for large co is actually unimportant since h(co)
will be essentially zero in this range, except at low tem-
perature where there is no temperature dependence any-
way).

In order to understand this peculiar behavior, let us
first consider Eq. (31) for small T and co small, typically
of order T. At first it looks rather different from its T =0
counterpart. In particular the behavior of A (co, T) and
B (co, T) is quite different for small co. Indeed we have

We see that A„(co,T) and B„(co,T) have commuting
limits co —+0 and T~O, while this is not the case for the
other contributions to A (co, T) and B (co, T) that we have
written explicitly. In particular A (0, T) and B (0, T)
diverge in the limit T~O. However when we substitute
these expressions into Eq. (31), we obtain

—@"+N'tanh(X/2)+(@/2)cosh 2(X/2)

= tanh(X/2)+ (X/2)cosh 2(X/2) (34)

where we have taken X =su/T and N= Tcp/Ao as a vari-
able and function in order to eliminate the T dependence.
We have kept the dominant terms and not written those
terms which are negligible in the limit T~O. We see
that the T =0 solution, namely 4&=X [i.e., p(co) =co/b, o],
is still a solution of this equation, which means that the
singular behavior of the different terms compensate each
other. Actually the general solution of Eq. (34) is
@=X+asinhX+P(1+coshX), where a is real and P
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imaginary, because p*(co)= —
q&(

—co). Naturally a and P
go to zero for T—+0 since we must recover the T =0
solution. Our numerical calculation merely shows that
they are always indeed rather small (except naturally near
T, for P}.

Since we have obtained that, in the range m of order T,
y(co) is regular with y(co) =co/Ao we can then look out-
side this range. Because T is always small we can consid-
er the two first terms of Eq. (31), namely
T[y"+(q&') tan(g&)] as a small perturbation and neglect
it to lowest order. Siniilarly since tanh(co/2T) is marked-
ly di6'erent from unity only in the small range m & 2T, we
can replace it by 1. We are left with

y'= —[coB(co,T) A(co—, T)sing] .
2

(35)

We extend the lower boundary of integration down to
co=0 since the range co&2T where it is not correct is
small. To lowest order we can take Imps(0)=0. There-
fore Eq. (35) will produce, as at T=O, a q&(co) which is
real. When this equation is integrated numerically we
find remarkably that the result is almost independent of
temperature. We have not plotted them because they are
barely distinguishable on a graph. This can be partially
understood in the following way: beyond the range
co &2T, which plays a little role because of its small size,
the right-hand side of Eq. (35) is dominated by the
8 (co, T) term, which is not very temperature dependent.
Indeed for co&1, it is very well approximated by its
temperature-independent asymptotic form 8 (co, T)
=co+ 1/co. Moreover there is a partial compensation be-
tween the slight increase of B(co,T) with T and the de-
crease of the term —A (co, T)sing&. We can check that the
solution of Eq. (35) is nearly temperature independent by
looking at the solution for T = T, which is merely
y(co) =2/vr jdco coB(co, T, ). The result is quite close
from the T=O result. Moreover for co(4 (and higher
values are rather unimportant for our purposes as we
mentioned already), the results from Eq. (35) are them-
selves very close to the exact numerical results for
Retp(co) from Eq. (31) that we considered at the begin-
ning of this paragraph. We can summarize this part by
saying that Rey(co) is nearly temperature independent be-
cause to lowest order in T, Eq. (31) reduces to Eq. (35),
except for the unimportant range co &2T. And the solu-
tion of Eq. (35} itself is almost temperature independent
because the B(co,T) term dominates, and it is weakly
temperature dependent. Therefore the T =0 solution for
p(co} is a very good zeroth order solution yo(co) for Eq.
(31).

We consider now the perturbation due to the tempera-
ture T. It is clear that the term —Ty" produces only a
small and regular perturbation since yo(co) is not far from
being linear in our range of interest. On the other hand,
we see immediately that the term —T(qr') tang produces
an important perturbation since tang is infinite when
co=y„where yo(y„) =(n —I /2)n. . For these values of co

we can take tanh(co/2T) = 1. When we integrate Eq. (31)
in the vicinity of y„, we obtain that, because of this pole
of tang, the term —T(qr') tang produces a jump
rrTyo(y„) in the imaginary part of q&. Therefore with this

simple approximation we find

Imp(co) =mT+. po(y„)8(co —y„) (36)

which has the shape of a staircase. When this simple ex-
pression is compared to the exact numerical results for
Imp(co) from Eq. (31), one finds a quite good semiquanti-
tative agreement. Indeed for co=y„ Imps(co) has the
shape of a step which is increasingly smooth with increas-
ing temperature. For the higher poles the steps are com-
pletely smoothed out (except at very low temperature).
As it can be seen for T/T, =0.5 from Fig. 4, the height
of the first step is well reproduced as well as the average
shape of 1m'(co) for increasing co.

Our zeroth order handling of the term —T(y') tang
looks rather rough. We can do a better job by integrating
exactly Eq. (31) in the vicinity of y„. This procedure will
become exact in the limit T~O. In this vicinity we can
consider A (co) and 8(co) as constant, and if we set
co=y„+TX and p(co) =(n —I/2)m+ CT4 where
C =(2/n. )[y„B(y„)+(—1)"A (y„)], we obtain the re-
duced equation

@&2 —N'=1 (37)

3 1 I ~~ T T~~ I~~ 1 T i i I T
g

I T,';
t

2.5—
3q(m)

1.5

0 ~
5—

0 LIL-J 3-. LL J l I I .J LJ

0 1 2 3 4

FIG. 4. Im[y(co)] from numerical integration of Eq. (31) and
the staircase approximation Eq. (36) for T/T, =0.5.

which we cannot solve exactly analytically; but this is
easily done numerically. Naturally we find that the step
is smooth over a range of order T, but we obtain that the
overall height of the step is very near 3, practically identi-
cal to our rough estimate of m. Actually the numerical
solution shows that 4" is always very small in Eq. (37).
If this term is neglected, the equation can be solved
analytically and the height of the step becomes exactly m.
We see that our rough estimate is actually much better
than what we could have expected.

Finally we can make use of the above remark that the—Ty" term is unimportant qualitatively and quantita-
tively to obtain a simplified version of Eq. (31) which nev-
ertheless gives essentially the correct quantitative answer
for all temperatures. Indeed if we omit the second
derivative in Eq. (31) and take again tanh(co/2T) =1, we
get
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2yp(cp)

1++1 4T—pp(co)tang
(38)

T
f

I

where, consistently with the spirit of our perturbation
handling, we have replaced the right-hand side of Eq. (31)
by its T =0 value, namely yp(co) [a very good approxima-
tion is gp(co)=1. 33 for co (0.75 and the asymptotic ex-
pression yp(co) =2(co+ I/co)/m elsewhere]. There is actu-
ally rather little change if we do not do this and keep the
right-hand side as it is. The boundary condition for this
first-order differential equation is Rey(0) =0. The value
of Imps(0) can be obtained by an extrapolation of the
imaginary axis results. When we make a first-order ex-
pansion of Eq. (38) with respect to T, we get back to our
staircase answer for Imp(co). On the other hand, when
Eq. (38) is integrated numerically, we find for h(co) re-
sults in quite good agreement with the integration of the
full Eq. (31), as it can be seen in Figs. 5 and 6 for T/T,
=0.3 and 0.7. For T/T, =0.3 the agreement is excellent
[any small value for Imp(0) will give the same result].
For T/T, =0.7 the small discrepancy could be essentially
corrected by giving to q&p(cp) a small temperature depen-
dence.

To conclude this section let us remark that the energy
b, (T) where N(co) is maximum changes very weakly as a
function of temperature, as it can be seen on Fig. 7. This
is of interest because such a behavior has already been
noticed theoretically in the strong-coupling regime, ' '
in relation with experimental results in high-T, supercon-
ductors where a "gap" has been tentatively observed with
almost no temperature dependence. Indeed since there is
no true gap in the excitation spectrum at nonzero tem-
perature, this is the location A(T) of the maximum of
N(co) which is actually observed experimentally and

0

4 m~ w J ~ c tM ~ . i .. .t .. [ .i i a .J. .. . s t. . c. . J

0 2 8 10

which is very often called the "gap." The fact that such a
behavior is found in the strong-coupling limit shows that
this behavior is completely generic and not linked to a
specific assumption made in the strong-coupling regime.
We note also that the small variation of h(T) occurs
essentially at low temperature and in this range b, (T) is a
linear function of T. This behavior is rather surprising
since in the weak coupling or in the strong-coupling re-
gime, b, (T) is essentially temperature independent at low
temperature. The present linear variation is clearly
linked physically to the fact that phonons can be very
easily excited thermally at nonzero temperature in the
strong-coupling limit (their number is proportional to

FICr. 6. Re[A(co)] and Im[b (co)] from numerical integration
of Eq. (31) (solid line) and from the approximate equation Eq.
(38) [dashed line), for T/T, =0.7.
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FICx. 5. Re[A(co)] and Im[hico)] from numerical integration
of Eq. (31) (solid line) and from the approximate equation Eq.
(38) (dashed line), for T/T, =0.3.

FICx. 7. Frequency location 6( T) of the maximum of the den-
sity of states %{co)as a function of reduced temperature.
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T/0). Therefore one never obtains at low temperature a
regime where only virtual phonons are present. This
linear behavior is actually directly linked to the corre-
sponding linear decrease of ho with temperature, which
can be obtained from the imaginary axis equations.
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