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The spiral state in the two-dimensional t-J model is studied by numerical diagonalization of an
effective Hamiltonian. We examine all possibilities of the spiral spin states including the nonplanar
states. It is found that nonplanar spiral states occur, but the deviations from the planar spiral
state in the nonplanar spiral states are small for small hole concentrations where our effective
Hamiltonian is valid. The modulation of the spin configuration increases continuously from the
antiferromagnetic order as the hole concentration increases, and discontinuously changes at a critical
hole concentration. Then the state undergoes the first-order phase transition either to the (s, O)

phase or to the ferromagnetic phase, depending on the value of J/t

I. INTRODUCTION

The doped antiferromagnet on a square lattice is a re-
markably interesting topic especially in connection with
high-temperature superconductivity. The t-J model is
one of the models studied extensively in this context.
In the case of half-filling, this model becomes an S=l/2
antiferromagnetic Heisenberg model, which is believed
to have a Neel ordered ground state. Then what state
becomes the ground state when holes are doped in this
system? Nagaoka proved that if a single hole is doped
into the half-filled band, the ground state of the Hub-
bard model with U = oo, i.e., the t-J model with J = 0,
is the ferromagnetic state with the maximum total spin
to gain the maximum kinetic energy. Putikka et al. ar-
gued that this ferromagnetic state extends up to a finite
hole concentration.

On the other hand, when both the exchange coupling
and the hole concentration are finite, the t term and the
J term compete with each other. The exchange inter-
action favors antiferromagnetic order, while motions of
the holes tend to destroy this order. The spin spiral
state proposed by Shraiman and Siggia is a candidate for
the ground state in this region. Their approach is based
on the nonlinear 0 model that describes the low-energy,
long-wavelength behavior of the t-J model. Since the spi-
ral spin configuration is modulated from rigid Neel order
(see Fig. 1), holes can hop more freely than in the clas-
sical Neel ordered background. Several groups showed
within the slave-fermion mean field approximation that
the spiral state has the lowest energy. We have ob-
tained similar results with a more physically transparent
technique. In those analyses, the direction of each spin

is assumed to be con6ned in a plane; i.e., only the planar
spiral states are assumed. However, there is no justifica-
tion for this simplification. We take into account nonpla-
nar spiral order in this paper and. examine the validity of
the assumption of the planar spiral.

This paper is organized as follows. In Sec. II, we sim-
plify the Hamiltonian by a classical approximation of the
spin degrees of &eedom. This is diferent from the or-
dinary slave-particle techniques and a clearer discussion
can be done on the interplay between spins and charges.
In Sec. III, we calculate the ground state energy of this
approximate Hamiltonian for various spiral modulations
by diagonalizing the simplified Hamiltonian numerically.
We can treat much larger systems for this Hamiltonian
than for the original Hamiltonian. Taking into account
all possible spiral states and searching the lowest-energy
state, we determine the phase diagram.

We shall work in units such that h = 1 and the lattice
constant a = 1.

FIG. 1. A schematic picture of a planar spiral state
[~i =(o o) ~~ = (g* gv)).
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II. CLASSICAL SPIN APPROXIMATION

The t-J Hamiltonian is defined as

S

H= t —) (c, c~ +Hc)+ 1) S;.S, ,

('~) ~ (i j)
c; =c, (1 —n, ), (2)

where c; represents the annihilation operator of an
electron at the ith site with spin 0 (o = +1) and
n, = ct c, . A spin operator is defined by S,

ct cr c; where o' is the 1th component of the
Pauli spin matrix (t = x, y, z). The first term de-
scribes the electron hopping with double occupancy ex-
cluded and the second represents the antiferromagnetic
exchange interaction (J ) 0).

When we study the t-J model, we take a viewpoint that
the model is only an effective one derived &om a more
realistic model with an assumption of the absence of the
long-range part of the Coulomb interaction. Thus, for
example, when we consider inhomogeneous charge distri-
butions in a Inacroscopic spatial scale, we have to be care-
ful about that such inhomogeneous charges would not be
screened sufficiently that the Coulomb interactions be-
come short range as in the t-J model. Since such long-
range Coulomb interactions would raise the total energy,
such inhomogeneous states would not occur in realistic
models. Therefore, we study the model under the as-
sumption of the absence of such inhomogeneous charge
distributions as many authors have done so far.

Our formulation is the same as that of a previous
paper except that we retain all possible spin config-
urations. The following identities relate the operator c;
and S;:

cto —ct' —cr

2oc~~ = c~~S
O=c; S,

Using Eq. (3), we write the Hamiltonian in the form

H = t ) (S;—c,—c, S~ + H.c.) +. 1. ) S;.S, . (4)
(i,j),o (i j)

This form of the Hamiltonian transparently describes
how electrons move on the lattice disturbing the sur-
rounding spins. A similar form was studied by Xu et
al.'

FIG. 2. The azimuthal angle o, and the polar angle P of a
classical spin.

We introduce a rotated spin coordinate on every site
for convenience. We rotate the coordinate about the z
axis by an angle o.; and successively about the y axis by
P; at the ith site (see Fig. 2). By these rotations, the
spin S and the two-component spinor c; = (c,.& c,&) aret t t

transformed into

S';=US;, d;=! '~
!
=Bc;,&d,pl

*'~ J

where

cos; 0 —sin, cos o., sin o.; 0
U, = 0 1 0 —sinn; cosn, 0, (6)

sin; 0 cos; 0 0

f'e ' '~ cos~'
B; =

( e* '~' sin ~
2

—e '~*~~ sin ~' 'l

e' '~' cos ~' )2

We apply the classical spin approximation; i.e., we treat
a spin operator S; as a c number. Now, we assume that
the spin system has some order in the ground state. We
adjust the z axis to the direction of the spin at each site,
so that all spins are ferromagnetically ordered in the new
coordinates. Thus, the ground state is the vacuum state
with respect to d;g's. Further, creations of d,.& are prohib-
ited by the local constraint due to the infinite Coulomb
repulsion. Therefore operations of d,g's and d~&'s to the
state should lead to zero. Hence we omit d;g and write
d, instead of d,g from now on. Any spin configuration
can be characterized by the variables {a;)and {P;).By
this classical spin approximation, the hopping term and
exchange term are transformed into

Hq ——— tS ) !
e'( * ' ~—cos —cos —+ e '( ' 'l~ sin —sin —

! [cos(n; —n. ) sinP, sinP + cosP; cosP ]d.d,O' O;, . O' . O &

3 2 2 2 2) 2 i 2&

('", )
'

Hg = JS ) [cos(n; —n~) sinP, sinP~ + cosP, cosPz].
(i i)
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Thus, our problem is reduced to solving the eigenvalue
equation of an N x N matrix, when the spin configuration
is fixed. Here N is the number of sites.

For the half-filled case, there is no contribution from
the t term because of the Pauli principle. Thus the
ground state has Neel order for the half-filled band be-
cause it has the minimum exchange energy. In the fol-
lowing sections, we consider the situations where the hole
concentration deviates from half-filling.

III. SPIN SPIRAL STATE 0. l 0.2 0.3

Now, we consider the spin spiral state where the spins
are systematically rotating. A spiral pattern is charac-
terized by a set of two vectors qi and q2, which specify
the wave number of the modulation measured from the
ferromagnetic configuration of spins. The azimuthal and
polar angles of the direction of the classical spin at the
ith site, n, and P, , are given by

0.5

for spiral states, where r, is the lattice vector associated
with the site i. With this definition, the ferromagnetic
state corresponds to qq ——(0, 0) and q2

——(0, 0) and the
Neel state corresponds to qq

——(0, 0) and q2 ——(m, vr).
For planar spiral phases where qq ——(0, 0), we can easily
diagonalize the Hamiltonian by Fourier transformation.
In our previous paper, we analyzed this model in the
low doping regime, assuming that only the diagonal spi-
ral phases [qq ——(0, 0) and q2 = (q, q)] and the stripe
spiral phases [qq ——(0, 0) and q2 ——(vr, q)] are possible.
We have found that the diagonal spiral state always gives
a lower energy than the stripe spiral state at the same
parameter and that the deviation of its spiral pitch from
qz = (0, 0), q2 ——(m, vr) is almost proportional to the hole
concentration. There, we have also found a first-order
phase transition from the diagonal spiral state to the fer-
romagnetic state at some critical hole concentration.

In our present study we solve the efFective Hamilto-
nian (8) on finite lattices to investigate more general spi-
ral patterns. For the L x L lattice (L = Iq), (qq, q2)
can only take (2vrn/L, 2mm/L) (n, m are integers) in the
periodic boundary condition. The number of essentially
different sets of (qq, q2) is about X /16 if we take the
symmetry of the square lattice into account. We diag-
onalize the Hamiltonian (8) numerically for all possible
qi, q2 for L = 12, 16, 20 and determine the optimum spi-
ral pitch. In what follows, we show the phase diagrams
up to b = 0.35. This value of b is only for convenience,
and does not indicate the limit of b below which our the-
ory is valid.

The spiral pitches that minimize the energy are shown
in Fig. 3 for various doping concentrations b and J/t.
We can see &om this figure that the spiral state gives the
lowest energy in the lightly doped region for fixed J. The
nonplanar spiral phase is obtained in the more heavily
doped region. Their pitches ~qq~, ~q2~ mcrease with b and
decrease with J/t

We find a phase transition &om the spiral state to the

0.1 0.2 0.3

0.1 0.2 0.3

FIG. 3. Phase diagrams in the ground state for
12 x 12, 16 x 16, and 20 x 20 lattices. (a) q~=(0, 0),
q2=(7r, vr); (b) q&

——(0, 0), q2=(~, vr —27r/I); (c) q& ——(0, 0),
q2=(n. —2m/L, ~ 27r/L); (d) q~=—(27r/L, 0), q2=(vr, 7r 2~/L);-
(e) qi=(2vr/L, 27r/I ), q2 —— (7r —2m/L, vr —2m/L); (f)
qz =(0, 0), q2 ——(0, 0) (ferromagnetic state); (g) qq =(0, 0),
qz=(7r, 0) [(vr, 0) state].

ferromagnetic state at a small J/t. This transition is con-
sistent with the analytic result in the low doping region.
Besides this, we also find a transition from the spiral state
to the state with the spiral pitches qq ——0, q2 ——(7r, 0)
for larger J/t We call this p.hase the (vr, O) state. These
two transitions seem to be discontinuous, although our
resolution is limited by the lattice size. The (vr, 0) state
was not found by our previous analysis in the low doping
region because this needs rather higher doping than the
ferromagnetic state. This situation will be clarified by
the following discussion. We compare the kinetic ener-
gies of systems in the ferromagnetic state and the (vr, 0)
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spiral state has a higher mean field energy than planar
spiral states. This double spiral state does not appear
also in our phase diagram, but we found other nonplanar
spiral states in our phase diagram.

If the concentration of holes increases, a ferromag-

1.5

0.1 0.2 0.3

& =3.1 25 && 1 0
:L=12

------- L=16
————:L=20

FIG. 4. Kinetic energy plotted versus hole concentration.
The solid, dotted, and dashed lines correspond to the ferro-

magnetic, spin-disordered, and (vr, 0) states, respectively.

0.5-

state for various hole concentrations in Fig. 4. Since the
ferromagnetic state has the lower kinetic energy than the
(vr, 0) state, the small 1/t region is occupied by the ferro-
rnagnetic state. On the other hand, for large 1/t, the fer-
romagnetic state is disadvantageous due to the exchange
term and thus the (vr, 0) state is favored. However, the
(vr, 0) state does not appear for small hole concentrations
because the spiral state is energetically favored there.

It is found &om Fig. 3 that the areas of the ferromag-
netic state and the (n, 0) state are almost independent of
the lattice sizes. Thus, we expect that the areas remain
almost the same in the thermodynamic limit. On the
other hand, the region of the spiral state changes with
the lattice size. In particular, the area of the nonpla-
nar spiral phase seems to expand with the lattice size.
In the thermodynamic limit, this area should be larger,
although we cannot say whether it extends to the zero
hole concentration. For the spiral phase, the system size
dependence appears to be strong in the phase diagram.
However, this is due to the discreteness of qq and g2.
Spiral states with spiral pitches smaller than 27r/I do
not occur in the finite-size system of L x L. If we take
into account this discreteness, we can see that our results
show a tendency of convergence, as in Fig. 5. Figures
5(a) and 5(b) are for b = 0.03125 and Figs. 5(c) and
5(d) are for b' = 0.25. The same tendency is seen for the
other hole concentrations.

IV. SUMMARY AND DISCUSSION

1.5

Q =3 125 x 10
:L=12

--------'L=1 61- ————'L=20

0.5-

1.5

& =0.25
:L=12

-------. 'L=16
————'L=20

0.5-

10

10
t/J

I
I
I

I

I

I

I

I

I

I

I

I
I
I
I
I
I
I

I
I
I
I
I

I

i

(c)

20

20

10

We have analyzed the t-J model assuming that there
is a static magnetic structure in its ground state. As
we mentioned in the Introduction, most theories on the
spiral state assume the planar spiral modulation a pri-
ori without justification. We have confirmed that the
deviation &om the planar spiral modulation is small for
small hole densities. Besides our analyses suggest that
nonplanar modulations are likely to appear, especially
for moderate hole densities. Kane and co-workers pro-
posed the possibility of a nonplanar spiral state called
the "double spiral state" where spins spiral in orthogo-
nal planes in the x and y directions. ' This is one of
the nonplanar spiral states which correspond to the case
qq

——(q, 0), q2 ——(0, q). They concluded that this double

1.5

:L=12
L=16
L=20',

5
t/J

FIG. 5. Deviations from the Neel order plotted versus t/J
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netic or (vr, 0) ground state appears instead of the spiral
state. There have been reported similar results concern-
ing the incommensurate antiferromagnetic orders for the
Hubbard model. ' These theories also predicted the
transition from the diagonal spiral state to the ferromag-
netic state. But the transition between the ferromagnetic
phase and the spiral phase in the theories is second order
in contrast to the first-order transition in our case. We
show in Fig. 6 a schematic phase diagram expected in
the thermodynamic limit.

Here, we examine the spin-disordered state. Vignale
examined the spin-disordered state, which is character-
ized by a static random spin density in the Hubbard
model using the Hartree-Fock approximation. We esti-
mate the energy of the spin-disordered state to examine
whether it has lower energy than other ordered states.
We generate the disordered configurations of spins by,
uniform random numbers. We calculate the kinetic en-
ergy for each spin configuration and average them over
various random configurations. In Fig. 4, the kinetic en-
ergy of the spin-disordered state and that of the (vr, 0)
state are shown. This calculation has been done for a
16 x 16 lattice and the number of averaged samples is
1280. These kinetic energies are equal to the total energy
for both states, because they have zero total exchange
energy. From Fig. 4, we conclude that the (vr, 0) state
is more favored for all hole concentrations than the spin-
disordered state. Thus, the spin-disordered state without
spin correlations does not appear in our phase diagram.

Although we did not consider the charge fluctuation
efFect, the stability of the spiral state against charge fluc-
tuations has been studied in several papers. ' ' Emery
et a/. pointed out the possibility of phase separation be-
tween the hole-rich region and the hole-poor region.
The physical reason for phase separation is that the gain
in exchange energy by maximizing the number of antifer-
romagnetic bonds outweighs the cost in kinetic energy.
The phase separation occurs also in our approximation,
unless we ignore its possibility, as we examined in our
previous paper. However, we have ignored such a state
in this paper assuming that the long-range part of the
Coulomb interaction prohibits holes &om the phase sep-
aration, since we are interested in the spiral states which
might exist in real materials such as high-T, cuprates.

The main approximation employed to obtain the above
results is the classical treatment of spins. We have fixed
the magnitudes of spins on each site regardless of the
doping of holes. This approximation violates the local
constraint for the number of holes at each site. This
would be very harmful except for small hole concentra-
tions, which we are interested in. We can partly take
into account the shrinkage of spins due to this constraint

(planar
spiral)

nonpianar spiral

0.2 0.3

FIG. 6. A schematic phase diagram of the classical spin t-J
model expected in the thermodynamic limit.
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by the substitution S; m (1 —b'j2S)S, , assuming they
are uniform. Because both Hq and HJ become smaller
by the same factor of (1 —8/2S), this makes no change
in our phase diagrams. There are correlations between
the shrinked spins and doped holes in actuality, because
they have the same degrees of freedom originally. Thus
the spin shrinkages are not uniform and fluctuations ex-
ist. The eÃects of such fluctuations become serious for
high hole densities. The large values of b in our phase
diagrams might be out of the range in which our ap-
proximation is valid. For example, if fluctuations are
taken into account, the ordered states would disappear
at a critical hole concentration. In particular, if we take
only the antiferromagnetic order into account, the mag-
netic order disappears at a critical hole concentration.
However, in the large S limit, the fluctuations would be
negligible. Our approximation corresponds to taking the
leading order of a Holstein-Primako8'-type spin wave ex-
pansion. We have argued the efFect of spin wave scatter-
ing in our previous paper. Calculations of higher-order
corrections are further complex problems.
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