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Effective lattice actions for correlated electrons
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We present an exact, unconstrained representation of the electron operators in terms of operators
of opposite statistics. We propose a path-integral representation for the t-J model and introduce a
parameter controlling the semiclassical behavior. We extend the functional approach to the Hubbard
model and show that the mean-field theory is equivalent to considering, at Hamiltonian level, the
Falikov-Kimball model. Connections with a bond-charge model are also discussed.

The investigation of the nature of the ground. -state and
low-lying excitations of strongly correlated electron sys-
tems is a fundamental problem of the modern many-body
theory. The standard model of correlated electrons on a
lattice is the Hubbard Hamiltonian

H~ = t ) A—sct, c~. , + U) n; gn; t,

where A;~ is the symmetric adherence matrix connecting
the nearest neighbor (NN) sites of a hypercubic lattice
of M sites, c, , and c;, are creation and annihilation
operators for electrons with spin projection s =g, $, re-

spectively, and n;, = c, ,c;,. Henceforth we denote the
states at site i with the notation

ties can be achieved in terms of exact operator identities.
Hence, contrary to the slave-particle methods, in our ap-
proach constraints among the operators are absent. In
fact, the states (2) can be generated by means of canon-

ical spinless fermions f, and Pauli operators 0, ,

(4)

where cr; y = (a; + io'; &)/2 and Iv) = , Iv); is the
reference vacuum annihilated by the f, 's and cr; +'s. We
observe that the representation is closed, since no new

states can be generated by applying ft and/or 0;, so
that the operators of a given basis can be expressed in
terms of the others,

ct — . . t= A~ g C~ g
—A~ g C. ~,

c; t = 7i,+fi —ti, f;1—
(5)

(6)

where lv) = , . Iv), . The essential behavior of H~ in
the strong-coupling regime U/Itl )) 1 below half-filling is
commonly investigated by means of the effective Hamil-
tonian 0 = Hq J +8( ) acting in the subspace without
doubly occupied states IO, Q );, where

is the t-J model and H( ), not explicitly displayed, is
the three-site term. Here (i, j) denotes the summation
over the NN sites, J = 4t /U, c;, = c;,(1 —n, ;),
with 8 denoting the opposite spin projection, are pro-
jected electron operators, and S; =

z P, c a,„c,„and1

N; = g, c;,c;, are the spin and number operators, re-
spectively, with 0,„the Pauli matrices.

To approach the problem of strong correlation, slave-
bosan (-ferrnion) methodsi 2 have been widely employed,
because they give a physically intuitive way to work in the
subspace without doubly occupied states and allow the
introduction of mean-field approximations by assuming
condensation of the bosons. In the present investigation
we provide a path-integral description of models (1) and
(3), starting fram the observation that the decomposition
of the electron operators via operators of opposite statis-

where n;, = 1 —n;, and p, ~ = (1 6 0, ,)/2. Hence,
it is possible to construct nonlinear combinations of the
electron operators satisfying (f, , f~) = b;s, [o;,as. p] =
2i b;~e»o~ ~ or, relevant for us, one sees that the anti-
comrnutation relations (c,"„c~„)= b;s S,„can be fulfilled
via operators of opposite statistics.

For the moment, it is useful to avoid reference to a
particular Fock representation. To this aim we say that
model (1) [or (3)] acts on "objects" l(, o); of four {or
three) difFerent species, placed exactly one to a site,
which we label by defining the "grade" 7r(() = (—)~ = jl
(( = 0, 1), i.e. , by dividing the species into even and
odd, and the "isospin" q, = +z (pictorially 0 =Q, JJ.)
quantum numbers. The unitary transformations of the
species assigned to each site are given by the Hubbard
operators ' 4;.&, ,

——I(, a'), {(l,o'll, , which form the fun-

damental representation of the su(2I2) graded algebra. '

The special character is due to the completeness relation
N; g

= 1, where N, t = X~& are the local den-
sities, expressing the one-to-one correspondence between
objects and sites. With our notation, the anticommut-
ing, or "odd, " operators are those changing the grade
[i.e. , with n'(() = —7r(gl)], henceforth denoted

0$ o. 1' OJj ~ 1'X'
~ i g ':X'pg r': X'i 'T: X'pii, (7a)
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so that y; = y,. and wi = v,- . For the commuting,
or "even, " operators [i.e., those with vr(() = vr((')), we
define the linear combinations

S;,

Si,

1X
ilg

ilg

ipse

ipse

1
ilg)

1+ X lQ)2
1 pg

2
X'pg)

1 pg+ Xipg)2

lgSi + ——X,.l~,

Si = X,.i~,
1$

~i,+ Xipg )
pg

I i = Xo~.pg

(7b)

(7c)

For graded (i.e. , supersyrnmetric) algebras, the grad-
ing of t,he states is a convention of purely formal na-
ture, because the grading of the operators does not de-
pend on the choice used. Physically, this freedom corre-
sponds to the fact that the particle-hole transformation
~0, o), ++ ~l, o); leaves su(2]2) unaltered, i.e. ,

(s, „s,) ++ (L, „L,),
(X7, ~ Xi ~ i I ri ) ~ (Xi,y~ +i, (t;) Xi,g~ +i,g)1

fl'
(8)

where Si ~ ——S; +iS, „and I; ~ ——L,. +iIi „.Here-
after we shall always use the correspondence (2), so that
S; and L, are identified as the local spin and pseu-
dospin operators, respectively. Henceforth we also define
the isospin vector as the sum of spin and pseudospin:

Q; = S, + L, . The total numbers of species-((, o) ob-
jects, %g = P, N; g, are related to the total numbers of
spin-8 electrons, henceforth denoted N„ through the self-
evident relations N~ ——Nl~ + Npg and Ng ——Nlg + Nog,
from which we obtain the equivalent expressions

1 1
S, = —(Nrg —Nrg), S, = (Ng —Ng), —

2 2
1 1

L, = —(Npg —Npg), L, = —(M —Nt —Ng), (9)
2 2

where S = P,- S; and L = P,. L;. The operators S,
and L are conserved because Nt and Ng are constant;
however, f'rom Eq. (9) we might also say that conser-
vation follows because even and odd objects, when not
conserved, are both created and/or destroyed in pairs.
The latter is a useful way to visualize the less intuitive
properties of the pseudospin. The picture is sharpened
by observing that spin and pseudospin always act on Ng
as raising-lowering operators, thus changing Ng by one
unit in states with a definite number of objects. We have

[Npg, L~] = +L~ and [Npg, L~] = ~L~, as well as the
commutators where Np ~ Nl and I~ ~ S~.

Hubbard operators are useful for discussing symmetry
properties and by using them it is easily seen that any
transformation of the electron operators can be exactly
rephrased in the basis (4). In particular, in the represen-
tations (2) and (4) the particle-hole transformation (8) is

achieved by letting ct
&

m c, g and ft ++ f, , respectively.
The realization of Eq. (7) in the basis (4) is

where n; = f, f,., and the operators not explicitly dis-
played are easily obtained by means of Eq. (8). The lo-
cal densities are N; pg ——p, +n;, N;, pg ——p, n, , N;, ly ——

p, +(1—n;), N, rg = p, (1 —n;), and automatically sat-
isfy P& N; g

= 1. For the realization of Eq. (7) with
electron operators we refer instead to Refs. 4, 5.

We now consider the auxiliary model acting by per-
mutation of the four species of objects ](,cr);,

H(212) ) tP01 + (Pll Ppp)J
(i j)

where P, = 2(s, s& + S, &S~ i) and P; = 2(L,L1. +
L; iL~ i) are the spin and pseudospin permutators acting
nontrivially on the odd and even objects, respectively,
and P; =g. ()('; yz + r; 7~ +H.c.) is the operator
permuting pairs of objects of opposite grade. Equation
(ll), henceforth referred to as the extended model, is
the case x = y = 2 of the class of Hamiltonian H("l )

permuting objects of y odd and x even diferent species,
introduced by Sutherland for the special case J = +2~t]
in studying exactly solvable systems in one dimension.
The spectrum of H(212) contains that of H(2ll) by con-
struction, and noting that the latter is actually the t-J
model, we see that information about the Hamiltonian
(3) can be obtained from the model (11) by imposing the
conserved constraint Npg = 0. Using Eq. (10), H( ~ l

becomes

where P,~ =2 (1 +.o, o~. ) and A;~ = (1 —n; —nz), and
where we have added a constant to ensure that Eq. (12)
reduces to the standard definition (3) of the t Jmodel for-
Np~ = 0. We consider the generalization (11) useful7 be-
cause it leads in H~'& both (i) to the isotropic contribution
I,~ in the hopping term, similarly to the generalization
of Khaliullin, and (ii) to the quadratic contribution b„.~
in the magnetic term. In this respect, Eq. (12) is eas-
ier to study than the original t-J model, as for, e.g. , the
magnetic term of Hip in the basis (4) has a four-fermion
interaction M;~ = (1 —n;)(1 —n~).

For the time being the state ~0,$); will be interpreted
as a fictitious "polarization state of the hole, " and not as
the physical doubly occupied state, because we are inter-
ested in Eq. (12) only as an auxiliary description of Eq.
(3). From this interpretation it follows that the conserved
quantity G = g N1 always corresponds to the number
of electrons, N, ~

= P, N„and b = g Np /M = P, n;
to the doping. The extended model commutes with S
and I, and from Eq. (9) one easily sees that for any given
G = N i the condition Np~ ——0 projects onto the sector
where pseudospin I and total pseudospin L attain their
maximum allowed value I = L = (M —N, ~)/2.

In a grand-canonical approach the partition function
of the model (12) is

S;, = —(1 —n;),

S, = —o., (1 —n;),
2

'

X; = 'Y', +f' r, = o'', +f'

c. 4
X,. =o', f' &; =7', f'— — (10)

Z = Tr exp( —PH„), H„= H~'J —) p Np, (13)

where p ~ are the chemical potentials for the two species
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of "holes. " In the basis (4) a path-integral representa-
tion for Z can be built up immediately by using Grass-
mann variables g;, g,*- for the spinless fermions and stan-
dard SU(2) coherent states ~B;) for the isospin vectors.
In fact, Q; = S; + I, is the sum of two reducible op-
erators, for which vector addition does not apply. The
only eigenvalues of Q; are q, = +2 and indeed in the
basis (4) we can write the isospin vector as a pure spin-
— operator: Q, = 2cr; M. oreover, this property allows
us to introduce an expansion parameter, denoted q, by
enlarging the dimensionality of the SU(2) representation
of Q, . For consistency we enlarge the whole even sec-
tor (7b) and 7(c) of su(2~2), setting S; q

——q(1 —n;) and
L, t

——qn; in Eq. (10). Following the spin-wave approach
adopted in Ref. 6, the generalization of H„at arbitrary
q is thus achieved by letting

(P, —1) -+P, =2(Q;Q —q ), (14)

P~ -+ P; =2(Q. ;Q~+ q ), p;,~ m q+ Q;, .

Due to the presence of A;~ in Eq. (12), the Grassmann
integration over the variables g,*- and g; entering Z can be
performed exactly and we obtain Z = I'DA exp( —S,g),
where 'VO denotes the usual integration over the clas-
sical unit vectors A, (w) and the effective lattice action
ls

/3 /3

S.& = 'q) «A, B.n, + 4q' —) dr P,', ' (15)
0 '('. )

'
—Trln([B —4q (p, + p 0;,,)]b;, +4q2tA, ,P~+. ~),

with A, the Dirac potential for a monopole of unit

strength, 'P, = 2(B;O~ + 1), and

]. p'~+p'~ J - ( )p+ =—,V* = C++ —) A'~&;~ (16)
2g 2

The model (12) behaves as a correlated hopping, and in
fact p,, enters S,~ as a rotationally invariant local chem-
ical potential correlated to the background. In dealing
with the extended model H~J itself, the most natural
choice is to treat the two species of holes equally, thus
setting p = 0, whereas when considering the t-J model
one has to impose the condition Bin Z/Oy, ~ = 0. As
expected, in the latter case, the rotational symmetry in
isospin space is explicitly broken, as p is coupled to 0; ~
and acts as an effective magnetic field. However, as dis-
cussed in Ref. 6, in the static limit t = 0 the ground-state
energies of H~J' and Hqj are degenerate and we expect
the degeneracy to remain for a physically sensible range
of the parameters J/]t~ and b. Hence, in this case, one
can investigate the zero-temperature properties of the t-J
model directly with the extended Hamiltonian H~'J, thus
working with the simpler condition p = 0.

The doping is accounted for by the third term on
the right-hand side (rhs) of Eq. (15). This contribu-
tion is ineffective at zero doping, and because when
h = 0 spin and isospin coincide (as for L; = 0), S,~

correctly reduces to the standard lattice action of a
quantum antiferromagnet. We also notice that, con-
trary to other proposed functional integrals for the

J-model, the imaginary part of Eq. (15) is a sum of
standard Berry phases, so that the quantization condi-
tion on the monopole Qux is satisfied for any b. We
remark that the classical field O, (r) is the expectation
value of the operator Q, /q; hence for b g 0 physical
correlation functions can be evaluated only by differ-
entiating Z with respect to suitable source terms, e.g. ,

H, = g,. h; S;—:g,. h;(1 —n;) Q;, added to H„. Allowing
for these modifications of Eq. (13), the e6'ective action
is modified as well. However, the resulting Eq. (15) re-
mains a purely classical expression, for which a gradient
expansion controlled by the parameter q allows extrac-
tion of the relevant low-energy behavior.

The basis (4) is suited to define an eKective action
also for the Hubbard model. To this aim one only needs
to insert Eq. (6) into Eq. (1). However, before per-
forming this straightforward calculation, we divide the
lattice into two sublattices A and B, and perform the
transformation c, , ~ e' ic,. „where 0; = 0 for i E A
and 0, =

2 for i C B, so that H~ is mapped into an

equivalent Hamiltonian H~, whose hopping matrix sat-
isfies tA, ~

= —tA~, = tA*.;. We make this change be-

cause it is known that the operator M, with compo-
nents M = P,. c,. & [(—) *ct& + c, ~], M+ ——M, and

M, = g, (z —c, &c, g), where m; = 0 (1) for i C A (B),
commutes with H = H~+ UI., By changing the phases
we have M ~ Q, because the alternating sign e; = (—)
cancels, and H~ -+ HJI, so that [HJI + UL„Q] = 0.
Hence, this choice of the phases leads to the representa-
tion of the Hubbard model

HIr = t) A;~ —P;, ftf, + (P;,. —l)C,, +H t, , (17)
~)2

where C,~
= (f;f~ —f—f;) .and Ht, ——Ug,. p, , n, ,

with a manifestly isospin-invariant hopping. In Eq. (17)
one easily identi6es a term Hp conserving the number
of objects of each species, and a term HI leading in-
stead to transitions AG = +2. Setting A,~

—+ —A;~
via the transformation f, -+ e' ' f, , we have Hp

Hp ——H t + tP, . A;~P;~ f; f~, and confronting this ex-

pression with the results in Ref. 5 one sees that Ho
is also the particular bond-charge model Hb, ——H~ +

, A, ct,~(cn;; + n~;). The equivalence of these
different looking models is found because both have
the same expression Hp ——H t —t g~, .

~
P; in terms of

abstract Hubbard operators, and holds because a global
phase change in one basis leads instead to site-dependent
transformations when rephrased in the other, e.g. ,

f,t -+ e' f, m c, , + expji6(2n;; —l))c, , (18)

This is actually the main reason why, before making use
of Eq. (6), we have brought H~ to a form with an anti-
symmetric adherence matrix. By replacing directly Eq.
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(6) into H~ and M, one obtains messy representations
obscuring the result [H~ + UI „M) = 0.

Using Eq. (14) and following the discussion leading to
Eq. (15), the Hamiltonian H„= HH —pK, &

can be ex-
tended at arbitrary q and its partition function repre-
sented as the path-integral Z = J' 170expf —S,&),

p
S,z —— 4q —PppM+iq) d~A, B 0, ——lndet[K; ~]

z

where pp = p, /(2q) and, setting Up = U/(2q), h = pp-
Up/2,

l
a. +4,

~

U'

2 (Up

+an, , ~
a,, —4q'tA, ,P,(,+',

K, = 4q tA;—, 'P, .

+hO, ,
~

h;, —4q'tA;, 'P,', '.

The square root of the determinant of the block matrix
K, ~ enters into the effective action because, due to the
presence of C,~

= 2(g;q~ —q'q, *.

) in the classical coun-

terpart of HH, we have performed the integration with
respect to the variables g;, with g; = g;, g; = g,*, sat-
isfying to the condition (g, )' = g, cr p . The Pfaffian
structure of S & is quite natural: The oH'-diagonal blocks
vanish only for a ferromagnetic background, and setting
0; = b one can easily see that in this case both ef-

fective actions S g and S,& correctly reduce to the log-
arithm of a free spinless fermion determinant. At half-
filling one has 6 = 0, so that S,& is rotationally invariant
in the isospin. The symmetry is instead explicitly broken
away from half-filling, as expected because of the relation
qA, , = (0;~S, , +q(1 —N, ~,)[O;), where Iq, t, is the local
electron number operator.

In general temporal Huctuations of the classical Gelds

0;(~) (i.e. , quantum fluctuations of the Q s) are sup-
pressed by letting q —+ oo. Assuming the generalization

(14), in Eq. (6) one has ct
&

oc q + Q;, and ct& oc Q;
and at large isospin we consistently obtain c,. &

——O(q)
and c,. &

——O(~q), so that the propagation of the spin-t

$ electrons becomes smaller and eventually vanishes at
q = oo. Hence, at the mean-Geld level S & reduces to
the effective action S,& that one would have obtained by
considering the Falikov-Kimball Hamiltonian. ' This is
a useful result, because one can reasonably obtain sen-
sible information about the Hubbard model by system-
atically including corrections starting from a model, the
Falikov-Kimball model, for which many exact results are
known. ~6

I am grateful to A. Muramatsu and S. Sorella for many
stimulating discussions. I also acknowledge useful discus-
sions with A. Parola. This work is supported by the Hu-
man Capital and Mobility program under Contract No.
ERBCHBICT930475.

* Mailing address.
For a review see, e.g. , D. Vollhardt, Strong-Coupling Ap-
proaches to Correlated I'ermions, Proceedings of the Inter-
national School of Physics "Enrico Fermi, " Course CXXI,
Varenna, 1992, edited by R.A. Broglia and J.R. Schrieffer
(North-Holland, Amsterdam, 1994).
Z. Zou and P.W. Anderson, Phys. Rev. B 37, 627 (1988).
B. Sutherland, Phys. Rev. B 12, 3795 (1975).
F.H.L. Essler, V.E. Korepin, and K. Schoutens, Phys. Rev.
Lett. 68, 2960 (1992); 70, 73 (1993).
A. Schadschneider (unpublished).
A. Angelucci, S. Sorella, and D. Poilblanc, Phys. Lett. A
198, 145 (1995).

"Because H~ is a permutational operator, a similar gener-
alization can be applied also to the three-site term.
G. Khaliullin, Pis'ma Zh. Eksp. Teor. Fiz. 52, 999 (1990)
[JETP Lett. 52, 389 (1990)].
F.D.M. Haldane, Phys. Rev. Lett. 61, 1029 (1988).

A. Auerbach and B.E. Larson, Phys. Rev. Lett. 66, 2269
(1991);H.J. Schulz (unpublished).
A. Muramatsu, Phys. Rev. Lett. 65, 2909 (1990); A. Mu-
ramatsu and R. Zeyher, Nucl. Phys. B346, 387 (1990).
E.H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).
Ho coincides also with the hopping term of H, J ~ Follow-
ing the approach of C. Gros et al. , Phys. Rev. B 36,
381 (1987), to eliminate Hz in perturbation theory, the
extended Hamiltonian (12) can be derived in the strong-
coupling limit of Eq. (17).
C. Itzykson and J.-M. Drou8'e, Statistical I'ield Theory
(Cambridge University Press, Cambridge, England, 1989),
Vol. 1.
A similar scaling is found for projected electron operators
ct, See C.L. Kane et al. , Phys. Rev. B 39, 6880 (1989);
A. Angelucci and S. Sorella, ibid. 47, 8858 (1993).
T. Kennedy and E.H. Lieb, Physica A 138, 320 (1986);
E.H. Lieb, ibid 140, 240 (198.6).


