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Superfluidity of lattice semions
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Semions on the square, triangular, and kagome lattices are studied using mean-6eld theory
and numerical diagonalization. Semions are particles obeying fractional statistics, with statistics
parameter v = 1/2. A mean-field treatment which includes Gaussian Suctuations indicates that
semions on a lattice form a super8uid at zero temperature for most densities p. The mean-6eld
results are compared with those of a numerical analysis of semions on small lattices. Using 6nite-
size scaling, the lattice semions are tested for fiux quantization, a signature of superQuidity. The
results of the numerical analysis generally corroborate those of the mean-6eld approach.

I. INTRODUCTION

Quasiparticles obeying fractional statistics, anyons, i 2

are thought to be the excitations of a number of strongly
correlated electronic systems in two dimensions. The
anyon excitations of GaAs/Al Gai As heterojunctions
subjected to strong transverse magnetic fields condense
into an incompressible quantum Hall fluid, leading to the
experimentally observable hierarchy of stable states in
the fractional quantum Hall effect. It has been pro-
posed that systems with magnetic frustration, such as the
Heisenberg antiferromagnet on the triangular or kagome
lattice, may have a chiral spin-liquid ground state
which supports quasiparticles with half-Fermi statistics
semions .

Hartree-Fock and random phase approximation cal-
culations indicate that semions in the continuum form
a superfluid at zero temperature in the absence of a
magnetic field, or a superconductor if the semions carry
charge. For this reason, it has been suggested that
semions may play a significant role in high-temperature
superconductivity, though there is at present no con-
clusive experimental evidence for the breaking of parity
or time-reversal symmetry that is a fundamental char-
acteristic of anyon models. In any case, the novel
physics of quasiparticles in two dimensions warrants a
detailed study of the characteristics of anyon systems.

The ground-state properties of semions on a lattice
are of particular interest. This is due to the possible
relevance of fractional statistics to the aforementioned
condensed matter systems, and because additional ef-
fects due to the lattice can alter the results of vari-
ous approximate treatments of anyon systems. Mean-
field calculations which incorporate the effect of local
fluctuations ' indicate that anyons on the square lat-
tice with statistics v = 1 —1/n (n integer) form a su-
perfluid at zero temperature, but only for certain lattice
fillings; the lattice filling factor or density p must sat-
isfy p = r/q, where r and q are mutually prime integers
and q is larger than twice the common factor of r and
n. The purpose of this paper is twofold: first, to deter-
mine whether these density restrictions are a spurious re-

suit of the mean-field approximation, a lattice-dependent
feature, or a more universal characteristic of anyon su-
perfluid states, and second, to more generally ascertain
the validity of anyon mean-field theory.

Numerical approaches to the problem of anyons on a
lattice have generally corroborated the mean-Geld predic-
tions. Canright, Girvin, and Brass considered anyons
on a rectangular lattice with cylindrical boundary condi-
tions. The ground-state energy of anyons in a mean-field
representation compared favorably with the exact anyon
ground-state energy. They also found evidence of flux
quantization. Wu, Kallin, and Brass and Hatsugai,
Kohmoto, and Wu have pointed out that the period-
icity of the ground-state energy with external flux for
anyons on the cylinder is not sufIicient indication of a
superfluid state since energy level crossings between the
ground state and excited states can mimic flux quanti-
zation curves. These boundary conditions also lead to
significant edge and finite-size effects. Wu, Kallin, and
Brass eliminated edge effects by studying anyons on
a sphere, but important finite-size effects persist which
make an extrapolation of the ground-state properties to
the thermodynamic limit diKcult. Kallin has exam-
ined semions (v = 1/2) on the square lattice with peri-
odic boundary conditions in both directions. Finite-size
effects were minimized by studying the size dependence
of the flux quantization signature. While the results are
compatible with the mean-field predictions, only a gen-
eral correlation of superfluidity with semion density is
made.

The present work extends the previous ."-nean-field
and numerical studies of anyons. In order to make a
more careful assessment of the validity of the mean-field
approach and of the density restrictions the lattice im-
poses on semion superfluid states, three different lattices
are studied: the square, the triangle, and the kagome.
Since the mean-field approach predicts lattice-dependent
restrictions on the superfluidity, a detailed comparison of
the mean-Geld and numerical results for semions on var-
ious lattices should shed light on the general validity of
the mean-field approximation.

In the mean-field theory, the semions are represented
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by fermions attached to Po/2 flux tubes, where Po ——hc/e
is the flux quantum. ' The Hux is spread out so that
there is an equal amount through each unit cell. The
solution of the magnetic Bloch problem yields Landau
subbands; each subband carries an integral quantum Hall
conductance which is a topological invariant uniquely
defined by the subband structure. Fluctuations of the
statistical Hux and of the particle density spatially fol-
low one another, resulting in a linear collective mode,
and therefore superfluidity, only for specific values of the
quantum Hall conductance.

In the numerical investigation, semions on small lat-
tices with periodic boundary conditions in both direc-
tions are studied by the exact diagonalization of the
Hamiltonian. The system is tested for flux quantization
by monitoring the change in the ground-state energy with
applied flux. It has been previously noted ' ' that
anyons with statistics v = m/n on the torus will have all
energies Po/n-periodic in applied flux. True flux quanti-
zation can be determined by investigating the scaling of
the energy barrier, the difference between the maximum
and adjacent minimum of the ground-state energy, with
system size. The torus is particularly suited for an inves-
tigation of flux quantization in anyon systems since the
periodicity of the ground-state energy ensures that the
energy barrier is well defined.

In Sec. II, the mean-field theory for anyons on the
square, triangle, and kagome lattices is described in de-
tail. The criteria for superfluidity that arise from the
consideration of fluctuations about the mean-Beld config-
uration are outlined. The results of the mean-field anal-
ysis for anyons on the three lattices are given in Sec. III.
It is shown that semions form a superHuid for all densi-
ties p ( 1/2, but only for certain densities in the regime
p & 1/2. In Sec. IV, the Hamiltonian employed in the
numerical analysis of lattice semions is explicitly written.
Section V contains the results of the flux quantization in-
vestigation for semions on the three lattices. The results
of the mean-field and numerical analyses are compared
and discussed in Sec. VI.

where ci destroys a fermion of type o. at site i. The
phase 0ij p is defined on a lattice link by

(2.3)

where A is the vector potential associated with the aver-
age background Hux per unit cell O'. If the Beld is directed
normal to the lattice along the z direction, the Landau
gauge can be chosen to define the vector potential

(2.4)

The average Hux per unit cell is given by

(2.5)

where v is the statistical phase (v = 1/2 for semions), p
is the particle density, and A is the ratio of lattice sites
to unit cells. The integers P and Q have no common
factors.

A. Magnetic Bloch electrons

The square, triangular (Fig. 1), and kagome (Fig. 2)
lattices are considered. The unit cell is chosen to be
a square for the square lattice and a rhombus for both
the triangle and kagome lattices. The unit cell of the
square and triangular lattices contain only one lattice
site (A = 1), whereas the unit cell of the kagome lattice
contains three sites (A = 3).

Unlike the square or triangular lattice, the A:agomi lat-
tice is not a Bravais lattice. The kagome is equivalent to
a rhombic lattice with a three-point basis (Fig. 2). Ba-
sis points for the kagome lattice are distinguished by the
labels 1, 2, and 3, and are labeled by the indices n, P in
(2.2); this index is extraneous for the square and triangle.

The Hamiltonian (2.2) has been well studied, and
in reciprocal space becomes

II. MEAN-FIELD THEORY

ls
The tight-binding Hamiltonian for anyons on a lattice

(2.1)

+2~~ij cxP
j,p i,a )

(ij)n,p

(2.2)

where at (o, ) creates (destroys) an anyon of type o.
(explained below) at lattice site i, and the sum is over
nearest neighbors. The units are chosen so that the en-
ergy scale, t, and the lattice spacing, a, are both set to
unity. The mean-field Hamiltonian is obtained by rep-
resenting the anyons by fermions coupled to fractional
fluxoids and spreading out the Hux to form a uniform
background fictitious field. This procedure leads to

FIG. 1. The triangular lattice is shown with the rhombic
unit cell outlined in the lower left corner. The Aux per unit
cell is the sum of the plaquette Huxes C q and C2 through
triangles of diferent orientation. Strings emanating from each
plaquette illustrate the choice of gauge.
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I&) = ).&, ,.c.'
I
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where k' + 2)r&j replaces k, and (k, k„) are deflned
in the magnetic Brillouin zone 0 & k & 2)r/Q and 0 &
k„& 2)r. The wave function @t. satisfies the "magnetic
boundary condition" gt+g

The eigenvalue equation H(k, k„)I@) = EIg) for the
square lattice yields

Q

) ([2cos (k' + 2)r@j /Pp) + E] Q& + e

FIG. 2. The kagome lattice is shown with the rhombic unit
cell outlined in the lower left corner. The flux per unit cell
is the sum of the triangular plaquette fluxes 4z and 4» and
hexagonal plaquette flux C 2. The kagome lattice is equivalent
to a rhombic lattice with a three-point basis. Basis points are
distinguished by the labels 1,2,3.

1

(2)r)
dkyH(k, k„), (2.6)

where H(k, k„) is lattice dependent. Given a fraction
of flux per unit cell 4'/Pp ——P/Q, in order to satisfy the
requirements of the magnetic translation group, the Bril-
louin zone must become Q-fold smaller in one direction,
chosen to be the x direction. The eigenstate of H(k, k„)
can therefore be written

+e*""Q. i) = 0. (2.8)

The difference equation (2.8) is known as Harper's equa-
tion. It was shown by Hofstadter that the highly de-
generate tight-binding band which results in the absence
of a Beld is split into Q subbands for flux per unit cell
@ = 4'oP/Q.

The unit cell for the triangular lattice is chosen to be
the rhombus shown in the bottom left corner of Fig. 1.
It is evident that two of the nearest-neighbor links do
not follow primitive vectors, but are linear combinations
of them. There is therefore some freedom in how the
gauge field is defined along these links, as long as each
unit cell encloses C flux. This freedom is parametrized
by the fluxes 41 and 42 through the two triangular pla-
quettes comprising the rhombus, as shown in Fig. 1. The
difference equation for the triangular case is then

Q

) ([2cos (k' + 27r@j/pp) + E]g. + [e'(" v kp) + e 2(" +v" )pe '2~@ + )/~'e'2~@'/~'])t .

+[
—

2 (k~ —~3k&) + & (k~+Vskrr) i2rr@j/r/Pp —i2rr4&/pp]y ) 0 (2 9)

where use has been made of the identity 41 + C 2 = 4.
As in the square case, the single tight-binding band is
split into Q magnetic subbands for flux per unit cell C' =
4oP/Q.

In the case of the kagome lattice, the unit cell is also
chosen to be a rhombus, shown on the bottom left cor-
ner of Fig. 2. As in the triangular case, there are lattice

links other than the primitive vectors. Thus again, there
will be different possible mean-Geld solutions. These can
be parametrized by the fluxes 41, C 2, and 43 through
the triangular and hexagonal plaquettes comprising the
rhombus, subject to the constraint that each unit cell has
flux C —@i + C 2 + C 3 = 3(t)p (1 —v) p. Due to the sum-
mation over basis points, three equations are obtained:

Q) (Eq + (1 + (k'+2 4g/gp))y + q + —'(k' —~3k„)q ) ()

j=1
Q) ri i(k +2rrC j/Pp)i„)—, + E ), + i2rr4r/$p„), + —

2 (k +vs—k„) i2m(Cj+4p)/—Ppq i 0+j—1,3 2)3 J
2=1

Q

Itt) + ——' (k —v 3kp) )/) + a27r4& /4'p @ + & (k~+~3krr) r27r(42+43)/4 p $ + EQ j 02) 2 t 2 ') 2)
j=l

(2.10)
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For general flux per unit cell 4 = POP/Q the number of
subbands is 3Q.

III. MEAN-FIELD RESULTS

A. Square

B. TKNN integer and superfluidity

It can be easily shown that the Hall conductance is
quantized whenever the Fermi energy E~ lies in a gap
between subbands. Each tight-binding band is split into
AQ subbands for Hux per unit cell 4 = POP/Q. If the
particle density is such that the Fermi energy lies in a gap
between subbands, then there will be f filled bands below
E~. The integers P, Q, and f satisfy the Diophantine
equation:

f = Qsy + APty, (2.11)

where Sy and ty are unconstrained integers. The density
of states JV is equal to the fraction of filled subbands:
JV = f/AQ Furth. ermore, the Streda formulasi for the
transverse Hall current is

aX
8B ~ (a. s

)
e= —tf.6 (2.12)

Since each ty must be an integer, the Hall conductance
for each subband is quantized in integer multiples of e /h.

The integers ty are often called TKNN integers af-
ter Thouless et al. The TKNN integer is a topological
invariant, 2 and therefore the Hall conductance is insen-
sitive to changes in the external flux as long as the gap
between subbands remains well de6ned. The topological
invariance is used in the calculation of the integers t y and
sy associated with each gap.

The consideration of Quctuations about the mean-field
configuration ' yields the following condition on the
integers ty and sy if the ground state of the system is a
superfluid:

The energy spectrum for the square lattice, deter-
mined by the Harper equation (2.8), was analyzed by
Hofstadter. The TKNN integers were previously calcu-
lated by Hatsugai and Kohmoto. Fradkin has quanti-
fied the density constraints on superfluidity: given statis-
tics v = 1 —1/n and density p = r/q, where r and q have
no common factors, q must be greater than twice the
common factor of n and r in order to ensure a super-
Quid state. For semions, this implies that all densities
should form a superfluid except the cases p = 1/2 and
2/3. The technique itself is not applicable to the case
of half-Ailing, however, since the associated mean-field
gap closes. A diR'erent analysis is necessary in order to
determine whether the system at half-61ling forms a su-

perflui.

B. Triangle

The energy-flux spectrum for anyons on the triangle is
determined by the difference equation (2.9). The band
structure is sensitive to the plaquette distribution of flux,
parametrized by the flux 4i through one of the two tri-
angles comprising the unit cell. In order to determine
which con6guration the system favors, the total ground-
state energy for semions at various densities is computed
with 4'i as a parameter. The total energy is calculated
by integrating over occupied states up to the Fermi level
defined by the particle density. A calculation of the total
energy based on the density of states ' is not as prac-
tical for semions at densities other than half-Ailing due
to the large number of subbands.

The total ground-state energies for semions on the
triangle were calculated for densities p = r/q, q
2, 3, . . . , 15. For each density, Hux fractions @i/4 with
denominator 120 were considered. It is found that
semions on the triangle have a lower total ground-state
energy for the following, density-dependent, plaquette
configuration of flux:

(2.13) 1/2, p & 1/2;
Oor1, p&1/2. (3.1)

Thus, semions on a lattice form a superfluid only if the
density is such that E~ lies in a gap between subbands
with the quantum numbers (2,0). Otherwise, the system
is a quantum Hall insulator. Since ty must be an inte-
ger, the condition (2.13) implies that only anyons with
the statistics

(2.14)

can form a superfluid. These are the same statistics found
by Fetter, Hanna, and Laughlin and Chen et al. to
yield superfluidity for anyons in the continuum.

Notable exceptions to this general observation are the
densities p = j/(j + 1) with j & 5, which minimize the
ground-state energy for semions when C'i/4 = 1/2. No
other plaquette flux distribution was found to minimize
the total energy. The energy-flux spectra for the cases of
uniform flux (equal flux &action per plaquette) and stag-
gered flux (all the flux in one of the triangular plaquettes)
are shown in Figs. 3 and 4, respectively.

The topology of the energy-flux spectrum for the uni-
form case is such that the criterion for superfluidity (2.13)
would be satisfied for semions at any density if this con-
figuration of flux were energetically favorable. Semions
at densities p & 1/2 generally prefer the staggered Aux
distribution, however. The result is a quantum Hall in-
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gously to that used for semions on the square and trian-
gular lattices. In this case, the freedom in the distribu-
tion of the flux within a unit cell is parametrized by the
fluxes 4i and 43 through the two triangular plaquettes.
All Hux fractions O1/4 and 4s/C' with denominator 120
are tested in order to determine the lowest ground-state
energy for a given semion density p = r/q with q = 2
through 7. In general, the following configuration of pla-
quette flux is found to minimize the ground-state energy:

0, p( 1/2;
1/2, p & 1/2. (3.2)

0
I I I I I I I I I I I I I

0.8
&/Po

sulating state for semions at p = 2/3, as was found for
semions on the square lattice, but a superfluid. for all
other densities.

C. Eagonai

The procedure for the determination of superfluid
states for sexnions on the kagome lattice proceeds analo-

FIG. 3. The energy spread of the fermion subbands is given
as a function of the Hux fraction per unit cell 4/$0 = P/Q for
the triangular lattice with an equal amount of Aux in each pla-
quette. This con6guration is favored when the semion density

p ( 1/2. Integers in the gaps are the topological invariants

(tf, sf)

The general trend given above is exactly satisfied for
densities p & 1/2. For densities greater than half-
filling, a number of exceptions are found; semions at the
densities 3/4, 4/5, and 6/7 favor the Hux distribution
given by 41/C = 4's/4 =—2/5. The energy-Hux spec-
tra for the cases (C1/C, @s/C') = (0, 0), (1/2, 1/2), and
(2/5, 2/5) are shown in Figs. 5, 6, and 7, respectively. It
is curious to note that neither the case of uniform flux
(4] —42 —43 ——4/3) nor the case C1 ——Cs ——4/8,
where the amount of flux per plaquette is proportional
to its area, is an energetically favored configuration.

Semions on the kagome were found to satisfy the crite-
rion for superHuidity (2.13) for most densities studied in
the regime p & 1/2. Exceptions are the case p = 1/3, a
density for which the gap between subbands closes at the
Fermi energy, and the cases p = 2/9 and p = 4/9, which
have a Fermi energy located in gaps labeled by the inte-
gers (—l, l) and (—1,2) respectively. None of the densities

p ) 1/2 examined were found to yield superHuid states;
for the majority of densities in this regime the integers tf
and sf were not found to be (2,0). Semions on the kagome
at the densities p = 3/4 and p = 3/5 have a Fermi energy
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FIG. 4. The energy-Qux diagram is given for the triangular
lattice with an uneven Qux distribution, i.e., when all of the
Hux is in one of the two plaquettes. Integers in the gaps are
the topological invariants (t/, s/).

FIG. 5. The energy-Aux diagram for the kagome lattice is
given with a plaquette Qux distribution C z/C = 4's/C = 0.
This con6guration is always favored for semion densities
p & 1/2. Integers in the gaps are the topological invariants
(tf ~ sf)
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IV. NUMERICAL TECHNIQUE

II = — ) T,,bt pb, + H.c.
(i&)~,p

(4.1)

Semions on a lattice with periodic boundary condi-
tions in both directions are considered. Semions are rep-
resented by hard-core bosons with fictitious charge and
flux Po/4. The usual tight-binding Hamiltonian is em-
ployed:

0
4'/0'o

FIG. 6. The energy-Hux diagram for the kagome lattice is
given with a plaquette flux distribution C'z/4 = 43/4' = 1/2.
Integers in the gaps are the topological invariants (t/, s/).

The operator b (b~ ) creates (destroys) a boson-gauge
field composite at site j and basis point o., and the sum
is over nearest neighbors as well as basis points n, P =
a, 6, or c. The hopping term T;~ includes the energy scale
t (taken to be unity), the Aharonov-Bohm phases due to
other particles, and the 2 x 2 matrices T and T„ imposed
by considerations of the braid group for anyons on the
torus. The matrices T and T„, included whenever a
semion crosses the lattice boundary in the positive x and
y directions, respectively, anticommute ' and are cho-
sen such that the ground-state energy is a minimum with
zero applied fIux:

just at the point where two subbands meet, and there-
fore the theory can make no prediction about the nature
of the ground state in these cases. No definitive state-
ment can be made about the ground state for semions on
the kagome at densities greater than half-filling, however.
Such a statement would require an exhaustive investiga-
tion of the preferred subplaquette Aux configuration for
any given density, and of the restrictions on semion su-
perfluid states imposed by the topology of the resultant
energy-Aux spectrum.

I( 1 0
&) (/0 i&I

Ii 0) ' (4.2)

~&I
gr

! / /

(-~,5)

I~
I

I

Ig
I

/ 'I

JI. I I I I I I « I I I I I I I

0 2 3

FIG. 7. The energy-Aux diagram for the A:agome lattice is
given with a plaquette flux distribution 4q/O' = C'3/4' = 2/&.
Integers in the gaps are the topological invariants (t/, s/).

The braid group for anyons on the torus with statistics
v = m/n stipulates that the eigenfunctions of (4.1) must
have n components, and that the number of anyons must
be a multiple of n. The Hilbert space is therefore n-
fold larger for anyons than it is for fermions or bosons.
Individual %-semion states can be written

(4.3)

where IS) labels one of the ways K semions can occupy
the sites of a lattice with B rows and C columns. The
two-component spinor 0 labels the two difI'erent "sheets":
o = (o~) and (oz). The sheet index can change only if the
particle crosses a boundary.

Semions on the square (Fig. 8), triangle (Fig. 9), and
kagome (Fig. 10) are studied. Lattices with four semions
on nine sites (square and triangle) and four semions on
twelve sites (kagome) are shown in the corresponding fi-
gure. Periodic boundary conditions are applied. in both
directions; lattices are bordered by "branch cuts" A and
B which correspond to hops across the boundary in the
y and x directions, respectively. Branch cuts are appro-
priately named hops across them can induce phases
as well as change the sheet index of the eigenstate.

The "string gauge" is employed; the statistical po-
tential is zero everywhere except along b-function strings,
which emanate from the particles, follow the y axis until
almost reaching the lower branch cut A, turn abruptly to
the right, and follow the x axis until terminating on the
rightmost cut B. The magnitude of the vector potential
along these strings is Po/4 if the string is parallel to the
y axis, and is Po/2 if parallel to the w axis.

The hopping terms T;~ associated with the hops 6 for
semions on the square, triangular, and kagome lattices
are given below. In occupation number formalism, N+
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FIG. 8. Four anyons are placed on a 3 x 3 square lattice.
Anyons are represented by hard-core bosons (circles) coupled
to a vector potential in the string gauge. The strings emanate
from the particles and terminate in the lower-right corner of
the lattice. The lattice boundaries are labeled by the branch
cuts A and H.

FIG. 10. The kagome lattice is shown with four particles
and twelve sites. Basis points are labeled a, 6, or c depending
on the nearest-neighbor environment. Branch cuts A. and B'
denote the lattice boundaries.

(N&) is defined as the number of particles with the same
x coordinate as the hopping particle, but with a larger
(smaller) y coordinate; N, is the number of particles
with a smaller x coordinate than that of the hopping par-
ticle, independent of their y coordinate; N, is the number
of particles in the same column as, but not including, the
hopping particle. The site label i is not sufIicient to la-
bel occupied sites on the kagome, since each lattice site
has a three-point basis. All of the above definitions hold,
with the appropriate modish. cations. For example, ¹&is
defined as the number of particles occupying 6 sites with
the same x coordinate as the hopping particle but with
a larger or equal y coordinate (not including the hopping
particle itself).

The x and y coordinates have the following range
(counted from the lower left corner of the lattice):

1&x; &C 1&y, &B. (4 4)

The symbols x, and y, represent the x and y coordinates
of the ith site, respectively. Thus x, + x ) C means
that the hop in the positive x direction has crossed cut
B. Since the x and y axes are not perpendicular in the
cases of the triangle and kagomi, a hop denoted by 6 =
x+ y moves the particle to the nearest-neighbor site in a
diagonal direction positive in both x and y.

A. Square

The nearest-neighbor links for the square lattice are
h = x and h = y. There are four cases, previously con-
sidered by Kallin:
(i) h=x;x;+x&C:

T,~ =exp i7r(K, —% )/2 I, (4 5)

where I is the identity matrix of order 2.
(ii) h = z; z, + x ) t":

T,~ =exp i7r (K. , —N )/2 + i2a4. ~/Po T~, (4 6)

where C is an external flux coincident with cut B in-
cluded in order to test for flux quantization. It is evident
from (4.6) that all energies are vr-periodic in external flux;
shifting 4 by Po/2 is equivalent to interchanging the
sheet indices, an operation which has no efFect on the
energies.
(iii) h = y; y, + y & R: T~ = I.
(iv) h = y; y; + y ) R:

T~ =exp iver (2N, . +¹)/2 + i27r@y/Qp Tv, (4.7)

where C„ is an external fIux felt by particles crossing cut
A. External fluxes are included in both directions in or-
der to find the absolute minimum of energy as well as to
check the rotational invariance of the results. The term
N,. in the definition of the hopping matrix ensures the
correct ordering of strings; when a particle-string com-
posite crosses cut A, the horizontal component of its
string is incorrectly ordered with respect to the strings
of the particles to its right.

B. Triangle

FIG. 9. The triangular lattice is shown with four particles
and nine sites. Hard-core bosons are coupled to in6nitesi-
mal strings which carry the vector potential. The lattice is
bounded by the cuts A and B'.

If the x and y axes are parallel to the basis vectors then
semions on the triangular and square lattices give the
same phases for the hops h, = x and y. Accordingly, cases
(i) through (iv) listed above are also applicable to hops on
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the triangle. Semions on the triangle have an additional
nearest-neighbor hop: h = x+ y, which corresponds to
the following cases:
(v) h=z+y; x;+x(C; y;+y(R:

(ix) h = x+ y; b m c; x;b + x & C; y, b + y ( R:

T;~ = exp iver (N, b
—N —N ,) ./2+i 2vr4 /Po T .

(4.i9)
T,~

= exp i7r (N,.) —N+) /2 I, (4.8)

T;~ = exp i7r (N, —N )/2.+i2vr4 /$0 T . (4.9)

which is identical to case (i) except that here yi = y; + 1.
(vi) h = x + y; x, + x & C; y, + y & R:

(x) h=x+y; b~c; xb+x& C;yb+y &R:

T;~ = exp i2vr (1V. /2 + 4„/$0) T„.

(xi) h = x + y; b -+ c; x;, + x & C; y;b + y & R:
(4.2o)

(vii) h = z+ y; x;+ x & C; y;+ y ) R:
T,~ = exp i2vr (N /2+ 4„/Po) T„. (4.io)

T;, = exp [i2~ (C + 4 y) /Po] T„T (4.21)
= exp [im (N —1) + i27r (4~ + C'v) /Pp] T~T& . (4.22)

Note that the factor ¹ necessary to account for the
correct ordering of strings as in case (iv) does not appear.
(viii) h = x+ y; z, + x & C; y, + y & R:
T;~ = exp [i2vr (4' + 4'„) /Po] T„T (4.1i)

= exp [iver (N —1) + i27l (C' + C») /Pp] T T& (4.12)

C. X'agama

Since each lattice point of the kagome is associated
with three basis points, the nearest-neighbor hops are
basis dependent.
(i) h=z;amb:

TU = exp i7r (N,. + N, , —N,.b) /2 I. (4.13)

(ii) h = z; b m a; x;b + z (C:

T,~
= exp iver N, b

—N+ —N , /2 I. — (4.i4)

Note that account must be taken of the string crossing a
particle on basis point c of the same lattice point j.
(iii) h=x; bm ;abx+x &C:

T;~ =exp i7r N, b
. —N —N , /2+ i 2m@ /—po T .

(4.i5)

(iv) h=y; c-+a: T;, =I.
(v) h=y;a-+c;y; +y(R: T~=I.
(vi) h=y;a-+c;y, +y)R:

where the equivalence of (4.11) and (4.12) is proven by
making use of the braid group condition that only an
even number of semions is allowed on the torus.

D. Procedure

The computational time required to diagonalize the
Hamiltonian (4.1) can be significantly reduced by mak-
ing use of the discrete translational symmetry of the lat-
tice. The Bloch states that usually diagonalize a lattice
Hamiltonian must be modified in the anyon case due to
the presence of the branch cuts A and B. In the present
study, use is made of the translational symmetry of the
lattice in both directions. The technique is described in
detail in Ref. 23.

The computer programs used in the diagonalization of
the Hamiltonian (4.1) are tested in three ways. First,
the ground-state energies of spinless fermions on the lat-
tices are tested by coupling hard-core bosons to strings
with weight Po/2. Second, the rotational symmetry of
the torus implies that all energies should be invariant to
the interchange of the fluxes 4' and C„ if the magni-
tudes of R and C are simultaneously interchanged. The
third test, which checks the block diagonalization of the
Hamiltonian and consequently the translational symme-
try of the Bloch states, is perhaps the most stringent.
The vanishing of all Hamiltonian matrix elements be-
tween states labeled by different k provides convincing
evidence that the Bloch states are correctly defined.

The ground-state energy for semions on the torus is
Pp/2-periodic in external flux; this periodicity is the re-
sult of braid group considerations and is not indicative
of flux quantization. Superfluid states can be monitored
by investigating the scaling of the energy barrier, the dif-
ference between the maximum and adjacent minimum of
energy, with system size. The energy barrier for a finite
system can be written

T,~
= exp [i7r (2N, + ¹ + N,', ) /2 +i 27r4„/$0 Ty.

(4.i6)
xi e = —'

~

—z(e = o) = p. , (
—), (4.23)

(vii) h = x + y; c + b:

T,~ =exp iver ¹

—+¹—¹& 2 I. (4.17)

T,~ = exp [in (N, b
—N —N.,) /2~ I.. (4»)

(vul) h = z + g; b ~ c I xib + z & C ) yib + y 5 R ~

where p, is the superfluid fraction. This equation is valid
in the continuum limit but can be used to give a crude
approximation of p, for semions on a lattice. It is as-
sumed that the external flux is along a single direction.
For all the results presented below, 4 = 0 and 4& ——4.

The smallest square and triangular lattice studied had
R = C = 3 (9 sites), while the smallest kagome lat-
tice had R = C = 2 (12 sites). No lattice was stud-
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ied with fewer rows or columns in order to minimize
Gnite-size efFects. The largest lattices investigated had
R = C = 5 (25 sites) and R = C = 3 (27 sites) for the
square/triangle and kagome lattices, respectively. The
system with the largest Hilbert space was 8 semions on a
kagome lattice with 24 sites. By making use of the trans-
lational symmetry, the 1470942 states were reduced to
184256. A Lanczos algorithm determined the ground-
state energy.

V. NUMERICAL RESULTS

A. Square
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FIG. 11. The energy barrier E(4 = Po/4) —E(4 = 0) is
given as a function of N/R for semions on an R x C square
lattice at densities p ( 1/2. Filled points indicate semions at
half-filling.

The energy barrier for semions on the square has been
computed for a variety of densities and lattice sizes.
Semions do not have particle-hole symmetry; indeed,
semions at density p have the same energy as semions
at density 1 —p in a uniform field of magnitude Po/2
per site. The flux quantization results for semions at the
densities p ( 1/2 and p & 1/2 are therefore considered
separately.

The energy barrier for semions on the square at den-
sities p & 1/2 (Fig. 11) is found to be a generally linear
function of N/B, indicating that semions in this den-
sity regime form a superfluid. By contrast, there is no
indication of flux quantization for semions at half-6lling.
This observation is in agreement with previous numer-
ical investigations of semions on the square. O' Note
that mean-field theory can make no prediction about the
semion ground state at this density due to the closure of
the associated gap at the Fermi energy.

The roughly linear scaling of the energy barrier with
N/R for semions at densities p & 1/2, shown in Fig. 12,
indicates that semions also exhibit flux quantization for
most densities greater than half-6lling. A notable excep-
tion to this general observation is the case of semions
at p = 2/3; the absence of scaling of the energy barrier
with N/R2 corroborates the mean-field prediction that
semions at this density form a quantum Hall insulator.

The scaling of the energy barrier with the number of

FIG. 12. The energy barrier E(4 = @o/4) —E'(4' = 0) is
given as a function of N/R for semions on an R x C square
lattice at densities p & 1/2. Filled points indicate semions
with p = 1/2. Points with crosses correspond to p = 2/3;
semions at this density are predicted by mean-field theory to
be a quantum Hall insulator.
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FIG. 13. The energy barrier for fermions, defined as
E(4 = Po/4) —E(C' = 0) for comparison to the semion case,
is given as a function of N/R for the square lattice. Note
that the "barrier" is equally likely to be negative as positive
in this case, in stark contrast to the case of semions.

particles observed for semions on the square is not simply
a Gnite-size efFect. For example, the semion flux quantiza-
tion curves are in striking contrast with what is observed
for noninteracting fermions on the same small lattices
(Fig. 13); the absence of any indication of flux quanti-
zation was found to persist in the thermodynamic limit.
By contrast, small systems of lattice bosons are known
to exhibit clear evidence of flux quantization, ' in ac-
cordance with expectation.

The increase in the size of the energy barrier with in-
creasing C at constant R, such as observed at N/R2 =
0.25 or near N/B = 0.4 in Fig. 11, is either a finite-size
or lattice eH'ect. The scatter in the data points result-
ing &om this arti6cial scaling is nevertheless a valuable
indicator of the quality of the flux quantization signa-
ture. A crude estimate of the superfluid fraction &om
(4.23) yields p+ = 0.50 6 0.03 for semions at densities
less than half-6lling, and p+ = 0.29+ 0.02 for semions
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at densities greater than half-filling (if the points corre-
sponding to the density p = 2/3 are neglected). The
lower value of p+ compared with that of p+ may be due
to frustration caused by the effective magnetic Geld in-
duced on the transformation from particles to holes. It
should be noted, however, that as the density approaches
half-filling lattice eKects become increasingly significant;
Eq. (4.23) is only reliable for the near-continuum limit
of very low densities.

B. Triangle
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The Aux quantization results for semions on the trian-
gle at densities p & 1/2, shown in Fig. 14, are remarkably
similar to those for semions on the square in this density
regime (Fig. 11). Semions are found to exhibit flux quan-
tization for all densities less than half-filling, and for most
densities p ) 1/2. The ".esults for semions on the trian-
gle difFer slightly from those for semions on the square
for these densities, however.

The superHuid fraction for semions at less than half-
filling is estimated from the data points in Fig. 14 to
be p+ = 1.00 + 0.05. The larger superHuid fraction for
semions on the triangle compared to that for semions on
the square in the same density regime indicates that the
triangle is more conducive to semion superfluid states.
This can be understood in a mean-field context by noting
that the gaps labeled by the integers (2,0), which are the
gaps of interest in the semion case, are generally larger
for the triangle (Figs. 3 and 4) than are the corresponding
mean-field. gaps for the square; this stabilizes the state
against quasiparticle excitations.

There is considerably less scatter in the data points
corresponding to semions at half-filling than was found
for semions at this density on the square. However, the
positions and the small slope of the points give an am-
biguous indication of Aux quantization. This result may
be a reBection of the competing mean-Geld solutions for
semions on the triangular lattice at this density; the
mean-field calculation of the total energy per site yielded

N/R'

FIG. 15. The energy barrier E(C' = Po/4) —E(C' = 0) is
given as a function of N/R for semions on an R x C triangular
lattice at densities p ) 1/2. Filled points indicate semions
with p = 1/2. Points with crosses correspond to p = 2/3;
semions at this density are predicted by mean-field theory to
be a quantum Hall insulator.

—1.044 for the staggered case and —1.049 for the uniform
case.

The results for semions on the triangle at densities
p & 1/2 are shown in Fig. 15. The energy barrier is found
to be a monotonically increasing function of %/R2 for
virtually all densities examined. Notable exceptions to
this general observation are the data points correspond-
ing to p = 2/3; while these points scale in the appropriate
manner, their overall shift to the right indicates that this
density is special. This observation is also consistent with
the mean-field analysis of semions on the triangle, which
predicts an insulating state for semions at 2/3 filling. The
large slope and virtual colinearity of the remaining data
points indicate that semions at all other densities p ) 1/2
form a super8uid.
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FIG. 14. The energy barrier E(4 = $0/4) —E(C' = 0) is
given as a function of N/R for semions on an Rx C triangular
lattice at densities p ( 1/2. Filled points indicate semions at
half-filling.
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FIG. 16. The energy barrier E'(O' = Po/4) —E(4 = 0) is
given as a function of N/3R for semions on an R x C kagome
lattice at densities p & 1/2. Points marked with a "x" label
densities p = 2/9 and 4/9; mean-field theory predicts that
semions at these densities are insulating. Points with a "+"
correspond to p = 1/3, which is associated with the closure
of the mean-field gap at the Fermi energy. The so1id point
corresponds to half-filling.
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0 Px2

Qxg
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ting the points corresponding to p = 1/3, 2/9, and 4/9)
is p+ = 0.53 + 0.05. It would appear, therefore, that
semions in this density regime are less capable of forming
a superfluid on the kagome than they are on the triangle.
This observation has its counterpart in the mean-field
analysis. The gaps labeled by the integers (2,0) are con-
siderably smaller for the kagome than for the square and
triangle, indicating that fluctuation efFects could more
easily overwhelm the superfluid state for semions on the
kagome.

0 0.2 0.4 0.6 VI. CONCLUSIONS

FIG. 17. The energy barrier E(4 = $0/4) —E(C =- 0) is
given as a function of %/3B for semions on an R x C kagome
lattice at densities p ) 1/2. No semion densities are predicted
by mean-field theory to support a superQuid state.

C. Xagome

The Hux quantization results for semions on the
kagome lattice are shown in Fig. 16 (p ( 1/2) and Fig. 17
(p & 1/2). Though the number of data points is neces-
sarily limited, the results of the finite-size study suggest
that only semion densities less than half-filling support
superfluid states on the kagome. No evidence of Hux
quantization is observed for densities p & 1/2, in accor-
dance with the mean-Geld predictions. While the appar-
ent existence of many low-lying or degenerate states in
this density regime makes the Lanczos algorithm for the
determination of the ground-state energies less reliable,
the lack of any scaling of the points shown in Fig. 17
unequivocally indicates nonsuperfiuid states.

The majority of the data points for densities p ( 1/2
scale linearly with K/3R, in agreement with the mean-
field analysis. No convincing scaling is found for the data
points corresponding to the densities p = 2/9 or 4/9, cor-
roborating the mean-Geld prediction of a quantum Hall
insulator for semions at these densities. The shift to the
right of the points representing p = 1/3 also indicates a
nonsuperfluid state; the corresponding mean-field theory
yields a gap closure at the Fermi energy. The poor loca-
tion of the data point corresponding to p = 1/2 in Fig.
16 may be a Gnite-size efFect; one would expect a high
degree of frustration associated with a 2 x 2 lattice at
half-filling.

The superfluid fraction for densities less than half-
filling estimated from the data points in Fig. 16 (omit-

Semions at zero temperature on the square, triangu-
lar, and kagome lattices have been investigated using a
mean-field theory and a finite-size analysis. Semions on
the square and triangle are found to form a superfluid for
all densities p ( 1/2, though several nonsuperHuid states
result for densities p ) 1/2. Semions on the kagome
are less capable of forming a superfluid at any density.
While the density restrictions on semion superfluidity are
mostly lattice dependent, semions at two-thirds filing
are found to form an insulating ground state for all lat-
tices. The results of the finite-size study also suggest that
semions at half-filling may not form a superfluid state.

The complete parallel between the results of the mean-
field and Gnite-size analyses of lattice semions lends cre-
dence to the efIicacy of the mean-Geld approach for the
prediction of anyon superfluid states. No doubt the long-
range nature of the statistical interaction is largely re-
sponsible for the validity of the mean-field approach. A
convincing Hux quantization signature is only observed if
the corresponding mean-field theory predicts a superfluid
state. Furthermore, no strong evidence of Hux quantiza-
tion is found for sernion densities (such as p = 1/2) that
yield a closure of the associated mean-GeM gap at the
Fermi energy. The overwhelming success of the mean-
field theory in the prediction of semion superfluidity begs
the question of the ground state for anyons with statis-
tics other than those defined. by the mean-field condition,
v = 1 —1/n; this question will be addressed in future
work.
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