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Critical behavior of randomly pinned spin-density waves
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Monte Carlo simulations have been used to study a Z6 version of the two-component random anisot-
ropy model on a simple cubic lattice. For strong random anisotropy, there is a finite temperature
second-order phase transition with critical exponents q=0.01+0.03 and a= —0.76+0.03. The specific-
heat amplitude ratio is A /A'=1. 00+0.02. The low-temperature phase is characterized by an infinite
susceptibility and a ~k~ decay of two-spin correlations, but no long-range magnetic order. Although
the Hamiltonian has only a twofold exact symmetry, it appears that the low-temperature phase contains
two pairs of Gibbs states, which approximate a fourfold symmetry in the phase space. These results are
generally in agreement with the existing experiments for the randomly pinned spin-density wave state in
dilute YEr alloys, and with similar experiments on certain amorphous magnetic alloys.

I. INTRODUCTION

The Overhauser theory' of spin-density waves (SDW)
in dilute alloys is now 35 years old, and the experiments
that motivated it are even older. It is remarkable that the
fundamental difficulties which occur when one attempts
to carry this theory beyond the mean-field level have
remained unresolved. These difficulties are frequently ig-
nored, even though it is well-known that in the related
problem of charge-density waves ' a random pinning po-
tential will always destroy the long-range phase coher-
ence of a three-dimensional system. In this work we take
a major step toward a satisfactory resolution of this situa-
tion for the case in which the SDW modulation vector,
Q, is uniquely determined by the crystal structure. Exam-
ples of this are yttrium alloys doped with rare-earth (RE)
elements, ' which have a hexagonal close-packed lat-
tice structure.

The most straightforward case, and the one we will
work with here, is a longitudinally polarized SDW, such
as the one which occurs in YEr alloys. ' ' We will as-
sume that the amplitude fluctuations of the SDW are
unimportant compared to the phase fluctuations. This is
reasonable because the localized f-electron moment on
each RE site induces a local polarization of the conduc-
tion electrons near it even in the high-temperature phase,
so that only the phase coherence disappears at the critical
temperature, T, . Then, in a semiclassical lattice formula-
tion, the theory may begin with the Hamiltonian

Jg cos[8; 8. Q'(x x ) j
(ij)

—GgS,'cos(8; ) .

The sum over (ij ) is a sum over all nearest-neighbor
pairs, and the sum over i ' is a sum over only the RE sites,
which are assumed to be randomly distributed and sta-
tionary. The 0, variable represents the phase of the
conduction-electron SDW at site i, and the S;. variable
gives the direction of the local RE moment at site i'. The

Q vector, which spans the Fermi surface of the conduc-
tion electrons, ' points along the hexagonal (c) axis'
and is incommensurate with the Bravais lattice vector.
We assume that J )0; this causes no loss of generality, as
we could compensate for a change in the sign of J by a
change of Q. G may be of either sign, as long as the tem-
perature is high enough so that the Kondo effect can be
neglected. Due to the large crystal-field energy, each Er
moment will be assumed to point along the c axis, either
up or down. Most of the other RE elements have Stevens
factors of the opposite sign, so that their moments tend
to lie in the a-b plane. We take S;.=+1, and absorb the
magnitude of the Er moment in the coupling constant, G.

If we make the change of variables 8; —+8, —Q x,. —P,
Eq. (I) takes the form

H = —Jg cos(8; 8~ )
—Gg—S; cos(8; —Q x; —P) . (2)

(ij ) i'

The angle P determines the overall phase of the SDW.
Without the random pinning, the energy would be in-
dependent of P when the Q vector was incommensurate
with the underlying lattice. In that case, there is a con-
tinuous set of ground states parametrized by the value of

In the presence of the random pinning, this continu-
ous symmetry is destroyed. The only remaining exact
symmetry of H is time reversal, which sends each S; to
—S;, and each 0; to 0, +~. This yields the twofold Kra-
mers degeneracy.

A Hamiltonian of this type was studied analytically by
Ioffe and Feigelman some time ago. They concluded
that it should have a low-temperature phase which has a
lower critical dimension of 3, and a Curie-like magnetic
susceptibility at low temperatures. This appears to be in
disagreement with the reported experimental re-
sults, ' ' which claim to find long-range antiferromag-
netic order at low temperatures.

II. RANDOM ANISOTROPY MODEL

Each Er local moment is strongly coupled to the con-
duction electrons in its vicinity, so that we are interested
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in the case
~ G~ ))J. This is the limit of strong pinning, in

which the value of 0; is almost completely determined by
the value of 5;. Dynamically, the relaxation of the S,'
variables (the local moments) takes place on a slower time
scale than the relaxation of the 0; variables (the conduc-
tion electrons). This is largely responsible for the
"glassy" behavior seen in the experiments. We now re-
strict ourselves to temperatures of T =2zJ or less, where
z is the number of nearest neighbors. We can then in-
tegrate out the degrees of freedom represented by the 5,-
variables. We treat the Er moments as "slaved" degrees
of freedom, which are determined if we know the 0;. The
eA'ective Hamiltonian takes the form

H= —Jg cos(0; —0 )
—Gg[~cos(0, , —P;)~ —1],() (3)

Equation (4) is the two-component random anisotropy
model, ' which has been studied primarily in the con-
text of amorphous magnetic alloys such as TbFe,
HoFe, and ErCo. The model is even better as a rep-
resentation of dilute YEr alloys. This is true for two
reasons: because there should be no question in this case
that a two-component model is called for, and because in
the ferromagnetic case the magnetic dipolar interactions
(which we are neglecting) are important in determining
the large-scale structure.

Pelcovits, Pytte, and Rudnick argued that the
analysis for the random-Geld case ' could be carried over
without essential change to the random anisotropy prob-
lem. These arguments appear to show that there should
be a finite range of spin correlations and no true long-
range order at any finite temperature in a three-
dimensional system described by Eq. (4). Later work
indicates that, while these arguments are probably
correct for spins with three (or more) components, the
two-component case is more subtle.

From the high-temperature series expansions we find
that three is a temperature at which ihe magnetic suscep-
tibility, g~, diverges. The nature of this divergence,
however, is not obvious from the series results. If one as-
sumes that it is a simple power law, described by a criti-
cal exponent yM, then the apparent value of y~ which
one obtains from the series for the simple cubic lattice is
difFerent from the apparent value from the series for the

where G )0, regardless of the sign of G in Eq. (2). The
P;. variables represent the locally favored value of the
phase, as determined by the positions of the Er atoms, the
Q vector, and possibly the overall phase angle P. Since
the Er atoms are assumed to be immobile, the P, vari-
ables are quenched, not dynamical. In YEr it should be a
good approximation to assume that the P, are all un-
correlated.

We then consider a coarse graining of the Hamiltonian,
so that each box has, on the average, a few randomly ar-
ranged Er atoms in it. Because we have already assumed
that T ((6, it is then permissible to replace Eq. (3) by

HR~M2= —Jg cos(0; —0. )
——g[cos (0; —P;) —1] .

6
&ij &

M(L) =1/[0.371n(L)+1] (6)

when I. +48. Taken together, these two results indicate
that t. =48 is not large enough to be the asymptotic scal-
ing region (assuming that it exists).

Given Eq. (5), scaling relations predict that for large L
we should see

M(L) =const/L '
(7)

In the work reported here we will find that Eq. (6) seems
to be breaking down for L =64, but Eq. (5) continues to
hold. We will also find a phenomenon which is probably
responsible for causing this crossover to occur. We are
not able to determine explicitly whether Eq. (7) is obeyed
for large L, . Numerically, this would require working at
even larger t., which would require a faster computer.
The numerical results also suggest additional relations
which may be amenable to analytical study.

Fisher ' has given arguments which suggest the ex-
istence of a crossover length at which there is a break-
down of the perturbative renormalizativn-group calcula-
tions. The mechanism invoked by Fisher to create this
eA'ect is multiple minima of the free energy which are not
related by any symmetry of the Hamiltonian. Assuming
the existence of this large crossover length, we can then
attribute the disagreement between the theory of IoAe
and Feigelman and the experiments' ' at least partly
to a failure of the experiments to probe through the
crossover scale. In its current state of development, how-
ever, the theory of IoAe and Feigelman does not provide
a complete explanation of either the experiments or our
computer simulations.

There is an important conceptual issue which must be
resolved before a true finite-temperature phase transition
should be believed to exist in this model. According to
the simple version of the Fisher-Huse droplet picture,
the pure Gibbs state of a random Hamiltonian of the sort
we are considering would be essentially unique, except for
the twofold Kramers degeneracy. This means that the
singular behavior of the phase space at the critical point,
T„should be a simple bifurcation. Then at T, the suscep-

face-centered-cubic lattice. Also, these values are not
well converged, meaning that they drift higher as more
terms are added to the series. This problem is quite com-
mon for gM series in random magnets. It often indi-
cates that one is looking at a crossover, not the true
asymptotic large-order behavior.

In the earlier computer simulations there is another
hint of the existence of some rather long length scale
which must be reached before the asymptotic behavior
can be seen. The long-wavelength behavior of the two-
spin correlation function at T=O was found to be ap-
proximately

C (k T=O)= -gexp[ik (x —x )]cos(0 —0 )= 1

L, J

=const/ski

for L XI. XI. lattices. However, the size dependence of
the T =0 magnetization per site was found to obey
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tibility g~ would be anisotropic, being larger along the
axis of the bifurcation than perpendicular to that axis.
This, however, is quite implausible. The probability dis-
tribution of the random P,. is assumed to be isotropic.
For (almost) any finite sample there will be a residual an-
isotropy due to statistical fluctuations, but the effects of
this residual average anisotropy must disappear in the
limit that L~~. Below T„averaging over the Gibbs
states must restore the isotropy of y~.

This is an important difference between Eq. (4) and
similar models in which the random anisotropy has a p-
fold symmetry with p ~3. When p ~3 the symmetry of
the Hamiltonian is still high enough to insure that y~
will be isotropic at T, . The result of this, as shown both
by analytical and numerical calculations, is that
for p ~ 3 the random anisotropy is irrelevant near T„and
the critical behavior is that of a pure XY model, even
though the "Goldstone mode" is massive.

According to the more detailed calculations of Bovier
and Frohlich, the arguments of Fisher and Huse are
not rigorous in more than two dimensions, and a low-
temperature phase with power-law decay of spin correla-
tions is possible in three dimensions. It is still a big step
to show that more than one pair of pure Gibbs states ac-
tually exist at low temperatures for Eq. (4) in three di-
mensions. There is no doubt that for small L almost all
samples have only one pair of low-temperature Gibbs
states. What the Monte Carlo calculations reported here
have found is that, of two thoroughly studied L =64 lat-
tices, one has a single pair of low-temperature Gibbs
states, and the other has two pairs which are arranged to
create an almost perfect fourfold symmetry in the phase
space.

III. MONTE CARLO CALCULATION

Although it was used in the earlier study, Eq. (4) is
not a convenient choice for performing Monte Carlo
simulations. In order to improve the efficiency of the
computer simulations, it was decided to replace Eq. (4) by
its related six-state clock model:

H „~z6= —Jg cos (1(—1j)—7T

(Ij)
T

2D 2

3
cos —(I —h ) —1I I

In Eq. (8) each l; is a dynamical variable belonging to the
group Z6, and each h; is an independent quenched vari-
able chosen from Z3. Henceforth we will set the units of
energy so that J =1. The factor of 2/3 which multiplies
D is included for later convenience. We only consider
D 0, although there is nothing improper with having
D &0.

Equation (8) has the useful property that, if D is chosen
to be an integer, then the energy of every state is an in-
tegral multiple of 1/2. Thus for integer values of D it be-
comes possible to write a Monte Carlo program to study
Eq. (8) which uses integer arithmetic to calculate ener-

gies. This gives substantial improvements in performance
over working with Eq. (4), for both memory size and
speed. Monte Carlo calculations for Eq. (4) are only
practical in the limit 6 /J —+ oo.

It is well known that the pure (i.e., D =0) six-state
clock model is in the same universality class as the pure
XY model. It may be less appreciated that it is also a
good quantitative approximation near T„even for
nonuniversal quantities. For example, T, for the pure
XY model on the simple cubic lattice is 2.2016+0.0004,
while the author obtained (with very little effort, while
checking the Monte Carlo program) an estimate of
T, =2.215+0.005 for the pure six-state clock model on
this lattice. The use of discrete groups to approximate
continuous groups is well established for lattice gauge
theory Monte Carlo calculations.

For small D Eq. (8) is probably not a faithful approxi-
mation to Eq. (4) in three dimensions. It is believed (but
not proven) that any nonzero value of D will destabilize
long-range ferromagnetic order in three dimensions for
Eq. (4). For the discretized case, Eq. (8), it is known that
for small values of D a ferromagnetic phase must be
stable at low temperatures in three dimensions, just as it
is for the random-field Ising model. ' The numerical re-
sults indicate that on a simple cubic lattice long-range
ferromagnetic order becomes unstable for D greater than
about 5 in Eq. (8).

The Monte Carlo program used two linear congruen-
tial pseudorandom number generators. In order to avoid
unwanted correlations, the random number generator
used to select the h; was different from the one used for
the spin-Aip dynamics. For finite D a heat bath method
was used. At each step the value of a spin was reassigned
to one of the six allowed states, weighted according to
their Boltzmann factors and independent of the prior
state of the spin. For D = ~ each spin has only two al-
lowed states, l; =h; and l; =h;+3. In this case it is more
efficient to use a Metropolis algorithm. Some short runs
of D = ~ were made with the heat bath algorithm, as a
check of the programs. Periodic boundary conditions
were used throughout.

Only single-spin-Aip dynamics were used, unlike the
earlier work on the D = ~ limit of Eq. (4), in which
pair spin Aips were also included. Using only single spin
flips improves the performance of the program near T„
at the risk of a possible failure to equilibrate fully at low
temperatures. The ground-state energy found for the
D = ~ limit of Eq. (8) in this work was approximately
E0 = —1.504 for both L =64 lattices. This is only slightly
above the value of EQ = —1.506 found in the earlier study
of Eq. (4) using the pair spin fiips. The dominant contri-
bution to the small difference in these numbers is believed
to be a real difference in the ground-state energies of the
two cases. The Z6 case has a residual entropy at T =0,
because about 1.7% of the spins see a zero effective field
in a ground state. Splitting the degeneracy of these
minimum-energy states should result in a net lowering of
the ground-state energy. The loose spins probably aid in
the equilibration process at low temperatures. Not
surprisingly, the fraction of loose spins (and therefore the
entropy at T=0) becomes smaller as D is reduced. No
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loose spins were seen for D =4, which has a ferromagnet-
ic ground state for the Z6 case.

IV. NUMERICAL RESULTS

The specific heat, cH, of an L =64 lattice (sample S2)
with D =0 is displayed in Fig. 1(a). The qualitative
agreement with the experimental data' for dilute YEr al-
loys is quite satisfactory, which shows that Eq. (8) retains
the essential features of the randomly pinned SDW, as
claimed. The same data are replotted on a log-log scale
in Fig. 1(b). It should be clear to the reader from these
specific-heat data that we are looking at a true phase
transition, with T, =1.940+0.002 for this sample. The
data for sample S1 are similar. There is a small smearing
of the specific heat of S1 near T„which will be discussed
later. The points shown were obtained by numerically
differentiating the energy. The specific heat was also

computed by calculating the fluctuations in the energy at
fixed temperature, yielding similar but noisier results.
Near T, the sample was run for about 5 X 10 Monte Car-
lo steps per spin (MCS) at each T, with sampling after
each 20 MCS. This was reduced further away from T„
and in the range 1.5+ T~1.7 averaging was conducted
over 61440 MCS, after discarding the first 20480 MCS
for equilibration.

From Fig. 1(b) we obtain the critical exponent a and
the universal amplitude A/A' which characterize the
specific-heat cusp at T, . The values are

a = —0.76+0.03 3 /A '= 1.00+0.02 .

The value of A /A ' is similar to that of the pure XYmod-
el, but the value of o,'is very different. A reduction in
the value of o. is a typical effect of randomness.

To see that the model is not really ferromagnetic for
T (T, when D is large, we look at the way ~M~ behaves
as a function of L and T. In Fig. 2(a) we show M( T) for
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FIG. 1. Specific heat of the random anisotropy Z6 model
with D = ~ on an I. =64 simple cubic lattice (sample 52) near
T, : (a) linear plot; (b) log-log plot.

FIG. 2. Magnetization of the random anisotropy Z6 model
on simple cubic lattices with L =32 and 64, log-log plot: (a)
D=6;(b) D=~.
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an L =32 lattice and an L =64 lattice with D =6, on a
log-log scale. In Fig. 2(b) we show the same thing for
D = oo. In both cases it appears that

This is shown, averaged over angles, for both L =64 lat-
tices at T =1.95, in Fig. 4. The slope of the log-log plot
as ~k~~0 is 7)

—2, so we find

M(T D, L)=M(O, D, L)g(T D) (10) g=0.01+0.03 . (12)

provides a good representation of the data. It is interest-
ing to note that g(T, 6) is not monotonic, but has a
smooth maximum near T=1.00, and then decreases by
about 5% as T is lowered to zero.

If we fit the behavior of g (T,D) near T, by a power
law, we find an effective exponent p=0. 31 for D =6, and
p=0. 26 for D = co. It seems clear that p is not a critical
exponent in the usual sense, because there is no true
long-range ferromagnetic order here. Nevertheless, we
are left with a puzzle, because the quoted value of P from
the neutron-scattering experiment of Caudron et al. ' is
0.5+0. 1.

The magnetic susceptibility for T) T, and D = ~ is
shown in Fig. 3, for the L =64 sample S2. Both

1+,g &cos(6, —0, ) &

1 1
(1 la)

lWj

and its "longitudinal" part

(1 lb)

are shown. The angle brackets indicate a thermal aver-
age. The existence of a nonzero value of &

~
M

~ &, even
though T )T„ is a finite-size effect. As expected, both
yM and yM diverge with the same exponent, yM. Assum-
ing a simple power-law divergence, yM seems to have a
value of 1.70+0.05. This is in somewhat better agree-
ment with the experimental measurement, ' '
y~=1.9+0.2, than was our value for p. We will return
to this point shortly.

To measure the critical exponent g, we look at the
behavior of the two-spin correlation function Cz(k, T, ).

We now observe that the value of the correlation length
exponent, v„obtained from the hyperscaling relation
d v=2 —a is 0.92+0.01, while the value from the relation
y=v(2 —il) is 0.85+0.04. The consistency is not very
good. The author believes that the estimates of a and g
are more reliable than the estimate of y, which is prob-
ably too low. A value of yM=1. 83 satisfies both of the
scaling relations, and also improves the agreement with
experiment. Given the unusual size dependence of the
magnetization, Eq. (10), the existence of large corrections
to scaling for yM is not surprising. The same problem
was also noted in the analysis of the high-temperature
series for yM.

When T is near T, it is interesting to look at the proba-
bility distribution of the magnetization. This is shown in
Fig. 5 for sample S1, and in Fig. 6 for sample S2. The
data for each of these contour plots is taken from a run of
about 5X10 MCS, after equilibrating. We see that in
both cases there is significant asymmetry about the origin
at T=1.95. This shows that the phase space is starting
to bifurcate, and that the probability for hopping between
the two wells in the time of our run is small. At
T =1.925 the two pictures differ qualitatively. For sam-
ple S1 a second bifurcation has occurred, along an axis
which is perpendicular to the first bifurcation. Only one
transition between the two wells in Fig. 5(b) was ob-
served. For sample S2 a second bifurcation does not
occur, although in Fig. 6(b) we can see a tendency for the
contours to become elliptical. A search of the phase
space of 52 was conducted using various cold-start initial
conditions, and the author is confident that there is not a
second pair of wells for this sample.
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FICx. 4. Angle-averaged two-spin correlation function at
T =1.95, for the random anisotropy Z6 model with D = ~ on
L =64 simple cubic lattices, log-log plot. The pluses show aver-
aged data from 24 states of S1 sampled at 20480 MCS intervals,
and the octagons show equivalent data from 24 states of S2.

FIG. 3. Magnetic susceptibility of the random anisotropy Z6
model with D = ~ on an L =64 simple cubic lattice (sample S2)
for T & T„ log-log plot. gM is defined in Eq. (11a), and g~ is
defined in Eq. (11b).
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A state from each of the two wells of Fig. 5(b) was
slowly cooled down to T=0. The total energies (not per
spin) of the minimum-energy states found for these two
Gibbs states differ by only 3, while the height of the ener-

gy barrier between the two wells can be estimated to be
about 200. (Recall that the multiplicity of the minimum-
energy states in each well is large, due to the loose spins. )

Minimum-energy states from the two different wells are
almost orthogonal, having a dot product of about
—0.068. Thus the phase space of S1 has an almost per-
fect fourfold symmetry. It is clear that this fourfold sym-
metry cannot be caused by the sixfold anisotropy im-
posed on Eq. (8), because Z4 is not a subgroup of Z6.
Therefore the fourfold symmetry also should occur for
Eq. (4) when L is large, and for the experimental systems.

The author believes that when L is increased beyond 64
the probability that a sample will exhibit this fourfold
symmetry of the phase space will increase rapidly toward
1. As L ~~ the two bifurcations ought to merge into a
single fourfold splitting. There seems to be no reason to

expect any additional bifurcations for a three-
dimensional system. Two orthogonal states are sufficient
to provide a basis for a two-component spin model. It
would be interesting to test these extrapolations by study-
ing an L =128 system. This could be done with a super-
computer.

Because the two bifurcations in sample S1 occur
sequentially, rather than simultaneously, the critical
properties are slightly smeared out. This smearing
should disappear as L is increased, and a single, well-
defined critical point is expected. We also expect that Eq.
(7) will become accurate for large L, as required by scal-
ing theory. For L =64 the magnetizations of our three
minimum-energy states are 0.3565 and 0.3635 for S1, and
0.3728 for S2. This is already significantly below the ex-
trapolation of Eq. (6), 0.394, although perhaps some al-
lowance should be made for the difference between Eq.
(4) and Eq. (8).

Fourier transforming a minimum-energy state from
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FIG. 5. Contour plots of the probability density of the mag-
netization for sample S1, taken from a run of about 5X10
MCS at each T: (a) T=1~ 95; (b) T=1.925. Note that the
scales are difFerent in (a) and (b).

FIG. 6. Contour plots of the probability density of the mag-
netization for sample S2, taken from a run of about 5X10'
MCS at each T: (a) T=1.95; (b) T=1.925. The scales in (a)
and (b) are the same ones used in Figs. 5(a) and 5(b), respective-
ly.
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each of the two orthogonal wells of S1 and a minirnum-
energy state from S2, and averaging over angles, we get
an estimate of the T=0 two-spin correlation function,
C2 ( I k, T =0 ), which is displayed in Fig. 7. The slope at
small IkI agrees with Eq. (5), and defining the exponent
g& in the usual fashion gives us

g1= —0.4+0. 1 . (13)

This behavior has been observed in small-angle neutron-
scattering experiments on several amorphous magnetic al-
loys. It would be very interesting to examine care-
fully the shape of the SDW peak in the neutron scattering
from YEr, to see if it shows the IkI behavior also.

V. DISCUSSION

T, =1.935+0.010 . (14)

This suggests that the value of P(IvI) at the true T, is
slightly less that 0.149. The conjecture that the exact
value is

For the two lattices with I. =64 and D = ~ the energy
E ( T, ) is —1.014+0.002, compared to E ( T, ) = —0.994
for the pure XY model. What may be more intriguing is
that the probability, P(Iv ), of a vortex loop (of either
sign) threading through a plaquette at T, is also lower
than for the pure XY model, having the value
0. 1490+0.0004. (At T= ~, P(Iv ) is 0.3241 for a Z6
model, as compared to 1/3 for an XI'model. )

The above estimates ignore the downward shift of the
effective value of T, as I. increases. Making an allowance
for this effect, we estimate that the true, infinite lattice T,
forD=OO is

M„(X)=P (n X) P(n + 3—IX), (16)

where n =0, 1, or 2, and P(nIX) is the probability that a
spin, l;, in the set X has the value n. Suppose that we
have two sets of spins, X and X'. These could be two
different sets of spins, or the same set of spins at two
different times. Now order the M„according to
IM, (X)I & IMb(X)I & IM, (X)I, and similarly for the
primed variables. Then if

actly twice the vortex density of the random h; field,
which is easily calculated to be 8/27. The implication is
that at T, there may be a symmetry of the transfer matrix
which relates the static vortices in the h,- field to the dy-
namic vortices in the I,- field.

The conjecture of Eq. (15) gives a special status to the
Z6 model with D = ~, as compared to Eq. (4) or any oth-
er model in the same universality class. This is not un-

reasonable. The Z6 model with D = ~ is the simplest,
and thus the most constrained, model in the universality
class. Therefore it is the one most likely to obey some
special symmetry relation. Duality relations for ensem-
bles of random Hamiltonians are known for some two-
dimensional Potts models. In this case, however, we
are suggesting a relation which is only expected to hold
at T, . This is somewhat reminiscent of the relation found

by Stephen and Mittag between the transfer matrix of a
two-dimensional Potts model at T, and the Hamiltonian
of a one-dimensional spin-1/2 Heisenberg model.

The Auctuations of the magnetization in Z6 models
obey a kind of "triangle equality. " Define the partial
magnetizations

P(IvI) =4/27=0. 148

at T, for D = ao is highly attractive. This number is ex-
and

IM. (X)I+ IM (X)
I

= IM, (X)I,

IM. (X')I+ IM (X')
I

= IM, (X')I,

(17a)

(17b)

0
1000 =

I I I I I

100

0 0 0
0

C)

0

10 =

0.05 0. 1 0.5

FIG. 7. Angle-averaged two-spin correlation function at
T =0.0, for the random anisotropy Z6 model with D = ~ on
L =64 simple cubic lattices, log-log plot. The data are an aver-
age over three states, two from S1 and one from S2, as de-
scribed in the text.

it follows that the M„(X+X') will also satisfy a triangle
equality, even if the direction of the maximum M„
changes. This means that the triangle equality acts as a
fixed-point relation among the three M„. If we average
over large sets of spins and long times, deviations from
the triangle equality should become small, unless the sys-
tem is in a ferromagnetic phase.

In a mean-field theory with random anisotropy, devia-
tions from the triangle equality in the ferromagnetic
phase may be of either sign. If D is large, the mean-field
theory predicts a ferromagnetic phase with
IM, I

& IM, I+IMbI. In three dimensions, however, this
does not happen. In the Monte Carlo results for D =6
and even D = ~, the triangle equality is obeyed all the
way down to T=0. This may be viewed as merely a
reAection of the fact that these cases do not have true
long-range order. It is probably the explanation for the
almost complete lack of "squaring up" of the YEr SDW,
as seen in the small intensity of the third harmonic peak
in the neutron-scattering experiments. ' ' For the D =4
case, IM, I

) IM, I+ IMi, I
when T & T„because the six-

fold anisotropy is able to stabilize a ferromagnetic phase.
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VI. CONCLUSION

In this work we have used Monte Carlo simulations to
study a version of the two-component random anisotropy
magnet, which is a model of randomly pinned spin-
density waves in YEr, and also of certain amorphous
magnetic alloys. We have found an unusual second-order
phase transition, from the paramagnetic phase into a
phase with power-law decay of spin correlations but no
true long-range order. In many respects our results agree
with the existing experimental data. It would be
worthwhile to improve the precision of the experiments,

and to extend the computer simulations to larger sam-
ples. Due to the remarkable nature of the numerical re-
sults presented here, the author believes that it may be
possible to find some exact analytical results for this
problem.
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