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Double-peak structure of the dynamical structure factor in diluted Heisenberg antiferromagnets
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We have investigated, in terms of large-scale computer simulations, the spin-wave dynamics of diluted
Heisenberg antiferromagnets. The dynamical structure factor has been calculated with high resolution
applying the efficient algorithm based on the forced oscillator method. At close to the magnon-fracton
crossover energy, our results show no indication of the double-peak structure for the dynamical struc-
ture factor S(q, cu), which has been predicted as the contribution of both magnons and fractons, while

S(q, co) for highly concentrated systems recover the double-peak structure. The calculated results for
the latter case are in good agreement with recent inelastic-neutron-scattering experiments.

I. INTRODUCTION

In the past decade, diluted Heisenberg antiferromag-
nets have attracted much attention due to their random
self-similar (fractal) structures, ' i.e., the spin-wave dy-
namics rejects the fractal nature of the system. ' At
length scale shorter than a correlation length
g=:-O~p —p, ~

(:-0 is the constant prefactor), where p is
the percolation concentration and p, is the percolation
threshold, the self-similarity becomes relevant. " While,
at larger length scale, the system is considered to be
homogeneous. Excitations on such structures exhibit a
crossover at a length scale g. Conventional magnons
with the wavelength larger than g cross over to (antifer
romagnetic) fractons with shorter wavelength k. Frac-
tons are the characteristic excitations rejecting the self-
similarity of the system, and strongly localized. The
crossover energy co, is related to g through the dispersion

—D /drelation co, ~g f ', where Df is the fractal dimension
and d, is the spectral dimension of antiferromagnetic
fractons. In previous works, ' ' we have determined
the value of the spectral dimension d, from the calcula-
tion of the density of states of diluted antiferromagnets,
namely, the spectral dimension d, of antiferromagnetic
fractons takes a value very close to unity for any Euclide-
an dimension d. This indicates that antiferromagnetic
fractons belong to a different universality class from that
of vibrational or ferromagnetic fractons (d =—", ). ' Yet,
there still remain unresolved problems in regard to the
dynamics of antiferromagnetic fractons, especially for the
analysis of the dynamic structure factor observed by
neutron-scattering experiments.

Scattering experiments on diluted Heisenberg antifer-
romagnets have been reported by several authors. ' '
Uemura and Birgeneau ' have performed inelastic-
neutron-scattering experiments for Mn Zn, „F2 for
x =0.50 and 0.75. Mn Zn& F2 is d =3 diluted antifer-
romagnet with spins S =

—,', but has weak anisotropy.
They have obtained asymmetric line shape at small wave
vectors with a long tail extending towards higher ener-
gies. With increasing wave vectors, the sharp peaks shift
higher-energy region with diminishing the intensity, and

the peak width increases rapidly. Another broad and
damped component grows at higher energy. The
eff'ective-medium approximation (EMA) has predicted for
S(q, co) the appearance of the double-peak structure at
the crossover region. ' Chen and Landau have per-
formed numerical simulations for site-diluted bcc antifer-
romagnets at p =0.50, and their calculated results have
also supported the above arguments. However, there is
no clear explanation on the origin of this double-peak
structure.

In the previous study, ' ' we have demonstrated the
asymptotic form of the dynamical structure factor at p,
for diluted Heisenberg antiferromagnets and verified that
antiferr orna gnetic fractons satisfy the single-length-
scaling postulate. This implies that all length scales such
as the wavelength, the localization length and the scatter-
ing length, collapse to an unique characteristic length

d /D 24 25scale A,(co)-co ' f. ' It is important to clarify the
profiles of S(q, co) for diluted Heisenberg antiferromag-
nets at the concentration p &p„because most of experi-
ments have been performed for the systems at p &p, .

In this paper, we present the numerical results of the
dynamical structure factor S(q, co) of d =2 square (sq)
and d =3 simple cubic (sc) diluted Heisenberg antifer-
romagnets varying the concentration p in order to clarify
the behavior of S (q, co ) around the magnon-fracton cross-
over. Our results show, for the system with low concen-
tration p, but p &p„ that there is only one peak in the co

dependence of the dynamical structure factor at the
magnon-fracton crossover. The dynamical structure fac-
tor for the system with higher concentration (p =0.75 )

shows the double-peak structure, which is in accord with
recent inelastic-neutron-scattering experiments on
RbMno 74Mgo 26F3 performed by Takahashi and Ikeda.
This system is an ideal isotropic Heisenberg antifer-
romagnet because the magnitude of anisotropy is very
small and the exchange interaction is dominant only for
the nearest neighbors.

This paper is organized as follows. In Sec. II, we
present the numerical results of S (q, co) on the diluted an-
tiferromagnets near p„which were obtained by applying
the efficient algorithm based on the forced-oscillator
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method. This numerical method enables us to work with
much larger systems than the exact diagonalization ap-
proach, and the details of this method are given in Ref.
13. In Sec. III, the results of S(q, ni) on the system far
from p, are presented, and confirm the existence of
double-peak structure. We also analyze the calculated re-
sults of S(q, co) at the zone boundary for several percola-
tion concentrations. Conclusions are given in Sec. IV.

II. DYNAMICAL STRUCTURE FACTOR
AT THK MAGNON-FRACTON CROSSOVER

The Hamiltonian for diluted Heisenberg antiferromag-
nets is given by

&=QJ„S S„,
(mn)

where S denotes the spin at the site m, and J „ the ex-
change coupling between nearest-neighbor sites m and n.
We choose J „as J „=1 if sites m and n are connected
on the percolating network, and J „=0otherwise. Finite
cluster eftects are neglected. This is because the scatter-
ing intensity arising from finite clusters are negligibly
small. The dynamical structure factor S(q, n~) for antifer-
romagnetic spin waves is given by' '

(a}
S(q,cn) (arb. units)

[10]

200x200
p=O. S8

crossover at p &p, . In particular, we pay attention to the
system at the concentration p close to p, but p &p„and
investigate the profile of S (q, ru) around co =co, in detail
in order to clarify the above prediction. This system has
the correlation length g larger than the previous numeri-
cal studies for S(q, ru). ' The algorithm based on the
forced oscillator method is used to calculate the dynami-
cal structure factor on diluted Heisenberg antiferromag-
nets with high resolution. ' Calculations are performed
in units of 5/A= 1 and under periodic boundary condi-
tions. The calculated results are presented in Figs. 1(a)
and 1(b). Figure 1(a) shows the co dependence of S(q, co)
for d =2 bond-diluted antiferromagnets at p =0.58
(p, =0.50) for five difFerent wave vectors q. We have cal-
culated S(q, co) with q along the [10] direction from the
magnetic zone center. The solid lines are only guides to
the eye. The ensemble average has been taken over six

(n+1) t+r5( n—i co ) .ge cr u (A) .
m

X . ge "u„(A, ) . ,
n

where ( n + 1 ) is the Bose factor expressed by
1/(1 —e "), and g"(q, co) is the imaginary part of gen-
eralized susceptibility, R„ is the positional vector of the
site n, and o.„ is a variable taking +1 at the site n belong-
ing to the up-spin sublattice or —1 for the down sublat-
tice u„(A, ) .[and u„(k)] are the right (and left) eigenvec-
tors of the dynamical matrix describing the transverse-
spin deviations under the linearized spin-wave approxi-
mations (see Ref. 13). In the following, the Bose factor is
omitted without loss of generality. Theoretical studies
based on the EMA suggest the characteristic features of
S (q, co) around the magnon-fracton crossover. ~'

Namely, for g/A, (1, S(q, ni) has a narrow peak due to
the magnon dispersion law,

ni=c (p)k, (3)

where c (p) is the concentration-dependent sti&ness
coeKcient. At high energies (co=co, ), a small and broad
hump appears with a long tail extending to higher co,
refiecting the fracton contribution. For g/A, ) 1, namely,
in the self-similar regime, magnons cannot survive, and
the contribution from fractons with broad peak become
relevant. The EMA theory claims that the broad line
shape results in the Io6'e-Regel condition for fractons.

In this section, we present numerical results for the
dynamical structure factor S(q, co) on d =2 and 3 diluted
Heisenberg antiferromagnets around the magnon-fracton
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FICT. 1. (a) The co dependence of S(q, co) for d =2 bond-
percolating networks at p =0.58 formed on 200X200 square
lattices. The results were obtained by averaging over 6 realiza-
tions of bond-percolating networks. The solid lines are only
guides to the eye. (b) The co dependence of S(q, co) for d =3
bond-percolating networks at p =0.32 formed on 86 X 86 X 86
cubic lattices. The results were obtained by averaging over real-
izations of bond-percolating networks.
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realizations of bond-diluted (BP) networks formed on
200 X200 square lattices. The resolution for co is
5co=0.02, which is small enough compared with the
linewidth of each peak in Fig. 1(a). The largest network
has 37449 spins under the periodic boundary conditions.
The correlation length of this system is $=29a (a is a lat-
tice constant). co, is estimated by co, =0.12 from the data
corresponding to q (—:

~ q~ ) =2~// =0.22 (in units of
a =1) in Fig. 1(a), so the correlation length g becomes
large enough compared with the lattice constant a, and
make the system size much larger than g.

The calculated results of S (q, co) for d =3 bond-diluted
antiferromagnets at p =0.32(p, =0.25) is shown in Fig.
1(b). The ensemble average is taken over two realizations
of BP networks formed on 86 X 86 X 86 cubic lattices un-
der periodic boundary conditions. The largest network
has 501 400 spins. The correlation length of this system is
$=10a and the crossover energy co, is estimated to be
co, =0.12. We have calculated $(q, co) for four different q
along the [100) direction. The resolution of co is taken as
5ni=0. 02. Figures 1(a) and 1(b) indicate that, for small
wave vectors (q (q, ), the sharp asymmetric peak exists
at smail energy with a tail extending towards higher ener-
gies and there is no additional peak (nor shoulderlike)
structure at higher co. As q increases, peak widths in-
crease rapidly and peak positions shift to higher energies
beyond co=co, . This corresponds to the magnon-fracton
crossover at co=co, . That the q dependence become ir-
relevant at co) co, comes from the strongly localized na-
ture of antiferromagnetic fractons. Figures 1(a) and 1(b)
confirm that there is only a single peak of S(q, co) at the
magnon-fracton crossouer for the above systems.

III. DYNAMICAL STRUCTURE FACTOR FOR THE
SYSTEMS WITH HIGHER CONCENTRATIONS

S(q,co) (arb. units)
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which reAect different coordination numbers of each site
in percolating networks. ' This result is in accord
with the results of the recent experiment by Takahashi
and Ikeda, which have been done for RbMn Mg

& F3
(x =0.74, 0.63).

The line shape of S(q, ni) at the zone boundary have
been studied by several authors. Buyers, Pepper, and El-
liott ' have predicted a multiple-peaked line shape by the
extended coherent potential approximations. Holcomb
and Harris have numerically studied a d =3 bcc lattice
with 8192 sites and Kirkpatrick calculated S(q, co) for
d =2 sq lattice by the matrix-inversion method. Thorpe
and Alben have studied a d =2 diluted antiferromag-
nets by the equation-of-motion method. Their results
show multiple-peaked line shape of S(q, ro) at the zone
boundary. They have explained the origin of these
peaks using Ising-cluster model. Recent neutron-
scattering experiments, in which the behaviors of the
zone boundary were studied, claim that the intensity dis-

The calculation was extended to diluted Heisenberg an-
tiferromagnets with higher concentration, on which most
of experiments have been performed so far. Note that p,
of d =3 bcc site-percolating network takes a value of
0.25, while p, of sc site-percolating network takes 0.312.
The co dependence of S(q, co) for d =3 site-diluted sc an-
tiferromagnets at p =0.75 are shown in Figs. 2(a) and
2(b). The network is formed on 40 X 40 X 40 cubic lattice.
The percolation concentration is far from p, =0.312 and
the range of length scale treated as self-similar (fractal) is
quite narrow. Figure 2(a) shows the ro dependence of
S(q, co) with wave vectors along the [100] direction from
the zone center. In this figure, the maximum energy of
spin-wave co,„ is co,„=6.0, and the resolution of co is
taken as 5co=0. 1. At the small wave vectors, the line
shape shows a sharp peak with a shoulder. At
q =0.79(q =0.25qzs), we can realize the well-resolved
double-peak.

Next, the dynamical structure factors with wave vec-
tors along the [110] direction are calculated, and the
similar results are obtained [Fig. 2(b)]. From these, the
double-peak structure of S (q, co) reported by the
inelastic-neutron-scattering experiments can be interpret-
ed as the coexistence of a magnon peak at lower co and
discrete peaks from Ising-cluster excitations at higher co,

(b) S(q,m) (arb. units)
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FIG. 2. (a) S(q, co) for d =3 site-percolating networks at
p =0.75 formed on 40X40X40 cubic lattices. The wave vec-
tors q are taken in the [100] direction from the zone center. (b)
S(q, co) for d =3 site-percolating networks at p =0.75 formed
on 40X40X40 cubic lattices. The wave vectors q are taken in
the [110]direction from the zone center.
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tribution of each peak is not in accord with the probabili-
ty of local distribution of magnetic neighbors in diluted
Heisenberg antiferromagnets, and the scattering intensity
at low co is much larger. '

To understand the features of the discrete peaks at
higher energy observed in Figs. 2(a) and 2(b), we have
also calculated S(q, co) of diluted Heisenberg antifer-
romagnets at the zone boundary qzB=(m. la)[100] for
several percolation concentration (p =0.75,0.65, 0.40)
on 60 X 60 X 60 cubic lattice. The system sizes treated are
much larger than previous numerical studies. Figure 3(a)
shows the co dependence of S(qzB, co) at p =0.75. The
multiple peaks appear at energies smaller than "Ising en-
ergy" co= n (n = 1,2, . . . , 6). This is because the single-
spin excitation is not an eigenstate of the Heisenberg sys-
tems. ' Figure 3(b) shows S(qzs, co) at p =0.65 and ex-
hibits similar behaviors. The weight of the peaks shifts to
lower energy region. Figure 3(c) is the calculated results
at p =0.40, where the concentration p is close to p, and
the correlation length of this system is $=9a. Much
larger intensity is obtained at co=0.3 in Fig. 3(c), com-
pared with the value expected from the probability distri-
bution of magnetic neighbors. This excess intensity re-
sults in the contribution of fractons, because fractons are
strongly localized modes and they make a prominent con-
tribution also at q=qzz. The additional peak at co=1 is
due to the Kirkpatrick-Eg garter state which is the
specific eigenstate for percolating systems.

IV. CONCLUSIONS
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FIG. 3. (a) The co dependence of S(q, co) for d =3 at p =0.75
calculated at the zone boundary, for d =3 site-percolating net-

works on 60X60X60 cubic lattices. The solid lines are only

guides to the eye. The ensemble average is taken over three

samples. (b) The co dependence of S(q, co) for d =3 at p =0.65
calculated at the zone boundary, for d =3 site-percolating net-

works on 60X 60X 60 cubic lattices. The solid lines are only

guides to the eye. The ensemble average is taken over three

samples. (c) The co dependence of S(q, co) for d =3 at p =0.40
calculated at the zone boundary, for d =3 site-percolating net-

works on 60X60X60 cubic lattices. The solid lines are only

guides to the eye. The ensemble average is taken over three
samples. The peak observed at low energy (co=0.3) is due to
the contribution from localized fractons.

We have investigated the dynamical structure factor
S(q, co) of diluted Heisenberg antiferromagnets using the
efficient algorithm based on the forced-oscillator method,
which is the powerful computational technique for the
systems described by non-Hermitian matrices. ' Our re-
sults demonstrate the behaviors of S (q, co) at the
magnon-fracton crossover, for which the correlation
length g is large enough, namely, the order of g~ 10a. It
has been confirmed that there appears only a single peak
at the magnon-fracton crossover. In addition, we have
calculated S(q, co) for the system with higher concentra-
tion, and reproduced the double-peak structure of the
line shape obtained quite recently by Takahashi and Ike-
da. To summarize, there is no double-peak structure
for the dynamical structure factor S(q, co) in diluted
Heisenberg antiferromagnets at close to the magnon-
fracton crossover. The double-peak structures observed

by inelastic neutron-scattering experiments are not due to
the magnon-fracton crossover, but the contribution from
both magnons and Ising-cluster excitations.
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