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Collective modes of spin, density, phase, and amplitude in exotic superconductors
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The equations of motion of pairlike excitations in the superconducting state are studied for various
types of pairing using the random-phase approximation. The collective modes are computed of a
layered electron gas described by a t-t' tight-binding band, where the electrons experience besides
the long-range Coulomb repulsion an on-site Hubbard U repulsion and a nearest-neighbor attractive
interaction. From numerical calculations we see that the collective-mode spectrum now becomes
particularly rich. Several branches can occur below the continuum of quasiparticle excitations,
corresponding to order-parameter Huctuations of various symmetries of pairing, and collective spin-
density Buctuations. From the collective-mode softening near the nesting vectors it is concluded that
in the d-wave paired state an instability occurs toward the formation of a spin-density wave.

I. INTRODUCTION

A well-known result of BCS theory is the variational
wave function, describing the ground state of a supercon-
ductor. In the limit Q ~ 0 this function can be easily
extended to describe a superconductori 2 moving at a
small and uniform velocity v = (2m, ) ibad,

~@) = f d Re'&' f d rd(r)@r(R+r/r)

N/2

xygt(R —r/2) ~0).

This function has the mathematical shape of a Bose
condensate of pairs, where the wave function P(r)
describing the relative motion of electrons form-
ing a pair is the Fourier transform of vi, /ui,
([1+ (ei, /Ai, ) ] ~ —(ei, /b, i, ) )f, and exp (iQ R) is the
macroscopic wave function describing the center of mass
motion of each pair. The similarity to a Bose condensate
wave function is somewhat misleading, as also the wave
function of a gas of uncorrelated fermions can be written
in this form, in which case P(r) is a nontrivial function
with an r 2 tail. In the limit of a weak effective interac-
tion P(r) has an algebraic tail just as for the &ee electron
gas. If the interaction is strong, P(r) can be interpreted
as a wave function describing the relative motion of two
electrons forming a Bose-condensed pair. If the effective
interaction is an on-site attraction, the electrons pair up
in a singlet-wave function with an enhanced probability
to occupy the same site. Clearly if the electrons expe-
rience a strong on-site repulsion, the tendency towards
pairing disappears. With a net attraction between elec-
trons occupying neighboring sites in the lattice, it is still
possible to form a paired state, but P(r) has to be con-
structed such that the particles avoid the same site. This
condition is, for example, fulfilled when P(r) has a finite
angular momentum.

One may wonder whether the analogy to Bose con-

densation can be drawn further, and consider the energy
spectrum of pairlike excitations as a function of pair mo-
mentum. This problem was first treated by Bogoliubov
et al.4 and Anderson. 5 If the electrons experience an on-
site repulsion, with a nearest-neighbor attraction, the
collective-mode spectrum becomes particularly rich. It
turns out that several branches occur below the contin-
uum of quasiparticle excitations, corresponding to order-
parameter fluctuations of various symmetries of pairing. e

The existence of low-lying collective modes may be im-
portant when attempting to identify a superconducting
gap in the infrared, Raman, or inelastic neutron scatter-
ing spectra of these materials.

Collective modes in superconductors have in the past
attracted the attention for a variety of reasons: (1) Bo-
goliubov predicted the existence of a longitudinal col-
lective mode with a soundlike dispersion. Long-range
Coulomb interactions make the spectrum identical to
the plasmons of a normal Fermi gas, as was shown
by Anderson. 5 (2) The collective mode spectrum natu-
rally follows &om a gauge-invariant formulation of BCS
theory, 5 and a consistent explanation of the Meiss-
ner effect requires that the whole interaction Hamil-
tonian (as opposed to the reduced BCS Hamiltonian)
be taken into account. (3) As collective modes medi-
ate electron-electron interactions, plasmons ~ and spin
fluctuationsii i have been considered as possible candi-
dates for a pairing mechanism. (4) Certain modes, in par-
ticular condensate phase fluctuations near or below the
pair-breaking gap, are important for the thermal behav-
ior, notably T, of the superconductor. i5 (5) An instabil-
ity of the ground state and an incipient phase transition
to a state with a lower energy follow &om the softening
of collective modes. ie is (6) Collective modes may show
up in experimental spectra, such as in optical or Ra-
man spectroscopy. 22 2s (7) As there is no interplane hop-
ping in a layered electron gas, the k-dependent plasmon
spectrum becomes gapless, which may give rise to an
interesting behavior in the region for momentum and &e-
quency values where the collective mode crosses 2L.2 '
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(8) If there exists an electron-electron interaction in chan-
nels with a finite angular momentum L, excitons with the
corresponding symmetries can exist.

Usually modes of phase and density~5 ~o are treated
separately &om amplitude modes ' and spin
fluctuations. As we will see below, especially for
a nonvanishing momentum, a coupling exists between
the four collective-mode channels of spin density, charge,
phase, and amplitude of the order parameter. The aim of
this study is to derive general expressions for the collec-
tive modes in the superconducting state, using a unified
approach including effects of finite momentum pairing.
In the last section examples are given for the collective
modes and the generalized susceptibility in the supercon-
ducting state. It is shown that a d-wave superconductor
may become unstable with respect to the formation of a
spin-density wave, or possibly a mixed spin-density wave
(SDW) plus superconducting state, if an on-site repulsion
is taken into account in addition to having an attractive
interaction in the d-wave channel. More detailed calcu-
lations of various response functions and the comparison
thereof to measurements on specific materials will follow
in a future publication.

II. MODEL HAMILTONIAN

In the discussion of the collective modes we will make
extensive use of two-particle creation operators. We will
see below that the channels with S = —1, S, = 1, and
S = 0 are decoupled. In the S = +1 channels there
are triplet pair excitations and spin fluctuations. In the
S = 0 channel there are spin fluctuations, density fluctu-
ations, and fluctuations of phase and amplitude of the or-
der parameter (singlet and triplet pair excitations). The
corresponding operators are in the same order,

t t
&(Q) = A;+Qg A:0 I g I Q4~- — —

t
&~(Q) = ~I+Qt A:t+ —A:g

—~ —Ql~
(2)P„(Q)= c „Q~c„t—C„Qtc

lj g (Q) = C—y —Qgcjeg + CA, +QtC

The remaining six combinations are ck+Q CA, , (spin
fluctuations with S, = +1) and c I, Q CA, with the
corresponding Hermitian conjugates (spin-triplet phase
and amplitude fluctuations). When transformed to a
Euclidean-space representation these operators acquire
a more transparant physical meaning. For example the

spin-density distribution function n~(r) —ng(r) has as
its Fourier transform P& o~(Q). Similar relations exist
for the other operators, and the notation 0(Q), p(Q),
P(Q), and g(Q) will be used to indicate the Fourier
transforms of the spin-d. ensity, charge-density, phase, and
gap-amplitude distributions in Euclidean space. We will
consider a system of interacting electrons which can be
described with the following Hamiltonian:

II = ) Gpj (0) + ) —V(Q)o(Q)a( —Q)

1
U(Q) [p(Q) p( Q) ~(Q) ' ~( Q)]8

where in V(Q) I lumped together the Coulomb interac-
tion with all other spin-independent interactions, which
could be due to the coupling of the electrons to the other
degrees of &eedom of the solid. In principle, and in par-
ticular if the interaction kernel is derived &om boson-
exchange models such as the electron-phonon interaction,
there can also be a separate dependence on the momen-
tum of the interacting particles. For compactness of no-
tation I will not explicitly include such a k and q depen-
dence in the Hamiltonian.

With the spin-dependent interaction assumed here, the
total spin of the system is still a good quantum number.
Such terms can appear if the model Hamiltonian is de-
rived &om a more fundamental one by projecting out part
of the Hilbert space. A well-known example is the occur-
rence of the Kondo exchange interaction in a magnetic
impurity system after carrying out the Schrieffer-Wolff
transformation. Other examples where such terms occur
are the RKKY interaction in magnetic alloys and the su-
perexchange in rare-earth-doped semiconductors. Also
the on-site Hubbard U term is usually written in this
form, although in this case the Pauli principle already
automatically excludes occupation of the same site with
parallel spins.

As we will discuss the equations of motion of the col-
lective mod. es for a general form of the effective electron-
electron interaction, it is worthwhile to summarize the
expressions for the gap equation and the free energy. The
thermodynamic potential at T = 0 of a BCS supercon-
ductor is the expectation value of the grand canonical
Hamiltonian, and is easily obtained by taking the ex-
pectation value of Eq. (3) using the variational wave
function of Eq. (I),

A(p, , V, vt„,..., v „)= 2) ~vq~ ((I, —p) +) uqvqAI, vu*v + ~uq~ V(k —q)~v ~' (4)

where AI, q is the pairing potential. For the type of inter-
action introduced above one obtains A~~ ——V(k —q) +
~U(k —q) + ~U(k + q) where the last term is the spin-
Hip scattering contribution contained in crI, (Q) cr~( Q). —
The last term in Eq. (4) corresponds to the exchange
energy. From 0 one obtains the gap equation by calcu-
lating the minimum as a function of the set of variational
parameters VI„,..., vk . The number of particles in the

ground state is obtained by taking the first derivative
with respect to p. The resulting set of equations is

2tlA: VA,
tkqVqAgq 2 2 6k

) /v f' =AN.
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Apart &om a shift in chemical potential the effect of
the exchange energy term on the thermodynamic po-
tential is to renormalize the single-particle dispersion
ei, = (~ —p, , which now has to be replaced with ei,

—= ei, —
~v~~2V(k —q). After the ground state has been found

from minimalization of the free energy, the quasiparticle
spectrum is obtained, with the usual BCS-type energy

dispersion Ei, = i + 4& and with Ai, /Ei, defined as
2ui, vi, . In the following sections I will also use the (stan-
dard) notations bi, = ui, vi, and zi, = (~ui,

~

—
~vy~ )/2.

If A&q has a nontrivial k dependence we can make a
partial-wave decomposition

Ai„=) g* (k) A vP (q),
C1'

where (g (k)) is a complete set of orthogonal functions,
chosen such as to diagonalize the pairing potential. We
can make a similar expansion of the order parameter

(k) with the help of which one obtains
the coupled gap equations

~ - ~ - &-*(k)A(k)&~
2EJ,

k P

We notice that for 4 ~ 0 a decoupling of pairing chan-
nels occurs, depending on the presence of off-diagonal
elements in the decomposition of I/Ei, -+ I/~ei, ~. As Ai„
is real (@ (k)) can be chosen as real numbers. As a re-
sult, if also A is real, solutions with different symmetries
may mix, leading to a breaking of spatial symmetry of
the lattice. If these channels are mixed "incoherently"
(as in, e.g. , s + id pairing2s), for (T, —T) (( T, the gap
equations for 8 and d are decoupled.

III. EQUATIONS OF MOTION

The equations of motion are of the form [H, 0] = vO,
where 0 is a linear combination of pair operators repre-
senting an excitation of the system with energy v. Al-

though these equations have been treated extensively be-
fore, in the previous papers the coupling to the collective
spin oscillation channel has not been considered. In par-
ticular a spin-dependent term was not included in earlier
publications. As one of the aims of this paper is to discuss
collective modes of spin density in the superconducting
state, I rederive the equations of motion with this ex-
tended Hamiltonian.

In the superconducting state the equations of motion
of spin density [0 & (Q)], charge density [p& (Q) ], order-
parameter phase [P~(Q)], and order-parameter amplitude
[@i,(Q)] are coupled in a nontrivial way. The commuta-
tor of each of these two-particle operators with the in-
teraction part of the Hamiltonian generates products of
four single-particle operators, which are approximated by
taking the expectation value of all combinations of two
of the operators appearing in this product. The result-
ing terms fall in two categories: those which have the
same k value and those which are a weighted summa-
tion over k space. The latter give rise to the collective
modes. In the first category one obtains (I) self-energy
terms which can be absorbed in a shift of the chemical
potential, (2) exchange self-energy terms, due to which
ei, is renormalized to ii, = ei, —P ~v~~ V(k —q), and (3)
cross terms proportional to Ei„linking O.q to @q and pq
to Pi, operators.

Finally the category of weighted averages of two-
particle operators over k space involves both direct and
exchange terms, and is given by the expressions

S~(Q) =) H.'(k q Q)~.(Q)
q

R,i, (Q)—:) H'(k, q, Q) p, (Q),

Ai, (Q)
—= ) H~(k, q, Q)P, (Q),

B~(Q) —= ):Hj(k q Q)&.(Q)

where I introduced

1 1H' (k, q, Q) = — U(Q) —V(k——q) ——U(k —q),2

1 1H'(k, q, Q)—:2V(Q) + —U(Q) —V(k —q) + —U(k —q),

1 1
H~(k, q, Q) = V(k —q) + —U(k —q) + —U(k + q),

1 1
H@(k, q, Q) = V(k —q) + —U(k —q) + —U(k + q).

With these definitions, and using the random-phase approximation (RPA) described above, the commutators of the
pair operators can now be derived. The actual calculation is a straightforward, though rather laborious, exercise in
corxunutator algebra. A detailed description of the various terms has been given by Anderson, and later discussed more
extensively by Bardasis and Schrieffer, who retained a number of vertices in their final analysis which were neglected
by Anderson. In the present paper all vertices discussed by Bardasis and Schrieffer are taken into account. The
expressions are, however, modified due to the spin-dependent interaction term in Eq. (3). The set of commutators,
including the exchange interactions, is
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—&.g@ (Q)+z.gR~(Q) — .g—b~gB~(Q)H, oj, Q = „~pI(Q
~A, (Q) —&„+~Pa(Q)+ z„~ a — ~+tH ~~(Q) = 4g&~

t
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of th
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we find that they can be w
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Ki,q(Q, v) = K„(Q,v)bi, ~ + K„„(Q,v) ) H'(k, k', Q)I'(k', Q)Ki, ~(Q, v). (12)

We can use the same partial-wave decomposition as intro-
duced in the previous section where we discussed the gap
equation. It is straightforward to show that the above
Dyson equation has the solution

x-,p(Q, ~) = ).x'. ,(Q, ~) (1+H'x'), ~,

where I used the partial-wave decomposition

x.,(Q, ) = —) 4.(k)r(k, Q)K„(Q, )

with similar expressions for y and H'. The collective
modes correspond to the zeros of the determinant of

~-,n~*,.+ ).H. ,~...ix„,p, i,;
p, ,l

(14)

which can be determined numerically, and in some lim-
iting cases also analytically. The expression of the re-
sponse function Eq. (13) corresponds to calculating the
series of diagrams depicted in Fig. l. It is possible to im-
prove further by taking into account the screening of the
vertex in all of these diagrams, except in the polarization
vertices of Figs. 1(b) and l(b'), as this would lead to dou-
ble counting. (N.B. Although in this paper the pairing
interaction is introduced as an independent model pa-
rameter, one should keep in mind that for an electronic
mechanism of superconductivity such as a spin Auctu-
ation or plasmon-intermediated interaction, the pairing
arises precisely from such diagrams. ) This procedure was
proposed by Anderson, Rickayzen, and also by Bardasis
and SchriefFer. Moreover, in the next section we will see
that in the normal state the o and p channels are com-
pletely decoupled for all values of Q. This implies that
the sum over diagrams for the charge fluctuations does
not contain any vertex correction due to the spin fluctua-
tions and vice versa. Hence, it is necessary in this case to

screen all vertices in the charge-Huctuation channel with
the spin fluctuations, and vice versa. As has been shown
by Rickayzen, in the superconducting state the screening
properties are basically the same as in the normal state.

One has to be cautious with this procedure of screen-
ing the vertices, as, by making the RPA before calculating
the sum over diagrams, certain classes of vertex correc-
tions are omitted. As a result inconsistencies may arise,
as can be seen from the following example: If we con-
sider the Hubbard U model, the on-site interaction can
be introduced either using an on-site spin-independent
(V) or a singlet-only (U) term as defined in Eq. (3). The
expressions for the equation of motion should be inde-
pendent of this choice, as the Pauli exclusion principle
automatically projects out the double occupancy of the
same site with equal spins. Indeed, we can check from
Eq. (7) that this requirement is satisfied as long as we
do not introduce screening. If we follow the recipe that
in the first two lines of Eq. (7) the polarization diagrams
U(Q), V(Q), and U(k —q), but not the exchange diagram
V(k —q), should be replaced with the bare interaction,
we arrive at a different result depending on whether we
introduce the on-site interaction through a singlet-only
or a spin-independent interaction.

This inconsistency is removed if we replace the di-
rect and exchange terms in H' with the charge screened
value. In the same way screening with spin Quctuations
should be introduced "by hand" in the direct and ex-
change terms in H'. Finally all three terms in H& and H&
should be replaced with the charge- and spin-Huctuation-
screened vertices.

I et us now calculate K by inverting [v —H'ii'j. The
determinant is

l~ —H'"I = ~' —»'(E'+g + &') + (E'+g —&')'

= [~' —(&~+~ + E~)'ll~' —(E~+q —&~)'1.
(i5)

The zeroth-order two-particle Green's function is then

&~(~'-.+ -~+) (+ +
—VE

+VE'

E E

+(6+ —v') A

K = lv —H~~l

V —E

—.-+a+a-
V V —E

2—VL

—V26+ VE

+(e+e + A+A )A —ve

(16)
—VE'

+VE+4
—V24+ V V

+(e+e + 4+K )A
e (e —v )4+4

( +(4+ —v2)A

The 4 x 4 matrix K I becomes

VE+ 4+
—VE

—V

+E 6+6 p(v' —e —A+ )
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( —v2(z ~ +b 4 )
+(b 6—++ z ~+)
x(e+e + 4+6 )

+vz —(~+ + 4+ )
+vb+(~+6 —~ 6+)

v'(b+e —z+A )
+(z+++ b+~+)
x(e+~ + 6+6 )

+vz (f 6 —E 6 )
v—b (~+ +4+ )

K I = Iv —H'"I

z v —v (z E +b Q )
+vz (j+ + & ) +(b+6 +z e+)
+vb (e+4+ —e

—&—
) x (~+~ + A+4 )

b+v' v'(b e —z+6+)
+vz+(e+A+ —e A ) +(z+2 —b ~+)

v—b+(g+ + &—') x(~+~ + 4+4 )

v'( —b e++z 4+)
+(z—4—+ b

—
e
—

)
x(~+a + 5+6 )

v—'(z+~+ + b+6+)
—vz (e 6 —e 6 ) +(b+Q +z+g )

vb—+(e + Q ) x(~+~ + 4+6 )

v3z+
—vz (f +6 )

vb (—e A+ —~+4 )

6 v3
—vz (a+6+ —~ 4 )

vb —(. '-+-~-+')

—v (b E —z 4 )—(z 4+ —b+~ )
x(~+~ + 6+4 )

z+v
—vz (E +6 )
+vb+(e+6+ —~ 6 )

—v (z E +b 4 )
+(z+~ +b 6+)
x(~+e +4+A )

From inspection of the matrix elements it turns out that they all contain the factor (v2 —(E1,+g —Eq)2) in the
numerator. As the same term appears in the denominator, these factors cancel. K I' turns out to be symmetric, and
the exact result is

IZ'=Z'r = Ek+g + EI.
2E.E.+&((E.+&+ E.)' —v')

—EI.+g EI, + &I &k+g
+~I ~I+g

v EI,+@~a—&k~a+g
&I.+g+&a ~I.+g+a —~I +k+g

v @a+g~a —EI ~I +Q
&a+g+EI*

Ek+QEA: LA:LA:+Q Qk+g Dk+E
+~A;~A:+g +k+ Q+ Ie

v Ea+~&r +&a&k+g
&a+~+&a v Ek+g tk+Ek 6k+Q

&a+cp+@a

v &k+~~r +&I &k+g
&a+g+&k

—EI.+HEI, + &I &I +g—~a~A:+g

IV. EXAMPLES

In this section I will apply the formalism outlined
above to a number of examples with an increasing degree
of complexity in relation to the type of electron-electron
interaction that is assumed. The energy dispersion is
assumed to be of the form

e~ = 2t[cos(k a) —+ cos(k„a)]—2t' cos(k a) cos(k„a)—p, ,

(19)

where a, 6, and c are the lattice parameters. The t and
t' terms are due to nearest-neighbor and next-nearest-
neighbor hopping in a square lattice. If t' = 0 at half
Glling of the band, such a dispersion relation has the re-
markable property that the Fermi surface forms a per-
fect square, with a diverging efFective mass over the en-
tire Fermi surface. In practice this situation will never
occur, as there will always be some finite coupling be-
tween next-nearest neighbors. This causes a bulging of
the Fermi surface, which eventually transforms into a ro-
tated Fermi surface if It'I » It

s: gp(k)
s*: QI (k)
d~. y'. $2(k)

~.(k)
py. $4(k)
d y.. @5(k)
etc.

=1)= cos(k a) + cos(k„b),
= cos(k a) —cos(k„b),
= csin(k a),
= ~2 sin(k„b),
= 2 sin(k~a) s1n(kgb),

(20)

The k-space representation of the on-site Hubbard U

In all examples I will restrict the discussion to sys-
tems where electrons have an on-site attraction or re-
pulsion, a nearest-neighbor interaction, or both, as well
as the long-range e2/r repulsive interaction. Moreover,
the discussion is limited to the situation where a single
band crosses the Fermi surface, and tight-banding lan-
guage will be used for the description of this band. In
particular I will consider a tight-binding band on a three-
dimensional (3D) square lattice, with a strong anisotropy
leading to quasi-two-dimensional behavior. A convenient
set of functions to be used for the partial-wave decompo-
sition of H' is then the set of harmonic functions
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interaction g,. Upn, ~n;g is the k-independent function
U(k —q) = Upgp(k)@p(q). If we consider the nearest-
neighbor interaction 2Vi P~, ~

n;n~ we find, by means

of a direct Fourier transformation of the operators
n; = c,.&c;~ + c,-&c;~, that this can be cast in the form
—,
' g~ V(Q) p(Q)p( —Q) with V(Q) = 2Vigi(Q), so that
we obtain the partial-wave decomposition

H. (o, o)
H'(a, a)
H'(0, 0)
H'(n, a)
H~(o, o)
H~(n, n)

UP

2V (q) —Up
—V~
UP~

0 )v"1

(a = 1, . . . , 4),

(n =1, . . . , 4),

(n =1, . . . , 4).

(23)

V(k 'q) i Pl(k)4'1(q) + 42(k)$2(q)

-@s(k)@s(q) —@4(k)@4(q)

A singlet-only nearest-neighbor interaction
14Ui g~, .~(c,.&c.

&
—c,.&c.&) (c~4c;~ —c~tc,~) can be cast intet t t

the form li g& U(Q) [p(Q)p( —Q) —o(Q) o (—Q)] with

U(Q) = 2Ui@i(Q); hence it has the same partial-wave
expansion as 2Vi@i(Q). However, from Eq. (7) we see
that the singlet-only interaction has other prefactors, and
is summed over U(k —q) and U(k+q) in the pairing chan-
nel.

Finally we have to take into account the long-range
Coulomb interaction. Here we will use the lattice Fourier
transform of e /r. The screening of the Coulomb interac-
tion for part of the vertices has been discussed above, and
is essential, as a bare Q 2 interaction is known to create
a singularity at the Fermi level within the random-phase
approximation. I will use the convention in the remainder
of this paper that V(Q) is the bare Coulomb repulsion
at large distances, whereas for shorter distances U0 and
Vi are the projections of V(Q) on the on-site interaction
and the spin-independent nearest-neighbor interaction,
respectively. Taking all these terms together we obtain
for a model with a "singlet-only" nearest-neighbor inter-
action,

H. (o, o)
H'(a, n)
H'(0, 0)
H*(n, n)
H~(0, 0)
H~(a, n)

= —Up —Ui @i(Q),= —Uf/2 (a = 1, 2),
= 2V (Q) —U, + U, @,(Q),
=Ui/2 (n = 1, 2),

0UP

= Uf (a = 1,2).

(22)

For all symmetries we have H&(a, P) = H&(a, P). The
upper indices p and 0 indicate whether screening with
charge or spin lluctuations is implied. The minus sign in
front of the Up term in H'(0, 0) is not a misprint. As
2V(Q) "contains" the on-site Hubbard term, the sum of
these two contributions is +U0. In principle one should
also include higher harmonics, as the expansion of V(Q)
does not end at v)4. However, as the expansion only ap-
pears as a screened interaction in expression (22), it is
reasonable to work with a model where such interaction
terms are neglected. If the nearest-neighbor interaction
is spin independent, we must also include p and p„sym-
metries of pairing, and we obtain

In the previous section we have seen that in addition to
the partial-wave expansion of H', we also have to make a
similar expansion of I'K . The expression for this prod-
uct is given in Eq. (18). The partial-wave expansion of
this expression is in general complicated, and has to be
done with the help of a computer. Some limiting cases
exist, however, where the integrals can be solved, espe-
cially when an expansion for small Q can be made. Some
of these limiting cases will be treated in the subsequent
sections. In addition numerical calculations will be given
at general values of the collective mode momentum Q.

A. Normal-state limit

(—Ug O

~, o 2v-(q)-U;&' (24)

where the fi, are Fermi occupation factors. Let
us assume for this part of the discussion that the
momentum of the electrons in the plane is un-
bounded. In that case the Fourier transform of
e /r is discrete in the direction perpendicular to
the planes, and continuous along the planes, so
that24 V(Q) = 2vre d sinh (Q~~d) [q~~d] i[cosh (Q~~d)—cos (q~d)], where d is the interlayer distance. Let
us define Q = +4m e2/V(Q), which has the property
limg~p Q = Q. If we assume that we have a cylindri-
cal Fermi surface, with an isotropic Fermi velocity vF,
and a Fermi wave vector kF, we obtain with e —1
2V(q) y (2, 2), and v„=2e d hkF v~,

d hvar. p v2 —h Q2v2 cos2$
Il

2v„' ( h'q2v2) "
II

v )
(25)

The plasma dispersion relation becomes

In the nonsuperconducting limit Eq. (18) has only
nonvanishing matrix elements on the diagonal. Further-
more, only the charge and spin channels are relevant in
the absence of o8'-diagonal order. Let us make the further
assumption that the electrons interact with each other
via an on-site Hubbard U repulsion, which is therefore
independent of k. After the summation over k we obtain
for the top-left corner of Eqs. (18),

H, (, p - (~i+g —~i.)(fi f~+g)—H*
(~x+g —&a)
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Q][ 1 + h Q v~/(2v )V=Vp
X/2q (1+li*Q'v2/(4m*) )

Qii

(
sh Q ai

) (26)

The spin susceptibility per unit cell (0„is the area in the
2D plane) is

(1 g2Q2&2 /v2)
—1/2

W + Uo [(1 —h'Q2v' /v') —'&' —1]
'

where W = "& is the efFective bandwidth. We see that
in the high-&equency limit (v )) hQ]]vz) y (1, 1)
—EzQ2[[n„[v2+UoE~Q2[[n„] ', and in the low-frequency

limit g~F(l, 1) = (W —Uo) i. Hence the ac susceptibil-
ity is suppressed, whereas the static susceptibility is en-
hanced. A magnetic instability occurs for Uo R'. The
above expressions are derived assuming a &ee electron

I

dispersion. If the Fermi surface has nesting vectors,
instabilities for specific values of Q are often found.

B. s-wave superconductivity

For s synunetry, and neglecting the radial A: depen-
dence of the pairing potential, the partial-wave decom-
position of yo and 0' is trivially achieved by summing
over all k. As a model for the pairing interaction we
adopt U(k —q) = —g. As is usually done in the gap
equation, one can limit the energy range of the interac-
tions in these expressions by putting 4 = 0 for ener-
gies larger than a scaling value (the Debye frequency for
phonon-mediated pairing). For the long-range Coulomb
interaction we take again V(Q) = 4ne2Q 2. Due to the
fact that ek+g ——e k g we obtain after summation that
yo(l, 2) = y (1,3) = yo(1, 4) = 0. Hence the spin Quctu-
ations are fully decoupled &om the other three and can
be considered separately. The remaining diagonal and
ofF-diagonal susceptibilities are 6nite, and the following
expressions are required:

y'(2, 2) = —)
g'(3, 3) = —)

(Ek + Ek+g) (EkEk+g —AkAk+g —~k~k+g)

2EA:EA+g &' —EI + EI.+g

(Ek + Ek+g) (Ek Ek+g + &k &k+g —&k&k+g)

2EI EA:+g I ' —EI + EA;+g
'

(Ek+ Ek+g) (EkEk+g + &k&k+g + k~k+g)

2EA:EA:+g &' —EI + EA:+g

{Ek+ Ek+g) {EkEk+g —&k &k+g + ~kek+g)

2EaE~+g I" —EI + EI+g

(Ek + Ek+g)
)

a &&~&a+g (~* —[Er, +Em~a]'

(Ek + Ek+g) (~k + ek+g)
)

a '2&s&s~g (~' —[&a+@a+g]'

) (Ek + Ek+Q) (ek ek+Q)

2EI,Eg+g v2 —EA, + EA, +g

(Ek —Ek+g) (ek+g —~k)

2EgEA. +g v2 —EA, + Ek+g

Let us first consider the spin susceptibility. As now y(1, 1) = ~ ~, Iilil with g ) 0 for a BCS interaction, the spin~+~&'(~, ~)
Huctuations are pushed to a slightly higher energy.

The generalized susceptibility for density, phase, and amplitude can be expressed using the above definitions as

~
—y'(l, 1) + 2A'S

—vLS —yo(3, 3) v(T + N)/2—
v(T +&V)/2 —~0—(4, 4)

Using the gap equation, (1 = pk 2~~ ) it is easy to prove that y (3, 3) = 1/g —v2S/2+ M/2 and yo(4, 4)
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yo(3, 3) + 262S. Using these properties, we see that the matrix 1+H'yo becomes

(1+.2Vgy (1, 1) —4VA S

—gvLS

—2' LT

g(v'S —M) /2 gv—(T + N) /2

gv—(T + N)/2 g([v' —4A']S —M)/2)
and the collective modes can be calculated Rom the determinant

0= [1 —2Vgy (1, 1)] ((v S —M) ([v —4A ]S —M) —v (T —N) )
+4VA ((N + 2TN)Sv + M(S [v —4A ]

—T ) . (29)

To further analyze this expression we need to make a
series expansion for small Q. In what follows we will ne-
glect N (oc Q2, but with a vanishing prefactor if the gap
has electron-hole symmetry). I'hn'thermore we notice that
we can write 2Vgy (1, 1) ——v„(Q) (v2 —W2 —4A )
M = S((v~ Q)2), VgM = —(1+W2/462)Vgyo(1, 1),
and T — 2p~S, —where p~ ——E~ —W/2, and W is
the effective bandwidth. Retaining only leading orders
in HvF Q)2) we see that the collective modes can now
be solved from

2[&' —W' —4&' —&p(Q)'](&'+ 2&')((» . &)')

= (v —4A —4@~)(v —W —4A )[v —v~(Q) ].

(30)

Hence we see that the negative U Hubbard model per-
mits in principle four collective modes: a spin-density
oscillation discussed above, a plasma mode, and two
additional modes, which are, however, situated in the
two-quasiparticle continuum, and therefore are strongly
damped. Interestingly the plasmalike mode can exist at
frequencies above and below the gap, depending on the
initial value of v„(Q) in the normal state. As has been
discussed by Fertig and Das Sarma2s a layer dispersion
relation as discussed above permits the existence of low-
lying plasmons beloto the gap. Another mechanism for
reducing the plasma frequency in the superconducting
state is strong damping of the motion perpendicular to
the planes, as we recently discussed.

v(Q) = v„Q]~~Q~, which for Q~ = 0 saturates at the
value v„,while for finite values of Q~ it has an acoustic-
like dependence on Q~~.

This implies that here we have a system which on the
one hand has a density of charge carriers characteristic
of a metal and, provided that there is a pairing mech-
anism, therefore has the potential of becoming a BCS-
like superconductor. On the other hand the dynami-
cal response of the electrons in one of the directions is
more characteristic of a semiconductor or an insulator.
This combination provides us with an example where
the Anderson-Higgs mechanism does not shift the Gold-
stone mode to a high energy, in spite of the fact that the
particles interact through a long-range Coulomb force.
Here we will use the dispersion introduced in Eq. (19)

0. In this example W = 4t is the band-
width. For the long-range Coulomb forces we take the
lattice Fourier transform of e2/r, which has 0„4vreQ
as its long-wavelength limiting behavior, and possesses

(A)

C. s-wave superconductivity in a layered electron gas

If the superconductor is strongly anisotropic, the
plasma energy for Q ~ 0 depends on the direction of
propagation. An extreme example of this arises when the
mass in one of the three directions is infinite, resulting in
a system which behaves two dimensional from the point
of view of the single-particle band structure, whereas
the Coulomb forces are three dimensional. A simple
model exhibiting such behavior is an in6nite stack of
two-dimensional layers. The electrodynamics of this sys-
tem was already discussed by several authors using
hydrodynamic calculations, as well as with the random-
phase approximation. The resulting plasmon spectrum
of such a metal is, in the limit of a large wavelength,

[O,xr] [0,0]
Momentum

[O,z] [0,0] [O,z] 0
Momentum Character

FIG. 2. Collective-mode spectrum of a superconducting
layered electron gas, assuming s-wave pairing. The parame-
ters are Ep/(4t) = 0.35, Ry/(4t) = 4.0. Qzc is varied with
0 to s with increments of 0.2vr (top to bottom solid curves).
The dashed curves are the boundaries of the region of Landau
damping. (a) Normal metal, U=O and (b) superconducting
state, U/(4t) = —0.67. (c) The amount of p (solid line) and P
(dashed line) character of the collective modes as a function
of collective-mode energy. The interruption occurs where the
modes become Landau damped.
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the same periodicity in A: space as the tight-binding band.
Ry* = e2d is the efFective Rydberg which, together
with the Fermi energy, sets the scale of the plasma &e-

quency in the planar direction (v„=2QE+Ry* for
E~ && W). For the pairing interaction we adopt the
same model as in the previous section, with the following
set of parameters: E~/W = 0.35, g/W = 0.6729 (result-
ing in 6/W = 0.25), and Ry*/W = 4.0. In Fig. 2(a)
the result is displayed with Qz as a parameter in the
range &om 0 to d vr, and agrees well with the calcula-
tions of Fertig and Das Sarma, and those by Cote and
GrifI1n. 2 Due to the model assumption of an energy-
independent attraction, the electron-hole continuum be-
comes a broadband already for zero momentum in the
two-particle channel. In Fig. 2(b) the same set of cal-
culations is displayed for the normal state. The plasma
&equencies become somewhat smaller in the supercon-
ducting state, which is due to the fact that the gap in
this example is relatively large. It reflects a well-known
property of the negative U Hubbard model that the mass
of a pair is enhanced due to the fact that two particles
have to hop simultaneously. ~ Also a strong qualitative
difFerence arises, which is not directly evident &om these
curves. This is the change in character of the modes.
In Fig. 2(c) the distribution of weight of the mode over
the density, gap-phase, and gap-amplitude branches is
displayed. First of all we notice that the contribution
of the latter is negligible. The second interesting fea-
ture is that the nature of the collective mode changes
gradually &om a pure phase fluctuation at low energy
to a 50/50% phase-density mixture at the edge of the
particle-hole continuum. Inside the electron-hole contin-
uum the collective modes are damped. (Although they
may still persist as a resonance, they cannot be identif1ed
from the zeros of a determinant. ) However, for energies
larger than the particle-hole continuum of our band we
see that the density-fluctuation character dominates.

The plasmon-dispersion, which is coupled to the 8-
phase fluctuating channels for small q, is acoustic for
finite Q~/Q~~, and so the Landau criterion remains sat-
isf1eci in spite of having R gRpless plasI11on spectrum.

D. Phase versus spin-Quctuating modes
in a layered electron gas

Let us now consider the singlet-only nearest-neighbor
pairing interaction U1. In the discussion of the resonat-
ing valence bond state3 ' ' the t-J model has been
used, where J = —Uq, and a reduction of the double
occupancy of the same site is included, either by replac-
ing the bare hopping parameter t with an efFective one,
or by using more elaborate schemes. It is not the aim
of the present discussion to address the t-J model. In-

stead we consider a Fermi liquid, with an on-site repul-
sion (Uo) which is not too strong, and an attractive in-
teraction between electrons on a neighboring site (Ui).
As the actual band structure in these systems is experi-
mentally known to be better described by the three-band
model of Zaanen, Sawatzky, and Allens4 (which is again
a simplified version of the real valence band structure in-
volving six oxygen 2p bands and five copper 3d bands
for the occupied states, as well as unoccupied 38 and
3p states) a transformation to a single-band Hamilto-
nian will in principle generate both an efFective Hubbard
Uo and an intersite Uq. ~~ Examples of such transfor-
mations can be found in the work by Emery and by
Jansen. However, also other, more complicated types
of interactions are generated when making such trans-
formations, notably the correlated hopping term (with
six operators) which, as has been shown by Hirsch, pro-
motes superconductivity of hole carriers. The interac-
tion considered by Jansen, as well as the correlated hop-
ping term treated by Hirsch, efFectively provides an on-
aite attraction, which, when considered on its own, pro-
motes pairing in the (nonextended) s-wave channel. Also
the V1 term contains contributions &om the virtual ex-
change of spin fluctuations. ' As has been discussed
by Scalapino et al. , such processes give rise to an at-
traction on nearest-neighbor sites, and increase the on-
site repulsion between electrons. As the exchange spin
fluctuations are really vertex corrections due to the H'
channel, one could schematically regard Ui in Eq. (22)
as the vertex correction of Uo. As such corrections are
necessarily retarded, and therefore rather ill represented
by the nonretarded interaction assumed here, the present
analysis can at best provide a qualitative picture.

(BZA) Baskaran, Zhou, and Andersons considered
pair1ng of the 8 type neRr half f11liIlg, EIIlery consid-
ered d 2 y2 pairing, and Kotliar studied both 8*- and
d-type pairing. As we will see, the 8 -type pairing is
not a stable solution near half f1lling, and is dominated
by pairing of the d type. As the latter again tends to
be unstable with respect to the antiferromagnetic Mott-
Hubbard insulating state at half filling, superconductiv-
ity can only exist sufI1ciently far away &om this region.
As the optimal T would have been reached at half filling
for a symmetrical band, this would lead to the conclusion
that superconductivity is only a marginal efFect in such
a system. However, the high-T, cuprates do not have an
electron-hole symmetrical band, and the Fermi surface is
known to be strongly distorted &om the perfect square
that arises &om considering only nearest-neighbor hop-
ping. This actually comes to the rescue: As a function
of band filling it pulls apart the regions where antifer-
romagnetism and high T, have their highest stablility.
The three coupled gap equations are (with x = k a and
y = k„a)

Uo Uo[cosx+ cosy] Uo[cosx —cosy] ) ( A, )1 + ) Ui[cos x + cos g] Ui[cos z + cos'g] Ui [cos x —cos y]
A, Ui [cos x —cos 'g] Ui [cos x —cos 'g] Ui [cos x —cos y] j

=0 (31)
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together with a fourth expression, which determines the
chemical potential by constraining the electron occupa-
tion number Pi, (1—ei, /Zi, ) = K, . For a sufficiently small
value of Uq or for T near T, where 4 becomes small, the
denominator has the fourfold symmetry of the crystal,
and the cross terms linking s' to d are zero for symmetry
reasons. Hence only s and s* are coupled provided that
Up P 0. If E becomes large compared to the bandwidth,
a priori there is no reason why mixing between s and d
is forbidden, and indeed we will see that such a mixing
takes place for a large value of Uq.

I still need to specify the electron dispersion relation
before we can solve the gap equations. For the dispersion
relation we now use Eq. (19) with t' = —0.7t. The
shape of the Fermi surface obtained with this choice of
parameters is very close to what has been calculated with
the local density approximation for, e.g. , La2Cu04 and
YBa2CusOq. Due to the finite value of t' a significant
change occurs in the density of states (DOS) at the Fermi
energy as a function of the number of electrons per unit
cell. The DOS is now asymmetric, and the maximum
is shifted to the "hole-doped" side of the point where
the band is half filled. Of course the direction in which
this occurs is dictated by the sign of t'. With t' ( 0 we
mimic the situation encountered in the Cu02 planes of
the high-T cuprates.

The phase diagram, displayed in Fig. 3, was calcu-
lated by searching numerically for the minimum of the
Helmholtz &ee energy [Eq. (4) + pN„using p as a La-
grange parameter to keep the number of electrons fixed]
as a function of L„L... and Lg( 2 y2) ~ The boundaries,
which are indicated in this diagram, are calculated for
T = 0.01W, where W = 4t is the bandwidth. For T = 0
no sharp phase boundaries exist. Somewhat surprisingly,
for lUil larger than a critical value (which depends on
n, ), the ground state is of mixed s and d symmetry. It
is worthwhile to mention in this context that the region
of sd mixing almost coincides with the region of p-wave
symmetry, if we use a spin-independent interaction (Vi)
instead.

The phase diagram with t'/t = —0.7 and Ui/(4t) =
—0.5, and U{)/(4t) = 0 is displayed in Fig. 4. Due to

0.15

(s)
Normal

0.1

0.05

0.15

0.1

0.05

0 0.5

Number of electrons

FIG. 4. (a) Phase diagram in the T nplane, -where n
is the number of electrons per unit cell, with t' = —0.7t
and Uo/(4t) = 0, and Uq/(4t) = —0.5. (b) The same with
U, /(4t) = &.

breaking of electron-hole symmetry, the diagram is now
asymmetric around half occupation of the band. Roughly
speaking s' pairing is favored far away &om half filling
of the band, whereas d-wave pairing becomes the most
stable solution near half filling. We also notice &om this
plot that the asymmetry implies that the highest T, 's

and d-pairing superconductor are to be expected on the
left-hand ("hole-doped") side of half filling. Lower T, 's

and s pairing occur on the right-hand side, in agreement
with the result of Micnas et al.44

Let us now consider the 6/T, ratio following from the
gap equation. Within the context of BCS theory we have
Ao(T) = 0 at T„sothat T, follows &om

Ug
= ) e tanh [cos {Ip,G + cos gyQ]

B c
q

1.5

0
0.5

I

1.5

Number of electrons

FIG. 3. Phase diagram in the U~-n plane, where n is
the number of electrons per unit cell, with t' = —0.7 and
Uo/(4t) = 0.

where the + sign refers again to the two symmetries of
pairing. This equation can be easily solved numerically.
The result is that for extended s-wave pairing the ra-
tio 240/k~T, is 6.5, whereas for d-wave pairing it rises
gradually &om 4 if lU&~ (( W, up to 6.5 in the limit
where lUil )) W. This is not sensitive to the value of
the parameter t'. We should keep in mind here that Lo
is the maximum value reached by 4 k respectively, at
the {e;0)and e, e) paints for d and s' pairing).

In Fig. 5, T R' is displayed as a function of Uz R"
for the d-wave channel. First of all we notice that for
Uil & W/4 the value of T, F is about lUil/4. For
Ur{/W « 1 this crosses over io a quadratic dependency

= 4lUi [ /W. For comparison a similar curve is dis-
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atioris can be pulled below the particle-hole continuum.
In Fig. 7 the collective-mode spectrum is displayed, us-
ing Ui/(4t) = —0.5, and n, = 0.85, and with Uo/(4t)
ranging &om 0 to 1.5. In the plot for Uo ——0 we al-
ready notice that the particle-hole continuum'has eight
points in k space where it touches the horizontal axis:
The Fermi surface crosses the node lines k = +k„atthe
coordinates (+ (7r —b)/2, k(7r —b)/2), hence the particle-
hole spectrum is gapless for the Q vectors (0, k(vr —b)),
(+ (z —b), 0), and (k(m —b), +(vr —8)). Precisely for these
Q values the spin (and charge) susceptibility acquires the
largest value, also in the superconducting state; hence if
we switch on a Gnite value of the repulsive on-site Uo, a
spin-density wave starts to develop around the (ka, +m)
points on the Fermi surface. Clearly the ground state is
no longer of the form of Eq. (1), and the corrections may
become strong enough to completely destroy supercon-
ductivity. As, on the other hand, the spin-density wave
exists around a portion of the Fermi surface where the
gap is zero (and therefore contributes the least to the
ground-state energy), whereas the maximum gap value
is at the [+sr, 0] and [0, +sr] points, there may actually
be a coexistence of superconductivity and a spin-density
wave in difFerent portions of the Fermi surface.

From Fig. 7 we can see that the region taking part
in the formation of the spin-density wave quickly spreads
around the (+ (n —b)/2, +(vr —b)/2) points if Uo/(4t) in-
creases, leaving a small region around [+vr, 0] and [0, kx]
for the formation of a superconducting condensate if
Up / (4t ) = 1. The phase diagram for Up/ (4t) = 1
and Ui/(4t) = —0.5 is indicated in Fig. 4(b). The

shaded area roughly indicates the region with an in-
stability towards a SDW. In principle a mixed SDW-
superconducting state may exist for all concentrations.
It is not possible to decide from the numerical results
presented above whether or not there is a sharp phase
boundary separating regions with a magnetic instability
from superconducting regions.

V. CONCLUSIONS

A unified approach is presented to the calculation of
the collective modes of spin, charge, phase, and ampli-
tude in superconductors with a nontrivial pairing interac-
tion. The expressions for the dynamical spin and charge
susceptibilities are generalized to take into account su-
perconductivity at general values of momentum and &e-
quency. Several examples are treated. Notably the re-
sponse functions of a layered charged electron gas, with a
pairing interaction in the d-wave channel, are considered
in the absence and presence of an on-site Hubbard repul-
sive interaction. An incipient instability toward a spin-
density wave follows from the softening of the collective-
mode spectrum near Q = (vr, vr) in the d-wave paired
state.
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