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We describe some advances made in the effective-potential Monte Carlo (EPMC) method. In
particular, the effective potential has previously been evaluated by expanding the potential up
to finite order; we show that the infinite series can be summed analytically. Previous work also
included various forms of an isotropic approximation and the low-coupling approximation; we discard
the former, but retain the latter. We compare our results for neon with previous work and find
significant differences. We argue that the finite order EPMC method is now obsolete and that the
present formalism supersedes it. Some computational aspects are also discussed.

I. INTRODUCTION

The problem of calculating the thermodynamics of
quantum crystals is a difficult one. Several approxima-
tions are available; however, these are typically valid
either in the high-temperature or low-temperature ex-
tremes. The Wigner expansion,! for example, is an ex-
pansion in & and thus is only accurate for nearly classi-
cal systems. Perturbation theory? is an expansion about
equilibrium, which does not converge for systems with
large thermal motion or large zero-point motion, and in-
deed may give imaginary phonon frequencies in extreme
cases. Self-consistent theory® cures this problem, but it
too becomes unreliable when mean-square displacements
become too large.

A completely numerical evaluation of the quantum me-
chanical partition function should, in principle, present
no problems. In practice, however, this is not the case.
The path integral Monte Carlo (PIMC) method* starts
from Feynman’s path integral representation of the parti-
tion function,® which it evaluates numerically. The main
problem with the PIMC method is that it can be ex-
tremely time consuming. In particular, low-temperature
quantities that depend on fluctuations (such as the spe-
cific heat or bulk modulus) take too long to obtain ac-
curately. The only PIMC calculations of solid neon we
are aware of are due to Cuccoli et al.% and, to a lesser
extent, to Liu et al.” None of these gives PIMC values
for the specific heat or for the bulk modulus. We are
aware of only one PIMC calculation for solid helium;® it
gives the potential energy (with a large uncertainty) for
two temperatures at the ground state volume, but does
not give the kinetic energy, pressure, specific heat, or
bulk modulus. However, there are quantum Monte Carlo
calculations of the ground state energy.®'°® The PIMC
method is, of course, an active area of research.

This sets the stage for the effective-potential method.
Like the PIMC method, it starts from the path integral
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representation of the partition function. It was intro-
duced by Feynman® who chose a variational approach
to evaluating the partition function. The novelty in the
effective-potential method is in the choice of the trial
potential. Feynman expanded the potential about the
average point of each path, not about the initial point
(with the expectation that this would better incorporate
quantum effects) and replaced the expansion coefficients
by variational parameters. In this first derivation, Feyn-
man expanded the potential to zeroth order only; i.e., for
each path with the same average point, the potential is
constant. Thus, for each average point, we can evaluate
the path integral since it is a free particle one. This leaves
a classical partition function with an effective potential.
The effective-potential method was later improved in-
dependently by Giachetti and Tognetti'! and by Feyn-
man and Kleinert.!? They proposed expanding the po-
tential to second order. Since the solution to the path
integral with a quadratic potential is known, the path
integral can again be evaluated, leaving a classical parti-
tion function with a now improved effective potential.
Since then there has been much interest in this method.
A multitude of applications can be found in the literature,
ranging from single particles in potential wells,'® to one-
dimensional chains,!® to three-dimensional crystals.!>16
For a more complete list of applications, the reader is
referred to the review article by Cowley and Horton.'”
In the one-particle application of Ref. 13, the effective-
potential method and other approximation schemes are
compared to exact numerical solutions, and it is found
that the effective-potential method is the most reliable.
In the N-body problem, the classical integral is evalu-
ated numerically and, in particular, in three dimensions
it is evaluated by Monte Carlo simulations, hence the
name effective-potential Monte Carlo (EPMC). However,
the numerical evaluation proves to be too difficult, and
approximations are necessary. In all the literature (see
Ref. 17 for examples), we find a Taylor expansion of the
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potential combined with an expansion about equilibrium,
and we find the low-coupling approximation (LCA). The
only exceptions are specific one-dimensional, integrable
potentials. In all the three-dimensional applications, we
find several forms of an isotropic approximation.!®% In
this paper, we shall show that the results of the infinite
Taylor series can be summed analytically, and that the
isotropic approximation can be avoided. The LCA is the
only approximation which must be retained. We shall
show that this formulation of EPMC theory is more reli-
able than earlier, more approximate versions and that it
is just as easy to evaluate.

The LCA is absolutely necessary to the success of the
EPMC method as a practical tool. An EPMC calcula-
tion without it would take so long that it would be more
cost effective to use the PIMC method. An EPMC calcu-
lation without the LCA is so difficult that a quantitative
investigation of the LCA has never been done. We be-
lieve that this investigation is necessary for EPMC theory
to be generally accepted by the physics community. We
will present such an investigation in a subsequent paper.
Even without the LCA, the full EPMC method has some
fundamental deficiencies at low temperature, as well as
numerical difficulties. We will also report on a study of
these matters in the near future.

In Sec. II, we summarize the derivation of the effective
potential and show in more detail how to avoid cutting
off the Taylor expansion and how to sum the resulting
infinite series. In Sec. IIT we discuss computational as-
pects of applying the EPMC method and show how easy
and efficient the algorithm is. In Sec. IV, we present our
results for a model of neon and compare with previous
work, pointing out the large improvements made by our
formulation of the effective potential.

II. FORMALISM

We start from the three-dimensional, N-particle path
integral representation of the partition function® Z,

Z = /daNr(O)/ 'D3Nr(t) e“%s['(m,
r(0)=r(Bh)

S = /Oﬁh (%mi-z(t) + V(r(t))) dt.

Here r(t) is a 3N-dimensional coordinate. To evaluate
Z numerically, the path integral Monte Carlo method
approximates the action integral S by a sum with M
terms. The path integral becomes a 3NM-dimensional
integral which is evaluated by Monte Carlo simulation.
M is called the Trotter number. As the temperature
approaches zero, 8% — oo and we need a larger M to ac-
curately calculate S. Therefore, low-temperature PIMC
simulations become very time consuming.

The effective-potential Monte Carlo method also starts
from the three-dimensional, N-particle path integral rep-
resentation of the partition function. It was first pro-
posed by Feynman® as a variational method for evalu-
ating Z. Following Feynman, we expand V(r(t)) not
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about r(0), but about 7 [the average point on the path
r(t)], with the expectation that this will better incorpo-
rate quantum fluctuations, and we replace the expansion
coefficients by arbitrary parameters, taking care to pre-
seve any symmetry properties. We expand the potential
up to quadratic terms; the linear term may be discarded
without affecting the final results since its effect can only
be to redefine the constant term. The resulting nonlocal,
quadratic trial potential Vj is

Vo(e) = W (#) + 5 (x — 7)ii (7)(x = 7),

Bh
F= B%/o r(t) dt,

where Q;; are the trial force constants and Q;; = Qj;,
i,7=1,...,3N. Here we use the summation convention
for repeated indices. Thus, for each 7, we have a set of
3N(3N + 1)/2 + 1 parameters. We shall often use the
notation I« for 2; I = 1,..., N is the atom number, and
a =1,2,3 is the dimension number (i.e., z, y, or z). For
an isotropic approximation, which we shall not use, we
would assume Q14,58 = Q17,3, as done in Ref. 15. The
trial partition function is

Zo = / d*Nr(0) / D3Np(t) e~ i Selr®)],
r(0)=r(Bh)

BE 11
So = / (imi-z(t) + Vo(r(t))> dt.
0
The variational principle is based on the Jensen-Peierls!®
inequality
F < Fo+ (V(r(0)) — Vo(r(0)))o- (1)

Following Liu et al.,'® we evaluate the right-hand side
of (1) by first calculating, for an arbitrary function A(r),
the quantity Ao,

Ao = Zo(A(x(0)))o = /d“’r(o) A(r(0))
X

/ D3Np(t) e~ hSolr(®)],
r(0)=r(Bh)
(2)

Since the trial potential is quadratic, the path integral
can be evaluated analytically. We first introduce the new
variable R with the constraint that R = 7 and replace 7
by R everywhere:

Ao = / VR / &M (0) A(x(0)) / o D3N (1)

L Solr()] 5 1o
x e~k Solr R—— [ r(t)dt].
e g =

We then Fourier transform A(r(0)) and the § function,
make the appropriate change of variables, and let

Ulﬂﬂi]’Ujb = me&ab. (3)

U is the orthogonal matrix which diagonalizes € and
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its index a represents the normal modes of the system.
Changing to the basis of normal modes, the path integra-
tions separate into the product of 3N forced harmonic
oscillators [the forcing term coming from the é-function
constraint and A(r(0))]. Carrying out the remaining in-
tegrations, we finally get

m 3N/2 . f.
Ao = (21rﬂﬁ2> / @R [sinh fa]

xJa(R)e PV®R),

—ui /e
Ja(R) = /dSNu [(ET:Q)_U'Z AR +Up),
2
Qg = Zizifa (coth fa — %) R (4)
hw,
fa:: g?z_“- (5)

We use the convention that repeated indices are summed
over, unless the term is enclosed in square brackets,
in which case the repeated indices are multiplied over.
When there is ambiguity, the summation or product will
be indicated explicitly.

Letting A =1and A =V —V; in (2), we have, respec-

tively,
1 1 m 3N/2
Fo=-pnto= ‘Bln{ (m)

3N fa _BW(R)
X/d R [sinhfa] ¢ }’

(6)
1 m 3N/ fa
(V= Voo = Z (27r,8ﬁ2) /dBNR [sinh fa]
e ) (K (R) W) - el

(7)
where K(R) = Jy(R) and Jy, (R) was integrated:

—pi/aa
K®) = [ @ [W} VR+Uw),  (8)
2
Jv, = W(R) + ";02‘212%

At this point we apply the variational principle. We
vary the functional parameters W(R) and Q;;(R) so as
to minimize the right-hand side of (1):

] ma, f2

T (Fo + (V = Vo)o) = K(R) — W(R) — i

=0.

Thus, W(R) = K(R) — maaf2/B%k? and, substituting
W (R) into (7), (V — V4), = 0. Hence, from (1) we have
F < Fy, where (6) now becomes

m O\ 3V/2
Zo = | —— 3Np ,—BVets(R)
° (27r/3h2) / @ Re ’ ®)
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Ver(R) = K(R) — ";O‘z‘;f + %Zln (ﬂ“}:ﬁ) . (10)

We see that the result of this variation is to reduce the
quantum mechanical partition function to one of classical
form. This is one of the main advantages of the effective-
potential method, since a classical partition function is
much easier to evaluate than a quantum mechanical one.
The quantum effects of the system are incorporated into
the effective potential. It is useful to note that if R
is equal to the equilibrium configuration, then the in-
dex a represents the 3N phonon modes of the system
(i.e., the normal modes are plane waves), but that in
an arbitrary configuration R (where there is no crystal
symmetry) this is not true. Nevertheless, we shall call
the terms 1/81n(sinh f,/f.) — maa.f2/B%A? in Vg the
phonon terms. K(R) will be called the smeared poten-
tial.

Variation of Fy, with respect to €;; is done by variation
with respect to w, and U;, under the constraint that U
remain orthogonal. We get

ULK;;Ujp = mwlbap, (11)
. . 8K (R)
Kij = Kia,p OR140R 5 (12)

Comparing with Eq. (3), we see that the result of this
variation is Q;; = I~(,J

Although we have a simple classical partition function,
the effective potential (10) is too complicated to evaluate.
In particular, the smeared potential K [Eq. (8)] must be
evaluated. To do this 3N-dimensional integral, we start
by expanding V(R + Up) around R. Specializing to a
two-body potential,

1
V(R) = §ZZ¢>(RI—RJ), (13)
I J#I
1 [ e_“z/“" 1
K@R) == /dSN,u -
x¢((R+Up)ry — (R+Up)sy)
_1 3N eHa/oe | 1
=52 [ | g
I#J L 4 =0
81
X ¢(X) (UI“/1,¢11 - UJ’hﬂl)/‘lh

ax‘h T am'w x=R;—Rj;

Xoees (UI"Yl,al - UJ“/z,az)Na:

_1 Z i 19'¢(Rr —Ry)

! -
2 == Il 8z, -+ 0z,
X(Ul’h,al - UJ‘Y1,a1) e (UI‘Yl,at — Uiy :‘ll)
2
—Ha/%a
av, | e "
< [ [(ma)”z} o e o
The integral in (14) will be zero unless the indices
ai,...,a; appear in pairs, quadruples, etc., so that [ must

be even. We therefore rewrite (14) as
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=1 621¢ R;r—Ry)
KR) =333
I;éJl 0 (2l)' aa"’Y o aa"‘nt
X(Ul‘hyal - UJ“/l,al) te (Uf‘mhazl - UJ“m,am)

e—Ha/aa
/dsN [ 7ra )1/2:| I‘Lal *tMag - (15)

3N, e T Ha/a

we use the pairing theorem,? which states that we sum
over all possible ways of pairing the indices and that each
term in this sum is then evaluated as if the pairs were in-
dependent (e.g., a quadruple is evaluated as two distinct
pairs). For example, one possible pairing of indices is
aj4+1 = a1,qQ142 = A2,...,0a2] = Ay, for which

an, | e/ 2 _ %y Qay | Qe
/d |:(7ra )1/2] Hay ' Hay = 2 2 2’

However, since (15) is symmetric with respect to ex-
changing indices, all different pairings give the same an-
swer. Since there are (21 —1)!! = (21 -1)(21-3)--- (3)(1)
different ways of pairing a;, ..., a2, we have

> 1 8$(R;-R;) .
DY @) 9z, - By, A DM

I#J 1=0

To evaluate

K(R) =

e
X (UI'Ylya'l - UJ'YI)“I)%(UI'YZHGI - UJ‘Yz,ﬂl) o

Ota,
X (U1721—1 »al

_UJ'm_x,az) 2 (UIsz,az UJvzz,a1)~

Noting that (21 — 1)!!/(20)! = 1/2!1! and defining

(DIJ)aﬁ = (Ura,a — Uja,e)@a(Urg,a — Usp,a), (16)
we have
1 > 10%p(Rr —Ry)
K®R) = 2¢ z::z_ Oty - Oy,

J 1J
x (D—) (L) RN
4 Y172 4 Y2r-1721

In the literature up to now,%®1% this Taylor expansion
has been truncated. Furthermore, after the truncation,
the expression is expanded about equilibrium. Terms
in this double expansion are grouped together according
to powers of a quantum smallness parameter, essentially
the equilibrium value of D!J. The nomenclature “nth-
order EPMC” means the results obtained by truncating
at | = n, expanding about equilibrium, and only keeping
terms of order (DY 7). This procedure quickly becomes
prohibitive. At finite temperature, nothing higher than
a second-order EPMC simulation is manageable. At zero
temperature, an inconsistent third-order EPMC calcula-
tion is possible. Most applications of EPMC theory to
crystals have stopped at first order.® This is acceptable
only for the heavier crystals. Liu et al.'® have presented a
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second-order calculation for both argon and neon, and a
third-order, zero-temperature calculation for neon. If we
define a (temperature-dependent) convergence parame-
ter as the ratio (at equilibrium) between the second-order
term and the first-order term in (17), we find that,!® for
low-temperature neon, this parameter is as high as 0.8.
Thus the validity of this entire expansion procedure is
questionable.

However, it is not necessary to expand (17) about equi-
librium, nor to truncate it, as the infinite series can, in
fact, be summed analytically. Fourier transforming ¢(x)
in (17), we have

B(x) = (%) [ aud@ee,

22( )/dsqq?(q)g;l—ll(iqm)---(iqm)

I#J

1J 1J
it (Ri—R.) (D ) (AD ) ,
4 Y172 4 Y21-1721

Inverse transforming q;(q) and assuming D7 positive
definite,

K(R)=—Z<2ﬂ) /dsw /d ¢—ia

I£J

i B oo 1 DIJ l
x et (Rr RJ)ZE( q Tq)
—— 3
B () [
I;éJ

X/d3qe—qTD”q+iQ'(Rl—RJ“x)

D) e

I#£J

K(R) =

(471')3/2
d tDIJ)l/"

—(RI—RJ—x)T(D”) “HR;-R;—x)

DI‘I) x
3 Z/ 1r3 detDIJ)l/z

I;ﬁ.]
X¢(R1 —RJ+X). (18)

We call this simply the EPMC method, as opposed to the
finite-order EPMC method (e.g., a second-order EPMC
method).

Bringing together Egs. (4), (5), (9), (10), (11), (12),
(16), and (18) as a convenient reference, we have

m 3N/ ®
— 3Np o—BVess
Zo ( 27r,3ﬁ2 ) / d [

maaf Slnhfa
Veg(R) = K(R) — G2 ﬁZI ( )
3 e~ DIJ]—
;;/d 7r3de‘cDI‘7)1/2

x¢(Rr — Ry + x),



(DIJ)aﬁ = (Ura,a = Usa,a)@a(Utp,a — Usg,a),
a, = sz;a (coth fa— i) ,
fo= P,
ULKi;Ujp = mw2bap,
Kirogs = %. (19)

It is worthwhile comparing this result to first-order
self-consistent phonon theory® (SC1). The SC1 equa-
tions are evaluated at the equilibrium positions and thus
great simplification is achieved by going to phonon coor-
dinates. For comparison purposes, however, we shall not
do this:

Fsor = K(R) — % fa coth fa + %Zln(Z sinh £,),

e_xT[DIJ]—lx

1 3
K®) =32 [de Smmn

T J£I
X¢(RI —RJ +X),

(D) o = (Uraya = Usaya)@a(Utg,a — Usp,a),
2
o, = fif coth f,,
MJja
_ Bhw,
fa - 2 b
Ug;Kij Ujb = meéab,
_ 92K (R)
Kia,ys = OR1adRsp" (20)

We see that in many respects, the EPMC and SC1 the-
ories are identical. We wish to point out the differences.
Both EPMC and SC1 theories simulate particle fluctu-
ations about a given configuration by smearing the po-
tential. The smearing is Gaussian and the width is gov-
erned by a. We notice that the EPMC value of « is just
the quantum mechanical portion of the SC1 value of «,
i.e., agc1 minus its classical limit. Comparing Fsc1 with
Vest, we notice the same thing among the phonon terms.
The physical picture of the EPMC theory that emerges is
that the contributions to the free energy from the parti-
cle fluctuations are evaluated by separating the quantum
fluctuations from the classical ones. The quantum fluctu-
ations effectively smear the potential and also contribute
to the kinetic energy (the phonon terms). These two con-
tributions are approximated by choosing (variationally)
the best possible harmonic oscillator force constants that
will reproduce these. The contributions from the classical
fluctuations are not approximated, leaving the partition
function in its classical, integral form. It is important
to realize that, since the phonon modes only represent
the quantum vibrations of the system, these are not the
observable phonon modes, such as in SC1 theory where
the phonon modes come from the entire fluctuations.

At zero temperature, the quantum fluctuations repre-
sent the full fluctuations, so that the EPMC and SC1
theories are identical. In the classical limit, where there
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are no quantum fluctuations, the EPMC theory is exact.
In fact,

Ver(R) > K(R) + O(K*)

= V(R) + %VZV(R) + O(h%) (21)

[where V(R) is the two-body potential (13)], so that the
EPMC theory reproduces the first term of the Wigner
expansion.! Notice that the first term of the Wigner ex-
pansion is isotropic, so that even with an isotropic ap-
proximation, the EPMC theory reproduces it. The SC1
theory, on the other hand, becomes unreliable at higher
temperatures since the full fluctuations become too large
to be well approximated by Gaussian smearing. Hence,
the EPMC and SC1 theories are identical at T' = 0, but
the SC1 theory progressively gets less reliable as the tem-
perature increases whereas the EPMC theory progres-
sively gets more reliable until it becomes exact. Thus, in
principle, the EPMC theory is inherently superior to the
SC1 theory.

There is one important difference between the SC1
and EPMC theories with a serious consequence. Since
the SC1 theory approximates the full fluctuations, the
SC1 equations (20) need only be solved once (at equi-
librium). This involves a first guess for U and w, get-
ting K, getting a new U and w, ..., and iterating until
convergence. However, in the EPMC method, this SC1-
like iteration procedure must be done at every R (fur-
thermore without the simplifications of phonon modes).
This would make the Monte Carlo evaluation extremely
long. Every iteration at fixed R involves diagonaliza-
tion, which is a process of order N? since we cannot go
to phonon coordinates (in which case it would be of or-
der N). This is an extremely large workload; it takes of
order 1 min for 125 atoms on a Sparcstation 2. Thus,
every Monte Carlo move requires several minutes. Get-
ting a well converged energy (for example) would require
tens of thousands of hours. A simplifying approximation
is necessary to make EPMC simulations practical. In the
low-coupling approximation'® (LCA), changes in o and
U [in (19)] from equilibrium are assumed to be negligi-
ble. D7 therefore remains unchanged, as do the phonon
terms in V.g. Hence, as R changes, the only changes to
Veg(R) come from the R dependence of V(R). Neither
D7 por the phonon terms in V.g need be recalculated.
This is attractive because the iterative procedure need
only be done once, at equilibrium. Thus, classical Monte
Carlo simulations become an efficient way of evaluating
the partition function. At zero temperature, only the
equilibrium configuration contributes to the free energy
since classically the atoms do not fluctuate about equi-
librium. Therefore, the LCA is exact at T = 0. We
also note that assuming the LCA does not change the
result (21) since (21) has no phonon dependence. There-
fore, the LCA is also exact in the classical limit and in
the first term of the Wigner expansion. The hope is that,
since it is exact at both temperature extremes, it is rather
good in between. If this is not the case (so that the LCA
must be abandoned) then one may as well use the PIMC
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method, since the EPMC method without the LCA takes
too much computer time.

Last, we note that the effective potential is volume and
temperature dependent. This means that we must be
careful when taking derivatives of the partition function.
For example, we have

] 3N 9
E_—EBIHZO——éﬁ+<‘/¢eﬂ'>0+ﬁ<%‘/€ﬂ'>o’ (22)
10 N 0
P= o=y~ {ay¥er)
_(OE\ _ 3Nk ., .,/ OVex ,0Veg

2
+kﬂ"{<<%ﬂ+ﬁ8£ﬁ> >
(et}
3 8P\ N ?Vegr
2= (57), -V (57)

o 2 d 2
- BV {<(W‘/;ﬁ) > - <W‘feﬂ> } .
We also explicitly see here how the specific heat and

bulk modulus depend on fluctuations, which makes these
quantities difficult to calculate accurately.

III. COMPUTATIONAL DETAILS

From a computational point of view, the EPMC
method with the LCA is very easy to program. In the
LCA, the phonon terms are independent of R and are
equal to their equilibrium values. If we let

sinh f, mayg, f2
W= 8 Zl ( ) T 2Rz 0
then we may rewrite (9) as

m 3N/2
— —BW 3N —BK(R)
Z() <__—27I',3h2) e /d Re .

We calculate W only once, as well as its temperature and
volume derivatives, which are evaluated numerically. For
example, the energy (22) can be rewritten as

3N ow 0K
=Gy ewesgl v mn(G0) L @

with similar decompositions for the pressure, specific
heat, and bulk modulus. We rewrite K [Eq. (18)] as

K®) = [ L e R —Ry+UTx),  (24)
where we have defined
(U™) up = Vap/As,
Vay (D) 5 Vap = Aabap.
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From (19), we see that D!’ depends explicitly on 8
through a, and f,, and implicitly on 3,V through w,
and U;,. Therefore, temperature and volume derivatives
of K must include derivatives of UI7. For example,

0K d3c
ap ~ ) m°

—x2 94(y) 0 (U”) z
Oa |y_mr,—R,+Ux a8 B
Since D!’ is independent of R (in the LCA), U7 is
evaluated once at equilibrium, as well as its derivatives,
which are calculated numerically. With the LCA, one
must never ignore the implicit dependence on 3,V (as
could be done for first derivatives without the LCA, since
the variational procedure assures us that §Veg/dw, =
8Vesr /0U;, = 0). Also note that taking the numerical
derivative of the eigenvalues and eigenvectors of a matrix
is tricky because these are not unique (change order of
eigenvalues, multiply eigenvector by —1, linear combina-
tions of eigenvectors for degenerate eigenvalues). Imag-
ine, for example, evaluating a particular eigenvector V,
increasing the temperature infinitesimally, and reevalu-
ating the same eigenvector V’. We expect V! =V + V.
However, since both evaluations are numerical, we may
get V! = —V — 4§V, since both V' and —V" are solutions.
Taking 0V/08 = (V' — V) /68 would be disastrous. The
diagonalization algorithm must be designed to always re-

turn a unique answer.

The Gaussian smearing (24) can be evaluated sim-
ply by Gauss-Hermite integration. An n-point Gauss-
Hermite integration is a numerical procedure where

/°° f(.r)e””2dm = Zw,f(:l:l)
—oo i=1

The weights w; and the points z; (zeros of Hermite poly-
nomials) are tabulated in Ref. 19 for various values of
n. The three-dimensional Gauss-Hermite integration is
evaluated as a series of one-dimensional integrations:

/ f(x)e™ ‘&~ Z Wiy Wiy Wiy f(T4y , Tigs Tig)-

i1,82,i3=1

These Gauss-Hermite integrations vectorize well and each
pair contribution to the smeared potential can be done
in parallel, so that many high-performance computing
platforms are available. Our program ran on a vector
supercomputer, the Cray C-90. We did not parallelize
our code. As evidence for how well this algorithm vec-
torizes, our code ran at 500 Mflop on one processor of
the C-90, while the theoretical peak performance is 1
Gflop. The time required for the code to run depends on
how many points are used in this integration. One point
would correspond (in speed and in result) to a classical
Monte Carlo calculation (one evaluation of the poten-
tial per move). The first quantum correction comes from
two points, requiring eight potential evaluations per move
(two cubed, since there are three dimensions). The num-
ber of points can be chosen to be the smallest allowable
such that the systematic error caused by using a small
number of points is less than the expected statistical er-
ror from the Monte Carlo simulation.
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Here we see why the isotropic approximation can be
so attractive. In a fully isotropic crystal, a six-point in-
tegration would require only 6 potential evaluations per
move rather than 216, since there is effectively only one
dimension. Similarly, separating the transverse and lon-
gitudinal modes would effectively give a two-dimensional
problem, requiring 36 potential evaluations per move.
However, for a two-point integration, the gain in speed
would only be a factor of 4.

We also note that the EPMC method using an n-
point Gauss-Hermite integration is more accurate than
an (n — 1)th-order EPMC simulation and probably more
accurate than an nth-order EPMC simulation [recall the
finite-order approximation scheme (17)]. The n-point
Gauss-Hermite integration is exact for polynomials of or-
der 2n — 1. In the nth-order EPMC method, we start by
expanding V(R+Up) in (8) around R up to order 2n and
discard the rest [equivalent to stopping at { = n in (17)].
Imagine we use this polynomial potential of order 2n in-
stead of the real potential. This will give identical results
in the nth-order EPMC method. But with an (n + 1)-
point Gauss-Hermite integration, we would get exact re-
sults. Since the nth-order EPMC method would fur-
ther approximate this polynomial potential by expanding
around equilibrium, then the (n+1)-point Gauss-Hermite
integration is definitely more accurate than the nth-order
EPMC method. However, with the Gauss-Hermite inte-
gration, we do not have a polynomial potential; we have
the full potential, which we can think of as an infinite-
order polynomial. Therefore, an n-point Gauss-Hermite
integration will get the exact contribution from the first
(2n — 1)th-order terms, and an approximate contribution
from (2n)th-order and all higher-order terms. This is
compared with the nth-order EPMC method which will
approzimate the first (2n—1)th-order terms, also approx-
imate the (2n)th-order term, and leave out all higher-
order terms. It therefore seems reasonable to state that
an n-point Gauss-Hermite integration is more accurate
than an nth-order EPMC method.

IV. RESULTS

Neon is a particularly suitable test of any theory be-
cause its zero-point motion is so large. In fact, pertur-

TABLE I. Parameters® for the Lennard-Jones potential
(Eq. 25).

€ (10716 ergs) o (1078 cm)
72.09 2.7012

2Taken from Ref. 15.

bation theory does not converge for neon at any tem-
perature. We have calculated the zero-pressure nearest-
neighbor distance, internal energy, isochoric specific heat,
and isothermal bulk modulus?® for a model of the isotope
Ne.22 These were evaluated by averaging analytical ex-
pressions rather than taking numerical derivatives. The
model used was a nearest-neighbor Lennard-Jones poten-
tial of the form

w=u(@)-0)]

where 7 = |x|. The reason for this was to make contact
with the work of Liu et al.'> The potential parameters
appropriate to solid neon are listed in Table I. We com-
pare our results with the second-order EPMC method
(and third order at T' = 0), with the SC1 method, and
with the first-order Wigner expansion (avoiding a com-
parison with classical Monte Carlo simulation because,
even near melting, neon is too far from being a classical
solid). Results for the first-order Wigner expansion were
calculated simply by replacing Vg with Eq. (21) in the
Monte Carlo simulation.

We used a six-point Gauss-Hermite integration. This
ensured that any errors from the numerical integration
were about an order of magnitude smaller than the sta-
tistical uncertainty in the energy. We used 125 atoms in
an oblique box with periodic boundary conditions. At
the start of the run, all atoms were positioned at the
equilibrium sites of a fcc lattice. We generated 8x108
single-particle moves using standard METROPOLIS sam-
pling and discarded the first 108 to thermalize the system.
Every 125th move was saved to contribute to averages;
variances were calculated by the “blocking method.”2°
The single-particle move size was adjusted to give ap-
proximately a 50% acceptance rate. The time required
for one such run was about 2 h on one processor of a
Cray C-90. Several short runs (10 min) at constant tem-

TABLE II. EPMC data. T is the temperature and d is the nearest-neighbor distance at which the pressure P, the internal
energy E, the specific heat Cv, and the bulk modulus B were calculated. Adjusted d is the value of the nearest-neighbor distance
which adjusts the pressure to zero using the bulk modulus. It is useful to note that ¢/k = 52.2 K and that ¢/o® = 36.6 MPa.

T (e/k) d (o) P (e/o®) E (Ne) Cv (Nk) B (e/o®) Adjusted d (o)
0.000 1.166376 0.0000 + 0.0000 -4.39867 £+ 0.00000 0.00 £ 0.00 28.19 + 0.00 1.166376 + 0.000000
0.019 1.166378 0.0004 + 0.0001 -4.39831 + 0.00003 0.03 £ 0.02 28.19 + 0.01 1.166384 = 0.000002
0.038 1.166380 0.0008 + 0.0002 -4.39790 + 0.00007 0.02 £ 0.03 28.19 + 0.02 1.166391 + 0.000003
0.057 1.166417 0.0000 + 0.0005 -4.39707 £ 0.00013 0.01 £ 0.02 28.20 + 0.02 1.166418 £ 0.000007
0.096 1.166525 0.0017 + 0.0006 -4.39351 + 0.00018 0.14 £ 0.03 28.05 + 0.05 1.166548 + 0.000009
0.134 1.166894 -0.0024 + 0.0012 -4.38491 + 0.00032 0.34 £+ 0.03 27.67 + 0.06 1.166860 + 0.000017
0.172 1.167483 0.0025 + 0.0013 -4.36689 + 0.00035 0.66 + 0.03 26.86 + 0.09 1.167518 + 0.000019
0.211 1.168495 0.0003 + 0.0016 -4.33930 + 0.00044 0.89 + 0.03 26.10 + 0.10 1.168499 + 0.000025
0.249 1.170053 0.0008 + 0.0020 -4.29689 + 0.00052 1.19 £+ 0.03 24.72 + 0.13 1.170066 + 0.000031
0.287 1.172137 0.0006 + 0.0029 -4.24160 *+ 0.00076 1.43 + 0.03 23.28 + 0.14 1.172147 £ 0.000049
0.326 1.174744 -0.0033 + 0.0026 -4.17483 + 0.00066 1.62 + 0.03 21.66 + 0.19 1.174684 + 0.000047
0.364 1.177736 -0.0004 + 0.0029 -4.09675 + 0.00074 1.82 £ 0.03 19.77 = 0.19 1.177729 + 0.000058
0.402 1.181365 -0.0013 + 0.0041 -4.00690 + 0.00099 1.94 + 0.03 18.12 £ 0.21 1.181337 + 0.000090
0.421 1.183417 0.0022 + 0.0035 -3.95642 + 0.00088 1.98 & 0.03 17.24 4+ 0.23 1.183468 + 0.000081
0.440 1.185725 -0.0029 + 0.0034 -3.90369 + 0.00088 2.06 + 0.03 16.10 + 0.24 1.185654 + 0.000085
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perature were usually needed to approximately zero the
pressure prior to the full run. All our results are shown
in Table II.

Figure 1 shows the zero-pressure nearest-neighbor dis-
tance as a function of temperature. Our EPMC distance
was adjusted to zero pressure since we have available the
volume dependence of the pressure, i.e., the bulk mod-
ulus. The error bars are too small to be shown. Some
general remarks are in order. We have stated that the
EPMC theory coincides with the SC1 theory at T' = 0,
but that the SC1 theory becomes less reliable as the tem-
perature increases, whereas the EPMC theory becomes
more reliable, reproducing the first Wigner term and be-
coming exact in the classical limit. This is evident from
the plot where at T' = 0, the EPMC and SC1 results are
identical, and as the temperature increases, the EPMC
result approaches the results of the first-order Wigner ex-
pansion, interpolating between the quantum regime and
the classical regime. This is one of the EPMC theory’s
great qualities.

The difference between the results of Liu et al.'® and
our own can only be due to the finite-order (second-
order) EPMC method and to the isotropic approxima-
tion made in this earlier work. Two features strike us.
First is that the third-order, zero-temperature nearest-
neighbor distance of Liu et al. is off by more than 5%
of the total expansion neon undergoes from 7' = 0 to
melting. Second, we notice that the second-order results
give a negative thermal expansion. Since the change in
nearest-neighbor distance between the second-order and
third-order EPMC results is small, it is reasonable to
believe that the third-order, zero-temperature nearest-
neighbor distance is well converged. Hence, the only
possible source for the large discrepancy between our
EPMC results and the third-order EPMC results of Liu
et al. is the isotropic approximation. We therefore ran an
isotropic version of our program. Results are presented
in Table III. This verified that the isotropic approxima-
tion is responsible for the error in the third-order equi-
librium distance. It is not a valid approximation. Also,
Liu et al. have concluded that the negative thermal ex-
pansion is due to the terminated expansion (17). This is
suggested by the observation that the third-order point
reduces the negative thermal expansion; more compelling
evidence can be found in Ref. 15 by comparing the first-
order curve, where the negative thermal expansion is very
large, to the second-order curve, where it has been greatly
reduced. However, the conclusion of Liu et al. is not com-
pletely correct. The isotropic approximation itself causes
a small negative thermal expansion, as can be seen by our
isotropic data. This is unexpected because it would seem
that there is no reason for the isotropy approximation to
cause a negative thermal expansion.

The second-order EPMC results approach ours at the
higher temperatures since both are exact in the classical
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FIG. 1. Nearest-neighbor distance at zero pressure versus
temperature. Solid triangles are EPMC, open squares are
second-order EPMC, the open triangle is third-order EPMC,
open circles are SC1, and crosses are first-order Wigner ex-
pansion results.

limit and in the first Wigner term. The quantum effects
in neon are so large that, even at the highest tempera-
tures we considered, there is still quite a large discrepancy
between the first-order Wigner expansion and the EPMC
results, and at lower temperatures the Wigner expansion,
as expected, breaks down.

In Fig. 2, the internal energy is plotted versus temper-
ature; the error bars are again too small to be shown.
Keeping in mind the discrepancies in the previous com-
parison, we were at first surprised to see such good agree-
ment. However, this is due to fortuitous cancellation of
errors: the error caused by neglecting third-order EPMC
corrections and the error caused by the isotropic ap-
proximation. This is verified by looking at the better-
converged third-order point and at our own isotropic
data. If Liu et al. had not assumed an isotropic crys-
tal, their second-order energy would have been far below
ours, and their third-order point would have brought it
into better agreement with ours.

Figure 3 shows the isochoric specific heat as a function
of temperature. The second-order data were taken from
Ref. 21. The cancellation of errors which led to a better-
than-expected agreement between our results for the en-
ergy and the second-order energy occurs again for the
specific heat. The error bars are not shown because the
clutter would make the plot too difficult to read, but they
are approximately the size of the graph symbols. They
are much larger than the energy’s error bars. An accu-
rate calculation of the specific heat is difficult because it

TABLE III. Isotropic EPMC data. Symbols as in Table II.

T (e/k) d (o) P (e/c®) E (Ne) Cv (Nk) B (e/o®) Adjusted d (o)
0.000 1.168057 0.0000 + 0.0000 -4.3647 + 0.0000 0.00 X 0.00 27.67 £ 0.00 1.168057 £ 0.000000
0.057 1.167945 0.0001 + 0.0004 -4.3632 + 0.0001 0.06 + 0.03 27.73 + 0.02 1.167947 + 0.000006
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FIG. 2. Internal energy at zero pressure versus tempera-
ture. Notation as in Fig. 1.

depends on the fluctuation of the energy. Reducing the
error bars by about a factor of 10, thus reducing them to
the same relative size as the energy’s error bars (ignoring
the energy’s large negative constant), would require on
the order of 1 x 10° moves (about a factor of 100 longer).

In Fig. 4, we present the first EPMC calculation of
the isothermal bulk modulus. There are no second-order
EPMC results for the bulk modulus, but we would ex-
pect to see a maximum at low temperature since the
nearest-neighbor distance had a minimum (this is true of
our isotropic data). The effect of the isotropic approxi-
mation is again to cause a large systematic error at low
temperatures. The bulk modulus is related to the fluctu-
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FIG. 3. Constant volume specific heat at zero pressure ver-
sus temperature. Notation as in Fig. 1.

Temperature (e/k)

FIG. 4. Bulk modulus at zero pressure versus temperature.
Notation as in Fig. 1.

ation of the pressure, and so it is also a difficult quantity
to calculate accurately. The error bars, again not drawn
for clarity, are approximately the size of the graph sym-
bols, although somewhat smaller at lower temperatures
and larger at higher temperatures. We also note that the
SC1 results are in serious disagreement with the EPMC
method, except at low temperature.

It is clear that there is no longer any reason to use
the finite-order EPMC method (and certainly not the
isotropic approximation). The formulation of the three-
dimensional EPMC theory presented here, even with only
a two-point Gaussian smearing, is decisively superior to
all previous formulations; their use is now obsolete. The
EPMC method is the best available alternative to the
PIMC method; it is much faster and is accurate over the
entire temperature range of the crystal. However, de-
spite the successes of this formulation of EPMC theory,
we have discovered some fundamental difficulties that ap-
pear in crystals with large zero-point energies. We plan
to discuss these problems in a subsequent paper.

We believe that this formalism is applicable to all con-
densed systems, whether crystalline, amorphous, or lig-
uid, and that it holds at all temperatures. There may be
concern that some of the frequencies defined in Eq. (3)
can be imaginary, a point that has been noted by previous
authors.!” However, the physically important quantities
are the functions «, defined in Eq. (4), and these are
always positive.
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