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Transition between Socculation and percolation of a diffusion-limited cluster-cluster
aggregation process using three-dimensional Monte Carlo simulation
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By Monte Carlo simulation we study the sol-gel transition of the diffusion-limited cluster aggregation
process. We clearly show the absence of a critical concentration for gel formation and the existence of a
well-defined gel time (t ) with a power dependence on the volume fraction ($0): t~ ~ $0 ".We point out
three main regimes of growth depending on the degree of overlap between the aggregates. In the very
early stage when the aggregates have no overlap, the observed system behavior is in very good agreement
with the predictions from the mean-field theory (Aocculation regime). Close to the gel point there is a
strong overlap between the aggregates and many critical quantities follow the same laws as those predict-
ed by percolation theory. There is a smooth crossover between the two limiting situations due to a gra-
dual interpenetration of the aggregates during the growth process. All throughout the growth process
we found that networks built up by a dynamic random collision process have the same space filling prop-
erties as networks formed by a random distribution of matter.

INTRODUCTION

Most chemical systems form gels through an aggrega-
tion process of small particles or monomers, e.g. , silica
gels made from dilute solutions of tetramethoxysilicon in
methanol, ' globular proteins gels made by heat-induced
aggregation, and polymethacrylate gels made by radical
copolymerization of methyl methacrylate (MMA) and
ethylene glycol dimethacrylate (EGDMA). Two main
conceptual frameworks exist to describe the gelation pro-
cess. The kinetic approach proposed by Smoluchowski '

gives a description of the first stages of the aggregation
process in the very dilute state, while the final stage close
to the gel point has been viewed as a connectivity transi-
tion, which can be described in terms of the percolation
model. ' At present, no theory is available to describe
the crossover between these two regimes. Computer
simulation is probably the best alternative to study the
complex intermediate regime. Using the Monte Carlo
method it is possible to mimic the increasing connectivity
from the beginning of the aggregation to the network for-
mation.

MODEL AND SIMULATION PROCEDURE

We have studied the gelation of the di6'usion-limited
cluster aggregation (DLCA) process on a finite-size cubic
lattice with site length 1.. The DLCA model has been
developed by Meakin' and Kolb, Botet, and Jullien. "

(a) The initial stage consists in randomly distributing
Xo monomers on the L, lattice sites, leading to a mono-
mer concentration Pc=No/L . Because it is a DLCA
process, the following rule must be respected at any time
during the simulation: if two monomers are near neigh-
bors, they link up irreversibly and become part of the
same cluster. The mass (m) of a cluster is defined as the
number of monomers forming the cluster. So, isolated
monomers are considered as clusters with I = 1.

(b) A Brownian motion is assumed for each cluster in
the system, and the translational difFusion coefficient of a
cluster is related to its mass as D (m) ~ m, where a is a
positive mobility exponent. Big clusters consequently
move slower than small ones. Supposing further that
D (m) is inversely proportional to the radius of the aggre-
gate it follows that +=1/df, with df the fractal dimen-
sion of the aggregate. The present work has been realized
with a=0.55, assuming that the clusters had a constant
fractal dimension close to 1.8. In fact, as we will see
below, the fractal dimension increases to 2.4—2. 5 as the
simulation progresses, so that the value of a is a bit
overestimated. But it has been shown' that small varia-
tions of a, in this range, have nearly no inhuence on the
kinetics. At each simulation step, one cluster is random-
ly selected and has a probability m to move. If it
moves, it is shifted one site in one of the six possible
directions randomly chosen. The sticking rule must be
checked and each collision must be solved. Whether it
has moved or not, the simulation time t„is incremented
by 1 and the physical time t by 1/N„where N, is the
number of clusters present in the system at that time.

(c) The simulation ends when N, =1 or when a cluster
joins two opposite sides of the system. In the latter case,
we call that event the gel point, and t represents the
physical gel time. Figure 1 shows the initial [Fig. 1(a)j
and final [Fig. 1(b)] state of a simulation on a square lat-
tice. This sequential algorithm is very convenient to
mimic simultaneity of movements when N, »1. The
physical time unit is the time needed for one monomer to
move one lattice site and the length unit is the diameter
of one monomer.

The initial stage (a) is, in fact, related to the classical
percolation theory, and it is well known that on a site-
cubic lattice, the critical concentration, P„is about
0.31.' So, when I, is large enough, any simulation start-
ed with Po) P, should give t =0, since there is already a
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on 100 trials, except for L =5 for which the number of
trials is 10000. In Fig. 2(a), we can see that the probabili-
ty of forming a gel at a constant Po increases with in-
creasing lattice size. In addition, we can notice that the
transition from P(P&,L)=0 to 1 becomes more abrupt
with increasing L. However, if P(go, L) is plotted as a
function of logm(gp) see Fig. 2(b), it is clear that the
curves obtained for different values of L are similar and
that decreasing L only leads to a shift to higher concen-
trations.

In order to quantify the size dependence, we can define
4(p, L) as the concentration needed to form a gel with
probability p on a lattice of size L. For any value of p,
this quantity converges to P,* as L increases. ' Figure 3
shows on a log-log plot the evolution of @(p,L) as a func-
tion of L for p equal to 0.1, 0.5, and 0.9. @(p,L) has a
power-law dependence on L with an exponent close to—0,66, irrespective of the value of p, which implies that
the critical concentration P,* is equal to zero.

Even though a gel is obtained at any concentration,

GEL

FIG. 1. Example of a simulation on a square lattice, I. = 100
($0=30%). (a) Initial stage. (b) Gel point.

gel after having distributed PoL monomers.
The computer simulations have been performed on an

IBM 3090 located at CIRCE (Orsay, France). Typically,
one simulation on a cubic lattice of 200 sites requires 100
megabytes of RAM and 12 h of CPU time.
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RESULTS AND DISCUSSION

Sol-gel transition and critical behavior

If we suppose that Po is slightly smaller than P„there
is no gel at t =0, but the clusters are strongly overlap-
ping. ' Moving just a few clusters can lead to the forma-
tion of the infinite network. When we decrease the initial
concentration, the time needed to form a gel increases,
but one may wonder if there is a critical concentration
(P,*) below which the dynamic DLCA process does not
lead to a gel within a finite time span. P, will be called
the dynamic critical concentration to be compared to the
static P, in the percolation theory. Because we are work-
ing on finite-size lattices, we have to extrapolate our re-
sults to L —+ ~. To this end we have monitored the quan-
tity P(go, L), which represents the probability of forming
a gel at concentration Po on a cubic lattice with size L
P(go, L) represents the number of trials leading to a gel
divided by the total number of trials. This quantity has
been evaluated as a function of $0 for different lattice
sizes. The results, shown in Fig. 2, have been calculated
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FIG. 2. (a) Lin-lin representation of the evolution of the gela-
tion probability, P(PO, L) as a function of $0 for different lattice
sizes L. (b) The same data in a lin-log representation.
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From the simulations, many physical quantities
characterizing the kinetic aspect of the cluster growth
and the size distribution of the clusters can be derived.
Following Stauffer, the mass distribution of the clusters
N(m) is

N(m) ~ m 'f (m/m*),

where r is the polydispersity exponent and f (x) is a
cutoff function at mass m* decreasing faster than any
power law. Assuming a stretched exponential cutoff
function, Eq. (1) becomes

N(m)= Am 'exp[ —(m/m')~] .

By definition,

No= f mN(m)dm
FIG. 3. Log-log representation of the evolution of N(p, I.) as

a function of I. for different values of p. Solid lines represent
linear least-squares fits and have a slope close to —0.66.

provided L is suSciently large, the gel time becomes very
long at low concentrations, and it is interesting to study
t as a function of Po. Figure 4 shows the gel time distri-
bution function for 100 trials at go=0. 1 for various lat-
tice sizes. The average gel time is not significantly
different from one lattice size to another but the distribu-
tion narrows with increasing L. The sol-gel transition of
the DLCA process occurs at a well-defined time if L ~ ~
or after averaging many simulations at finite L. Figure 5
shows the averaged gel time for L =100, as a function of
the concentration, in the range 0.04&Pc&/, . Initial
concentrations below 0.04 require large lattice sizes for
N(JI, I.) to remain close to one which entails very long
computing times and large memory. As expected, t —+0
as Po~g, . Moreover, t scales as Po

~ for Po & 0. 1.
Such a strong concentration dependence on the gel time
is not predicted by any classical theory but has already
been observed for different experimental systems. '

III 2 i= A f, x' '~~ 'exp( —x)dxm*

with x = ( m /m * )~. If r & 2,

@No ~ Ilc7 2

I [(2—r)/Pj
If 2«&2+P,

(4a)

The weight average aggregation number (m ) of the clus-
ters is given by the normalized second moment of the
cluster distribution:

m = g mN(m) g mN(m).
m =1 m=1

A =No(r —2) .

We can note that Eq. (4a) is a function of m*, while Eq.
(4b) is independent of m *.

The characteristic radius of an aggregate with mass m
1S

1/8
R (m) Gem
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FIG. 4. Gel time distribution for different
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FIG. 6. Evolution of the polydispersity index as a function of
time t at various concentrations with L =200 except at $0= 8%,
where L =190.

FIG. 5. Log-log representation of the evolution of the mean
gel time as a function of Po, calculated using 100 trials with
L = 100. The solid line represents a linear fit for $0 ~ 10% with
slope —2.85+0.03. The dotted line indicates the static critical
concentration, P, =31.16%.

The number average aggregation number m„and the po-
lydispersity index (K) are given as

and

m„=g mN(m) g N(m)
m=1 m=1

E=
mn

(8)

The sol-gel transition is mainly characterized by the
divergence of the weight average aggregation number I
of the clusters. The number average aggregation number
m„being finite at the gel point, the polydispersity index
IC=m /m„necessarily diverges. Figure 6 shows the
evolution of K as a function of time for difFerent concen-
trations. We have used L =200 for all the concentra-
tions, except for go=8%, where L =190. For the small-
est concentrations 0.5 and 2%, the simulation cannot be
run to the gel point because P(go, L) (1. We can notice
that for tI)o=0.5%, after an initial aggregation period
needed to build up a statistical distribution, the po-
lydispersity index K becomes constant and equal to 2, as
predicted by the mean-field theory. ' In this so-called
Aocculation regime, the aggregates have a fractal dimen-
sion d& close to 1.8 and N(m) is given by Eq. (2) with
r=0 and an exponential cutoff function. ' For Pc=2%,
the polydispersity index stays a relatively short time in
the fiocculation regime (X =2) and then diverges. For
the highest concentrations, K does not stabilize, but
diverges directly. The mean-field theory can only predict
the system behavior in the limit where collisions between

clusters are not correlated (statistically independent).
This means that the average distance between clusters
r(t) must be very large compared to the average size of
clusters R (t). This condition is always achieved when
Po —+0, but when we deal with a finite nonzero concentra-
tion there is a characteristic time above which R (t)
equals r(t) due to the fractal nature of the DLCA aggre-
gates. ' The mean-field approach is unable to describe
the sol-gel transition, since it is not valid in a "congested"
system. When R (t) approaches r(t), the space filling ap-
pears to be an important parameter, which can be used to
characterize the whole aggregation process.

Nc
V~= U V;,

i=1
C g oo

V,„=gV;= i g R (m)N(m),
i=1 ~ m=1

(9)

(10)

where R is the radius of gyration of an aggregate, and 8
is a proportionality constant. From the simulation we
find B = 14. Using Eq. (10) it is possible to calculate V,

„

for real systems and thus to apply the simulation results
reported here. Replacing the sum in Eq. (10) by an in-
tegral, we obtain

e3!df—v+1 oo (3/df x+1)/p —1

curn g —p
X

Xexp( —x)dx .

In the Aocculation regime of the DLCA process, using

Space filling

Let V, be the volume fraction occupied by the ith clus-
ter. V; can be defined as the volume of the smallest rect-
angular box containing the cluster divided by I. . In or-
der to monitor the space filling all along the simulation,
we can calculate two different volume fractions, the
effective ( V,s ) and the cumulative ( V,„),defined by
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r =0, 2 ~ No /m ' and m * ~ m we have

3/d~ —1

Vcum "4omw '
In the vicinity of the gel point for a percolation process,
using the hyperscaling law 3/d& —r+ 1=0, we get

1.0 —--

I I I I I F I
I

8%
5%
4% V'

V
V

V

V,„~ln(m *)—— (13)

where y is the Euler constant (y =0.577). A schematic
representation of V,ff and V,

„

for the two-dimensional
case is shown in Fig. 7.

We can also calculate the distribution function of space
occupation, Q(n), defined as the volume fraction under
the inAuence of exactly n clusters. With this formalism,
we have
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FIG. 8. Evolution of V,z as a function of time for di6'erent

$0. Arrows indicate the gel point.

with

V,„=g n Q(n)
n=1

g Q(n)=1 .
n=0

The void volume fraction of the system is simply equal to
1 —V,Ir or Q(0). V,s rePresents the volume fraction un-

der the inAuence of at least one cluster. When there is no
overlap between clusters, V,ff= V,„,which is the case
during the first stage of the process; otherwise
V ff K V 1I At the gel point, V,ff = 1, as we can see in

Fig. 8, where the evolution of V,ff is plotted as a function
of time for different $0.

The polydispersity index (IC) is plotted as a function of
(1 —V,s)/V, s in Fig. 9 on a lin-log scale. This represen-
tation shows well the limiting behavior of both V,ff~l
and V,ff~O. Apart from the initial aggregation stage, all

data fall on the same master curve, showing the universal
behavior of the aggregation process independent of Po 14 — 0

I I I I I III I I I I I I III I I I I I IIII I I I I I I III 1 I I I I II

and revealing the pertinence of the parameter V,ff to
monitor the advancement of the reaction. We can also
notice in Fig. 9 that the Aocculation regime is only valid
for V,ff(O. 1.

The universal behavior of the aggregation process does
not only appear through the evolution of the polydisper-
sity index, but also through the way the space is filled; see
Fig. 10. In Fig. 10(a), we see that all the couples
( V,s, V,„)fall on the same master curve, independent of

The initial points ( V,&, V,„)at t =0 fall on the same
curve and result from a static percolation process. Addi-
tional static percolation data were obtained in the range
0.01 &Po &P, by averaging results of 100 trials using a
lattice of size I. =150, and are represented by the filled
symbols. From Fig. 10(b), it is clear that all along the
aggregation, the space filling is the same whether it is a
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corrective term aL '~' used in Fig. 13(b) takes these
eff'ects into account. ' ' v (close to 0.88) is the exponent
describing the divergence of the maximum cluster size in
the neighborhood of the gel point and a is a constant.
We have finally (1—Vdr) ~ ez, which gives m ~ E

in very good agreement with the value —1.80 predicted
by the percolation theory. In addition, in the percolation
theory, we have m ~e ~ (y=1.80) and m" ~e
(cr =0.45), which leads to

+0.81
W (16)

Equation (16) and the experimental relation (1—V,a)
i ~o 75 for m && 1 (Fig. 12) leads to

(1—V, ) m'

Using this result in Eq. (13), we find V,„o-—ln(1 —V,s )

for large m, which is confirmed by the simulation re-
sults shown in Fig. 10(b).

If we assume that the m„required to fill up a certain
space scales with the initial concentration, we can try to
renormalize the data by the parameter Po. Figure 14
shows that the best master curve is obtained for 6 close to
1.3, and if we correct the percolation data for finite-
scaling effects, a near perfect superimposition is obtained
for all the data, except at the very beginning of each
DLCA simulation. The relationship m Po=Cte means
that in such a stochastic process, there exists an infinite
number of couples (m, Po) which give the same space
filling. In fact, for V,~ (0.1, we are in the Aocculation re-
gime, and Eq. (12) implies 5=df/(3 —df). The experi-
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g (r) ~ r exp[ —(rig)r] . (19)
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FIG. 14. Double logarithmic representation of ms Po' as a
function of (1—V,s. )/V, s at various values of Po.

mental value of 6-=1.3 leads to a df value closed to 1.70
which is in good agreement with the experimental values
reported in the literature for the DLCA process. ' '
However, it is noticeable that this scaling relation is still
valid outside the fiocculation regime ( V,s )0. 1), where
both df and r vary with V,s (see below).

Cluster distribution and fractal structure
of the clusters

The crossover observed for this aggregation process
from the Aocculation regime to the so-called percolation
regime implies that strong modifications of both the clus-
ter distribution and fractal dimension occur during the
aggregation process. In the Aocculation regime, the frac-
tal dimension is close to 1.7 and according to percolation
theory df =2.5 at the gel point. The exponent ~ charac-
terizing the mass distribution is equal to zero in the Aoc-
culation regime and 2.2 at the gel point according to per-
colation theory.

Pair correlation function We have d.etermined the
pair-correlation function [g(r)] as a function of the dis-
tance r between monomers of the largest aggregate of the
system grown close to the gel point on a lattice with size
200 and with monomer concentration 7.4%%uo. The aggre-
gate contained 177293 monomers and 1X10 out of
1.57X10' possible pairs were randomly selected to cal-
culate g(r). g (r) is normalized to give 4' J r g(r)dr =m
so that

We have chosen a stretched exponential to describe the
cutoff at r )g. A nonlinear least-squares fit to Eq. (19)
fixing df =2.5 gave /=122+1 and y=2. 18+0.05. The
result is shown in Fig. 15, and it is clear that for r & 20 we
obtain an excellent agreement with Eq. (19). At smaller r
deviations are expected due to excluded volume effects. '

The value of y is maybe slightly overestimated due to the
finite lattice size (419 monomers are situated at the edge
of the lattice), but it is larger than unity, which implies
that g (r) has a sharper cutoff than a simple exponential.
A value close to 2 is also found for aggregates obtained in
DLCA and reaction-limited cluster aggregation simula-
tion. ' ' Using Eqs. (18) and (19), the following relation
can be derived:

I [(df+2)/y]
R

2r(dfy) )
(20)

010

10

10
tg

10

Using df =2.5, y=2. 18, and /=122, we find R =90.5.
These results show that the short-range excluded volume
effects have little infiuence on the value of g and R . As
the aggregate we have studied was the largest in the en-
semble with m & m *, one might expect it to have the
structure of a lattice animal with df =2. ' However,
there is no reason why an aggregate should stay among
the very small population of lattice animals during the
whole period of its growth. In fact, the time spent in the
regime where m & m * is relatively short and the inhuence
on its structure is negligible.

Size distribution. We have studied the aggregation
number distribution at four different stages of the simula-
tion on a lattice with I. =200 and monomer concentra-
tion 7.4%%uo. Some characteristics of the four distributions
are given in Table I. The aggregation number distribu-

R = f 4nr g(r)dr .
1

(18)
10

10 100

Using m =177293, we find R =89.17, which agrees
with the value 89.18 obtained by direct calculation using
Rs =(1/m)g, . Ir,. with r; the distance between mono-
mer i and the center of mass of the aggregate. For fractal
objects at distances where short-range excluded volume
effects are no longer felt, g (r) can be written as

FIG. 15. Double logarithmic representation of the pair-
correlation function g (,r) as a function of r for the largest cluster
of the system close to the gel point (L =200, go=7.4%). The
experimental data have been smoothed using 50 classes between
r =1 and 287 of equal size on the logarithmic scale. The solid
line corresponds to a fit using Eq. (18).
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TABLE I. Characteristics of the aggregate distribution at
four stages of the simulation.

1

2
3
4

0.2998
0.7945
0.9523
0.9945

~curn

0.3016
1.117
1.879
3.862

mn

6.2
32
74

330

mw

13
110
370

7600

24
250
890

22 000

250
500

1200

tions are plotted in Fig. 16. From Eq. (1) it follows that
in a log-log representation the slope for I« m * is equal
to —~. In all cases we find that the initial slope is close to
zero, in agreement with DLCA. Closer to the gel point
the slope approaches 2.2 for large m, as expected from
percolation theory. The aggregation number distribu-
tions of these two limiting cases are shown in Fig. 17. In
the early stage of the aggregation the aggregates do not
interpenetrate and the distribution is close to that expect-
ed for DLCA. After this stage the largest aggregates will

grow by a percolation process, while the smallest aggre-
gates continue to grow by a DLCA process. The transi-
tion between the two regimes is expected to occur at m +

where

g V(m)N(m)=1
i=1

with V(m) the volume fraction of a cluster with aggrega-
tion number m. For m «m+ the distribution will be
that of DLCA and for m &)m+ it will be that of per-
colating clusters. Values of m+ are given in Table I, ex-
cept for the distribution at the earliest stage, where

V,„&1.With increasing aggregation the number of

10

10 10 10 10 104

FIG. 17. Theoretical cluster distribution in the Aocculation
regime of a DLCA process and for percolation close the gel
point. Both distributions have the same cutoff mass m =1000.

monomers decreases so that larger clusters are needed to
fill up the space, which explains why I+ increases. It is
clear that the transition zone is large, and it is difficult to
fulfill the conditions m+ «m «m* in Monte Carlo
simulations. The cutoff at large m is well described by
exp( —m /m " )~ with P close to unity and m * close to the
z-average aggregation number (m, ) given in Table I. We
cannot distinguish between an exponential cutoff, as is ex-
pected for DLCA and the cutoff function found for per-
colating clusters.

In Fig. 18 the aggregation number is plotted as a func-
tion of the radius of gyration. Within the scatter of the
data the relation between I and R is the same for the

10
10 I I I I I I I 1

10
0

10

10

10

10

10

101

~l
e/

Veff

i~ 0.28 98
0.7945
0.9523
0.9995

10

10
10' 10' 10 10 104 10'

10
10 100

FIG. 16. Evolution of cluster size distribution for various ag-
gregation extents for a DLCA simulation (L =200, $0=7.4%).
The experimental data have been smoothed using 16 classes be-
tween m =1 and 5X10 of equal size on the logarithmic scale.
The smoothing used is mass conservative [gmN(m)=No].
The straight line indicates the limiting slope, —2.2, expected
from percolation theory.

FIG. 18. Double logarithmic representation of the mass m of
the clusters as a function of their radius of gyration at the gel
point with go=7.4% and L =200. The experimental data have
been smoothed using 16 classes between m = 1 and m = 5 X 10
of equal size on the logarithmic scale. The solid line with slope
2.5 represents the dependence expected from percolation
theory.
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different stages of the growth. In a log-log representation
the slope corresponds to df. Again we observe a transi-
tion from a dependence expected for DLCA to that ex-
pected for percolation.

One might expect a single aggregate to show a similar
double structure, i.e., a smaller fractal dimension at short
length scales corresponding to DLCA aggregates and a
larger df at longer distances. However, the transition be-
tween the two structures depends on the history of the
aggregate. If the aggregate reaches the percolation re-
gime early in the aggregation process, the transition will
be situated at small r. If it reaches the percolation re-
gime, later the transition will occur at larger distances.
The structure factor in the preceding section was calcu-
lated for the largest aggregate in the ensemble so that the
transition is expected to have occurred at an early stage.
This explains why the aggregate has a structure very
close to that of percolating cluster even at short dis-
tances.

CONCLUSION

The main features pointed out by this study are the fol-
lowing. (1) There exists no critical concentration for gel
formation. (2) The sol-gel transition is quite well defined
in this dynamic DLCA process and occurs at a well-
defined time depending only on the concentration. (3)
The space filling monitored by the effective volume frac-
tion V,z, occupied by clusters, appears as the relevant pa-

rameter governing the system behavior. (4) Three re-
gimes can be pointed out. (i) When V,ir (0.1, the kinetic
aggregation is described by mean-field theory giving a po-
lydispersity index of the clusters E =2 and a fractal di-
mension close to 1.8. (ii) For V,ir) 0.9, many critical
quantities (weight average aggregation number, cumula-
tive volume fraction, polydispersity index, etc.) follow the
same scaling laws as those predicted by percolation
theory in the vicinity of the gelation threshold. In addi-
tion, above a certain length scale, the fractal dimension of
the clusters is close to the predicted value of the percola-
tion theory. Also, the exponent governing the cluster dis-
tribution tends to 2.2 as predicted by percolation theory
for the larger clusters in the vicinity of the gel point. (iii)
The intermediate regime 0. 1 & V,& &0.9 is very large and
corresponds to a system of partially interpenetrating clus-
ters.

(5) Finally, whatever the initial concentration, above a
certain length scale depending on Po and m„,the space
filling mechanism involved in this dynamic growth is the
same as the one generated by a static site percolation.
Below this characterization length scale, the aggregates
grow in the Aocculation regime. Networks build up by a
dynamic random collision process have the same space
filling properties as networks formed by a random distri-
bution of matter. The underlying reason for this univer-
sal manner to fill the space might be the intrinsic stochas-
tic nature of both processes.
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