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Lifshitz tail in a model of interacting particles
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The density of states of noninteracting disordered particle systems shows a characteristic behavior
deep in the band, known as the Lifshitz tail. In the present work the Lifshitz problem is reconsidered in

a model one-dimensional disordered system with "minimal" interactions. The interaction has a form
which allows the calculations to be performed asymptotically exactly in the tail, using nonperturbative
techniques. Correlation between the particles leads to a considerable decrease of the density of states.
These findings indicate that interactions may favor delocalization, a result obtained earlier, using phe-
nomenological approaches, perturbative analysis, and the renormalization-group method.

Disorder may drastically modify the behavior of a
physical system. A celebrated example of this effect is
the localization transition, ' which takes place when the
concentration of impurities in a conductor reaches a criti-
cal value. Originally localization was studied in nonin-
teracting electronic systems. Using a scaling theory it has
been established that whenever a transition takes place at
a finite impurity concentration (i.e. in dimensions higher
than two) it is of second order; at zero temperature the
static conductivity o. vanishes according to a power law.
Shortly after it was pointed out that interaction between
electrons may inhuence localization. In the presence of
interactions, however, the theory became so complicated,
that despite great efforts, it is still not fully understood. '

Meanwhile, the study of transport properties in many
other systems revealed that localization is a ubiquitous
phenomenon; it may manifest itself whenever a wave
propagates in a random medium. Thus, in the presence
of impurities sound wave attenuation is anomalous, light
propagation is strongly modified and bosonic systems in
general behave in many respect similarly to their elec-
tronic counterparts.

The difhculties associated with interacting disordered
particle systems stem from the fact that randomness re-
normalizes the interaction, typically increasing its
strength. As a consequence, a naive perturbative ap-
proach in terms of the interaction is not possible. To deal
with this problem one either attempts to sum up infinite
perturbation series, or resorts to nonperturbative
methods. The former approach was used by Finkelstein
and later extended by Belitz and Kirkpatrick, ' who con-
structed the renormalization-group equations for both
the disorder parameter and the relevant interaction con-
stants. The starting point in the renormalization-group
method is the pure, noninteracting system, and the tran-
sition is approached from the conducting side. To get
more insight on the effect of interactions on localization,
the renormalization-group equations have been explicitly
studied in one dimension by Giamarchi and Schultz,
who showed, that interactions may lead to delocalization.
In electronic systems an insulator-perfect metal (o =
infinity) transition takes place at zero temperature, and

the delocalized phase is characterized by superconduct-
ing fluctuations. In bosonic systems in the analogous
delocalized state the superAuid correlation functions ex-
hibit power-law behavior. Since in the absence of interac-
tions, in one dimension all one-particle states, both elec-
tronic and bosonic are localized for arbitrarily weak dis-
order, an approach based on perturbation theory around
the extended states may be questionable, even if the re-
sulting series is summed to infinity.

The present work was motivated by the fact that the
problem of interacting particles in the presence of disor-
der is still not fully resolved. ' Here we investigate a
disordered many-body model in one dimension, with
"minimal interactions" (see below). We concentrate on
the Lifshitz problem by studying the one-particle density
of states for large negative energies, E «0 (in the tail of
the band) using a nonperturbative, instanton approach. '

Applying this technique in the absence of interactions be-
tween particles the asymptotic behavior of the density of
states was obtained by Cardy' (and later reproduced by
others") in the form of a stretched exponential

no(E) ~ exp —const

Here g characterizes the disorder (see below). The above
result is derived by evaluating the averaged one-particle
Green's function

G(x,x';E)=(x ~(Ho E) '~x') with—E~E+iO . (2)

In (2) (x
~

and ~x') are one-particle states and the Hamil-
tonian is defined as Ho = —V /2+ V(x) (using units
h/2vr=m = I). The bar denotes averaging over the dis-
tribution of the static random potential V(x), which is
assumed to be Gaussian,

( V(x) V(x') ) =g5(x —x') .

For negative energies the matrix element in (2) can be
represented by a functional integral over some scalar
(Bose) field y(x ), as

0163-1829/95/51(17)/11339(5)/$06. 00 51 11 339 1995 The American Physical Society



11 340 G. FORGACS AND V. KOTOV

G (x,x';E)=—fDy[p(x)q&(x') )
1

X exp I
—f dy [y(y)( ~

E
~ +Ho )p(y) ] ] .

(4)
Here Z is the "partition function, " defined as
Z=exp(SQ), with So being the action given by the ex-
ponent in (4). The above representation for the Green's
function allows the averaging to be performed con-
veniently using the replica trick. ' The density of states
is obtained by no(E) =(1/m. )lmG(x, x;E), leading to (1)
(for details, see Refs. 10). The same result can be ob-

tained without the replica trick, using supersymmetric
field theory.

In order to study the e6'ect of interactions, we intro-
duce an additional term in the action, by
S =So—

A, Idy ip (y), with i(. &0. The following remarks

are due in connection with the model defined by S.
The resulting action resembles that of a y theory with

a repulsive contact interaction between the particles de-
scribed by the field. In order to clarify the meaning of S,
let us recall the proper definition of a Green's function in
a zero-temperature field theory defined by the Hamiltoni-
an Ho (Ref. 13)

G(x,x';E)= ' fD—y[ f dt e' 'P( x t)P( x', 0)]exp f dt f dy P(y;t) i——Ho P(y;t)

(6)

[Here we explicitly used that G(x,x', t, t'}=G(x,x', t —t').] In (5) the Green's function has been written for a real field.
Expressions (4) and (5) are equivalent. This is a consequence of the quadratic nature of the exponent in (5). After
Fourier transformation, the action becomes diagonal in the energy variable and with the notation q&(x) =P(x;E),' (5)
reduces to (4), irrespective of the properties of the random potential in the Hamiltonian. When a ip (y ) or P"(y; t ) term
is added, respectively, to the exponents in (4) and (5), it mixes different energies in the latter, whereas it does not lead to
such an effect in the former. Expression (4), with the action S now corresponds to forcing the exponent in (5) [with
P"(y; t ) ] to a "diagonal form" in terms of the energy variable and then again using the notation p(x) =P(x; E). Our ad-
ditional term in the action S does correspond to a (repulsive) interaction, but in terms of standard field theory its precise
nature is not evident.

Our motivation to introduce the y term in (4) is that it represents the simplest complication of the noninteracting
theory, which still allows an exact evaluation of the density of states in the limit of large negative energies. In this sense
it describes a "minimal interaction. "

To proceed, we replicate the field and perform the average over the distribution of the random potential. After trivial
rescalings of the original variables, the averaged Green's function can be represented as

' n/2+1
IEI n

1
n

f rtD~, —rI~. ( )~.( ') ~ pS[~]
pg~o g A,

with

~E~3/2 n d2f d3 ' g f O' 0' '2'( g) 'P
I' =1 2(g —

A, )

2

Vj
( g)Vi Vi

j=1

Here n is the replica index and y; (i = 1,2, . . . , n } are now
the components of a vector in replica space. In arriving
at the above action, we assumed that A, (g, and our sub-
sequent analysis is valid only in this case. The functional
integral in (6) is well defined if g 0, whereas in the
present case, with g )0, the best we can hope for is an
analytic continuation from Reg (0 to Reg )0 (for more
details on the analytic continuation, see Refs. 15 and 16).
With A, =O, the action in (7) has rotational symmetry in
replica space. For any finite A, this symmetry is broken.
The two fourth-order terms compete and this may lead to
interesting consequences even if k (g.

As mentioned, we use the instanton technique to calcu-
late the averaged Green's function. Therefore, we consid-
er the saddle point of (7). This leads to the following
"classical equation of motion"

d1— (8)
dx y(x) =+3/2

cosh(x —xo)

Apart from the trivial solution y, =0, this equation has
spacially uniform solutions. The kth-type uniform solu-
tion (k =1,2, . . . , n ) is a replica vector, which has k
nonzero components, each being equal to
N(k)=+[(kg —

A, )/(g —1,)] ' . The multiplicity of the
kth-type solution is (k ) [any combination of the k
nonzero components is a solution to Eq. (8)]. These solu-
tions correspond to n-component vectors which point to
the vertices of a n-dimensional hypercube in replica
space, rejecting the cubic symmetry of the model. Cal-
culation of the Gaussian fluctuations around the trivial
and uniform solutions, leads to a vanishing imaginary
part of the Green's function. This results in zero contri-
bution to the density of states.

Equation (8) possesses also nonuniform kth-type in-
stanton solutions, with nonzero components y(x)N(k ),
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cl, (1) cI, (1)
0'2

yN(1)
0

cI, ( 1 ) (10)

yN(1)

Here xo is the center of the instanton, which due to the
translational symmetry of the action S is arbitrary. The
solutions with only k = 1,

yN(1)

were used by Bulajevskii, Panyakov, and Sadovski' to
study the properties of dirty superconductors.

The "classical" action on these instanton solutions is
finite, and can easily be evaluated. For each of the (k)
kth-type instanton solutions this results in
Sk'= 4~E—

~
/3(g —A. /k). Next, we evaluate the con-

tribution of Gaussian fluctuations. Writing
+g; for the kth-type solution, with +cI (k)

being the instanton solutions discussed above, the corre-
sponding action can be expressed as Sk =Sk'—
[~E~ /2(g —A, )]5Sk, 5Sk = jdxg; q(;"'(x) M'.".'g'")(x)
Here M' ' is a n Xn symmetric matrix in replica space.
After diagonalization with a similarity transformation
M'"' becomes (we use the same notation for the diagonal
form)

o2

o k —&. o 2

o 2

n —k'

3 0 0 0

o3

o 3

0 0 0 3

Here M„M(2"', and M3"' in the 1X1, (k —1)X(k —1)
and (n —k)X(n —k) blocks, respectively, are operators
given by

d2
M1= 1 — —3y2

dx

(k) d kg —3X
X2

(12a)

(12b)

d2

dx
kg ~2

kg —A,
(12c)

Some remarks on the eigenvalues of these operators can
be made without any calculation. Due to the continuous
translational symmetry of S, which is broken by the in-
stanton solutions, Goldstone's theorem' requires that
one of these operators have a zero eigenvalue. [In the
A, =0 case, S is 0 ( n ) symmetric in replica space. The
corresponding instanton solutions reduce this symmetry
to 0 (n —1), and there must exist additional (n —1) zero
eigenvalues. ] Indeed, the explicit calculation of the spec-
tra of the operators in (12) reveals' that M, possesses a
zero eigenvalue, a single negative eigenvalue ( = —3 ) and
a continuous spectrum of positive eigenvalues. The
operator M2 ' has only positive eigenvalues, irrespective
of the allowed values of k, g, and A, . The structure of the

G (
~ E ) = ~E ~D

—)/2h y n [D(k) ](1—k)/2
n

g

X [D(k) ](k —n)/2exp ——~E ~

3/~
3 3 kg —A,

(.

(13)

spectrum of M3 ' depends crucially on the parameters.
For A, =o, M~z ' is independent of k, has a continuous pos-
itive spectrum, a single zero mode (reflecting the rota-
tional symmetry of the action) and no discrete negative
modes. When A,WO, the zero mode disappears, and
discrete negative modes appear, whose number depends
on the values of k, g, and A, .

The zero and negative modes pose a real problem when
the Gaussian fluctuations are evaluated, and must be
dealt with separately. ' ' The apparent divergence
caused by the zero mode can be eliminated, when transla-
tional symmetry is restored by summing the contribution
of instantons with different xo (for details, see the discus-
sion in Ref. 12). The presence of the negative eigenvalues
requires the analytic continuation of the corresponding
Gaussian integrals, ' ' which may result in imaginary
contributions to the Green's function. With all these
difhculties out of the way, the expression for the Green's
function can be written as
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Here D„D2 ', and D3"' denote, respectively, the deter-
minants of MI, M2"', and M~&"} (without zero modes).

In the A, =O case, D(i"}=D3"' =D—2 in Eq. (13), indepen-
dently of k, and the limit n ~0 can easily be performed
by summing the binomial coeScients. This sum leads to
a factor ln2. In the noninteracting theory, defined by the
action So, the final result for the Green's function is the
same as (13) (with A, =O), except that ln2 is replaced by 1.
This discrepancy is the consequence of the breaking of
the O(n) replica symmetry in the model with interaction.
For finite A, the vectors in replica space corresponding to
the saddle-point solutions point towards the vertices of
the unit n-dimensional cube. If A, is not too small (see
below), these solutions represent a good approximation to
the functional integral. However, when A, is small, other
contributions, not represented by (13) become equally im-
portant. In the noninteracting model, instead of the sum
in (13) over discrete directions of the saddle-point replica
vectors, one integrates over all directions. ' This leads to
the factor 1.

For general A, , the evaluation of the sum in (13) in the
n —+0 limit is highly nontrivial. In order to proceed, we
employ the result that for any power series of the form

n

g (k )a ", with arbitrary a one has the identity'
k=1

n 0D
( 1)k+1

lim —g k
a"= g a".

Onk i . - k ) k
(14)

[The factors in (13) which are not powers of k, can be for-
mally written as power series in A, /k. One can then show
that an identity similar to (14) holds for each term of this
series. ] Next, we make use of the fact that ~E~ is large,
consequently, the major contribution in (13) comes from
large values of k. In the large k limit M2 ' and M3 ' be-
come identical and assume their interaction free form,
which is also independent of k [see Eqs. (12b) and (12c)].
The expression for the Green's function takes the form
(with D2 defined above)

G(x,x;E)= QDz/D,

4iEi'"
X exp

k 3(g —
A, /k )

(15)

By replacing the summation with integration, one can ap-
ply again the saddle-point method [with separating the
even and odd k terms in (15)]. The resulting integrand
has a stationary point at k*= ~E~ A, /3g . Since, for

consistency, the value of k* must be large, it implies that
our discussion is valid only for A, ))g /~E

~
. In the op-

posite limit the Green's function can be calculated using
a perturbation expansion in terms of A, . Finally, evaluat-
ing (15) at the saddle point leads to

4 EI'"
G (x,x;E) o-

2 QD2/D, exp (16)

n g'
X'[E

(17)

which is the main result of this work. Expression (17) is
valid for g )A. ))g /~ E

~

In conclusion, we studied the problem of the Lifshitz
tail in a disordered model system of bosons with a
"minimal" repulsive interaction. The interaction term
was obtained by retaining in the action of the standard
field-theoretic formulation of the general problem only a
subset of Fourier components of the bosonic fields in the
energy variable. As a consequence, the application of the
nonperturbative instanton method allows an asymptoti-
cally exact calculation of the one-particle Green's func-
tion. The result for the density of states, when compared
with the corresponding expression for the free case [see
(17)], shows that the interaction (at least within the
present model) tends to diminish the Lifshitz tail. This
conclusion is reminiscent to that of Efros and Shklovsky,
who argued that in the localized phase of disordered elec-
tronic systems repulsive interactions lead to the vanishing
of the density of states at the Fermi level, i.e., to the so-
called Coulomb gap. ' An additional interesting feature
of (17) is that for a given value of A, the relative magni-
tude of the interacting density of states decreases with di-
minishing disorder.

The authors are thankful to Th.M. Nieuwenhuizen for
his suggestions on the replica trick, in particular for
pointing out relation (14). They also benefited from use-
ful conversations with L.S. Schulman.

As mentioned earlier, MI has a single discrete negative
eigenvalue (D, (0), which leads to a purely imaginary
expression for the Green's function as given by (16). (The
ratio of the determinants Dz/D

&
can be evaluated explic-

itly, leading to —3.) Clearly, the true Green's function
does have a nonvanishing real part, which, however, can-
not be determined with the present method.

Comparing the density of states no and n, respectively,
for the interaction free case [expression (1)] and in the
presence of interaction [derived from (16)], in the limit of
large negative energies, we obtain
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