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Incompressible quantum Hall states in Josephson-junction arrays
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We have shown that the charges in two-dimensional arrays of small 3osephson junctions form
Laughlin incompressible states in a magnetic field, so that the charge density is Gxed in 6nite
intervals of external parameters. Thus the system resembles a two-dimensional electron gas in the
quantum Hall regime. In contrast to the latter one, the system is shown to be equivalent to a Bose
gas with a weak contact repulsive interaction. We present numerical results for the main plateau in
the charge density and also a toy model that enables us to develop the picture of all plateaus.

A two-dimensional Josephson junction array consists of
a set of small superconducting islands connected by tun-
nel junctions. Such systems are now a subject of intensive
theoreticali s and experimental4 investigations (see Ref.
5 for review). Their properties are primarily governed
by macroscopic quantum efFects. Indeed, the state of
the array may be completely described either in terms of
phase difFerences between the islands or in terms of their
quantum conjugated variables, the numbers of Cooper
pairs on each island. The latter description corresponds
to a picture of discrete charges hoppj. ng coherently &om
island to island and interacting with one another.

This picture resembles the microscopic description of
a two-dimensional gas of interacting electrons which ex-
hibits two remarkable phenomena: the integer and &ac-
tional quantum Hall effects (FICHE).s It was shown7 that
the fractional quantum Hall efFect has its origin in in-
compressible states. In these states the particle density
is fixed in a finite range of chemical potential.

A question of interest for us is how deep the similar-
ity between these two physical systems is. We will show
that under certain conditions the extra Cooper pairs (or
simply charges) on the islands of the array form a low
density phase. In this phase the Coulomb interaction be-
tween the charges is strong, but its range is short in com-
parison with the average interparticle distance. Hence,
at low energies the charges avoid one another within the
interaction range, which efFectively reduces the otherwise
strong interaction. For this reason we establish that the
system in a low density phase is equivalent to a Bose gas
with weak contact repulsion. This equivalence allows us
to show explicitly that the charges form Laughlin-like in-
compressible states in a magnetic field. As a result, the
charge density in the array changes stepwise as a function
of external parameters. Some results of this work have
been published in a short version.

Let us start with a quantitative description of the sys-
tem. A regular infinite Josephson array (Fig. 1) is char-
acterized by the Josephson energy E~ = hI /2e of the
junctions, the capacitance C of the junctions, and the
capacitance Co of the islands to the ground and to the

gate electrode. The Hamiltonian of the system ' can be
written in the charge representation,

H = ) (~n; + 1, n~ —1)(n;,.ns~e' '& + H.c.)
(') '

) C,;, 'n, n, —2eV) n, ,

where n, is the number of Cooper pairs on the island
i. The first term describes josephson tunneling and
may look more familiar in the phase representation:

Egal, -l cos(P;i —A;s) where the sum is taken over the
neighboring islands. A transverse magnetic Geld is de-
scribed by the vector potential A;s = (2e/hc)A r,z (we
measure distances in units of lattice spacing a). The
Coulomb interaction is determined by the inverse capac-
itance matrix C, . By changing the gate voltage V one
can alter the concentration of charges in the array.

The properties of the array depend crucially on the
relation between the 3osephson energy Ep and charg-
ing energy Ec = (2e) /max(C, Co). We concentrate
on the limit E~ )) EJ when the charge description is
more appropriate and no stable vortices can occur. To
be concrete, we assume that C )) Co. For EJ ~ 0 the
state of the system is determined by the electrostatics.
The charges enter the array if the voltage V exceeds the
Coulomb blockade threshold Vq

——eCoo . It is crucial
that the repulsive interaction between the charges in the

FIG. 1. The layout of a two-dimensional Josephson junc-
tion array.

0163-1829/95/51(2)/1133(4)/$06. 00 51 1133 1995 The American Physical Society



1134 A. A. ODINTSOV AND YU. V. NAZAROV

array has a finite range A = gC/Cp &) 1. For this rea-
son, the concentration n of charges jumps sharply &om
zero to values of the order of A slightly above Vz.

This does not happen for small but finite EJ, since
the charges gain kinetic energy which increases with
increasing density. As a result, the concentration in-
creases linearly with gate voltage n oc V —V, above
the threshold V, —:Vz —Eg/e, and the phase with low
density n (& A exists in a relatively broad interval
0 & V —V, EgCp/(eC) (see below). At higher voltages
the charges become localized, forming a sort of Wigner
lattice. Let us note, that a long range interaction would
result in the formation of a Wigner lattice at arbitrary
low charge density.

In the low density phase (n « A 2) two charges can-
not be on the same island since it costs a large amount of
energy E~. Configurations with lower energies have ei-
ther one or no charges on each island, enabling a descrip-
tion in terms of the coordinates of charges. The configu-
rations obtained by permutation of coordinates are iden-
tical, which implies Bose statistics of charges. Moreover,
at still lower energies, E « EJ, an efI'ective mass approx-
imation is valid, and the original Hamiltonian (1) can be
mapped onto the Hamiltonian of interacting bosons in
the continuous limit,

H = ) (p, —2eA/c) /2M + ) U(r; —r~) —p,N, (2)

where M—:h2/Eg and p, = 2e(V —V,). The interac-
tion U(r) = (E~/2')Kp(r/A) is logarithmic at small
distances r « A and decreases exponentially U(r)
(Er./27r) exp( —r/A) at r )& A.

We consider first the ground state of the system in
zero magnetic field. For a naive picture of uncorrelated
charges one gets an unphysical result: the potential en-
ergy per particle, Uz nA E~, is much larger than
the kinetic energy, K„A, n/M = nEg. The poten-
tial energy U„can be decreased substantially if one in-
troduces the correlations preventing the particles to be
close (to distances A) to each other. To do this, we
present a ground state as a product of Jastrow functions
@(ri, . . . , r~) = Q.& 4(r; —r~) which were successfully

used in the study of strongly interacting Bose systems
like He. We will normalize the wave function in such
a way that 4(r ~ oo) = 1.

Since the range of the interaction is small, A (& n
one can assume that the function 4(r) changes at small
distances, r « n ~ . In this case the pair distribution
function g(r) is simply related to the Jastrow functions,
g(r) = ~C (r)

~

and the standard expressionii for the en-
ergy of the system reads E = N(N —1)Wp/S, where

and S is the area of the array. Since the pair distribution
function tends to unity for r & n /, we impose the
boundary condition 4(r) = 1 for r & l, where l n
is a variational parameter.

The function 4(r) corresponding to the minimum of

energy (3) is almost zero within the interaction range
and increases logarithmically C(r) = ln(r/A)/ln(l/A)
for A & r ('. l. In what follows we will concentrate
on the limit of very small radius of the interaction,
ln(n 1 /A) &) 1. In this case, the main contribu-
tion to the energy comes from the integration (3) over
the range A « r « l. For this reason, the energy
Wp ——vr/Mln(l/A) does not depend much on details of
the hard-core interaction potential (characterized only by
its range A) and on the parameter l. Choosing l = n
(Ref. 12) we obtain the energy Ep = E(N + 1) —E(N)
needed to add a particle to the system,

Ep ——27rnEg/8, 8 = ln(n '~ /A) + O(l). (4)

Therefore, the concentration of charges increases linearly
with the chemical potential n = p,Z/(2nEq) in the low
density phase nA « 1. The latter exists in the range
0 ( p, & EJC /pC, as we mentioned above.

Treating the problem in the presence of a magnetic
field, we use standard notation for the quantum Hall
effect: the Landau level separation Ru, —:2eHh/Mc,
the inagnetic length lp = (hc/2eH)i~2/a, and the fill-

ing factor v = 2vrlpn (here a is a lattice spacing of the
array). On the other hand, in Josephson arrays the nat-
ural units are Eg and frustration f = Ha /4'p. The fol-
lowing relations connect these two systems of notation:
Rd = 27l fEz, lp = 1//27r f, v = n/f .

We consider now strong magnetic field v 1 (or
Ha /n @p). Let us note that the kinetic energy per
particle Kz ) he@,/2 = 7rnEg/v is much larger than the
energy Ep (4) in the interacting case without the field.
It is natural to assume that the increase of the energy
due to the interaction is of the order of Ep also in the
magnetic field. This means that the wave function can-
not be substantially modified by the interaction globalLy.
In particular, it still varies slowly (d4'/dr)/@ lp at
large interparticle distances ~r; —r~

~
lp n i~2. We,

therefore, present the trial wave function in a form of a
product

between a part 4(ri, . . . , r~) which varies at distances
lp and Jastrow functions O(r) which change on a much

shorter scale r & l « lp [4(r) = 1 for r & lj.
The energy (2) of the state (5) consists of two con-

tributions, E = K + U yy. The first term comes &om
the integration over a part of the configuration space
r = (ri, . . . , r~), where no particles are close to each
other (~r; —rz~ ) l). It simply describes the kinetic
energy for a slowly varying part of the wave function,
K = N f d rg(pi —2eA(ri)/c)4~ /2M The inte.gration
over the rest of the configuration space gives rise to the
en~~gy U.yy = N(N —1)Wp f d' r~(ri —r2) ~@~

local modification of the wave function. Note that the
vector potential still does not enter in the formula (3) for
Wp since 4(r) changes fast on the scale lp. Therefore, Wp
is given by its zero field expression, Wp ——m/Mln(l/A).
Although we formally have considered l « Lp n
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H ff — ) (p; —2eA/c)

2vrh2 ) b(r, —r~) —pN.
i(j

(6)

It is important that the new contact interaction (or pseu-
dopotential) is weak U, ff/K & 8 &( 1. For this rea-
son the system is in the &actional quantum Hall regime.
Prom now on we will work with the effective Hamiltonian
(6).

For the filling factors v = 1/2m we apply the Laughlin
trial wave function for bosons,

one is allowed to change / with lg (or with n /2) under
the large logarithm, in(l/A) ~ 2, see Eq. (4).

Estimating the energies we have assumed that
1n(n / /A) )) 1. In order to check the quality of our ap-
proximations for not too small values of A/n i/2 we have
evaluated the energy E of two particles in an eigenstate
with zero angular momentum. We assumed a hard wall
interaction potential U(r) ~ oo for vari & A and U(r) = 0
otherwise. Due to the interaction the energy increases by
an amount AE = E —Ku, = 0.1115,0.2263, 0.7745 (in
units ~,/2) for A/2lo ——10 4, 10 2, 0.3. The results
of our approximation U, yy = 0.1086, 0.2171,0.8306 [for
8 = ln(24/A)] deviate &om exact values only by a few
percent (2.7%%, 4'%%up, and 7.2'%%, respectively).

The kinetic and potential energies obtained above cor-
respond to the following effective Hamiltonian for the
slowly varying part 4(r) of the wave function,

cording to Bose statistics. For the first choice we ob-
tained 4/Eo ——0.686, 0.672 for % = 4 and 5, respec-
tively. The second choice gives very similar results:
b, /Eo ——0.669, 0.637. Therefore, we can conclude that
4/Eo ——0.64 + 0.03. The width of the main plateau at
v = 1/2 is marked by an arrow in Fig. 2.

The scheme we used to derive Eq. (6) may be extended
to calculate the effective potential energy in higher orders
and thus resolve the fine structure of density plateaus
at v & 1/2. In this way we estimate the energy per
particle E Eo(A/lo) in the Laughlin state 4
This state occurs in the interval E ( p ( E q. Since
lo && A, the widths of the intervals rapidly decrease with
m. Therefore, the filling factor as a function of p, rapidly
changes from v = 0 to v = 1/2 in a narrow region 0 &
p, (. Ei as shown in the inset of Fig. 2.

The question remains, how the charge density changes
with further increase of the chemical potential. Several
ways were proposed to construct the hierarchy of incom-
pressible states in a two-dimensional electron gas.
We have modified the generation rules for bosons and
computed the energies of the corresponding states for
few particles. The results were close to the values (4)
for uncorrelated particles and we were unable to resolve
new incompressible states. One of the possible reasons is
that the standard schemes may not adequately describe
the correlations in systems of bosons, especially at large
filling factors v ) 1.

To grasp the correlations at arbitrary v we develop
a simple "toy" model based on the following trial wave
function:

4 = (z; —z, ) exp —) iz;i /4l
t(g

(7)
(8)

where z~ = z~ + iy~. The potential energy (6) is exactly
zero since in the state 4 two charges cannot both be at
the same point. For this reason at p = Ru /2 the charges
will enter the array without increasing the energy as long
as they can form Laughlin states. Their density will be as
high as possible, which corresponds to m = 1, v = 1/2.
A further increase in density will be blocked by the in-
compressibility of the Laughlin state. Indeed, in order to
increase the density one should create a "quasielectron"
excitation. The excitation energy L must be of the order
of the potential energy (6) for an uncorrelated particle,

Ep Ep = Rd /2Z (4). In order to put one charge in
the array two quasielectrons should be created.

Now we are able to formulate the main result of this
work. Under the conditions we have specified the charge
density changes abruptly &om zero to v = 1/2 and
remains constant in the interval 0 ( p, ( 2L, where
p—:p —Ru, /2. Thus, an incompressible Laughlin state
may occur in the Josephson junction array.

Numerical studies of the systems with a small num-
ber of particles are proven to be very useful in analyz-
ing incompressible states and their excitations. In or-
der to evaluate the energy L we have performed sym-
bolic computations for systems of several N = 4, 5
particles. We tried quasielectron wave functions pro-
posed by Laughlin and Jane; these were modified ac-

with 0 = no ( ni (. . . . ( nI ——
¹ Here 4~") are the

Laughlin wave functions (7) for m = 1, possibly with

0. 5

1.5

0.005 0. 01 0. 015
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p/Eo

FIG. 2. Filling factor of charges versus chemical potential.
The arrow shows the width of the main plateau (v = 1/2),
computed numerically. The ladder corresponds to a toy
model. Inset: A set of exponentially narrowing plateaus for
higher Laughlin fractions, v = 1/2, 1/4, 1/6. We have chosen
A/l p

——1/3.
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holes, thus corresponding to vi, & 1/2. DifFerent func-
tions 4g relate to different groups of particles, and the
total filling factor is v = g& i vi, . The interaction oc-
curs only between particles of different groups, and the
energy density is given by E/S = fEo(v —g& v&~). This
should be minimized with respect to nI, and l at a given
v. As a result we obtain that all Laughlin states are com-
pletely filled, vi, = 1/2 for )'c = 1, . . . , l —1, except one
state with a smaller filling v~ = v —(l —1)/2 & 1/2. The
energy density E/S is a linear function of v with cusps at
v = l/2. Hence, the state with v = l/2 is incompressible
in the range (l —l)Ep & p & l of a chemical potential.
The dependence of a Ailing factor on the chemical po-
tential (Fig. 2) looks similar to the one for the integer
quantum Hall effect. This may be surprising since the
latter has its origin in Fermi statistics, whereas in our
case the incompressibility arises from the interaction of
particles.

We wish the toy wave function (8) were symmetric with
respect to particle permutations. Unfortunately, we did
not manage to estimate rigorously the energy for the sym-
metrized wave function. Why do we think that we can
use the toy model at least as a guideline? First, it repro-
duces on average the linear increase of the concentration
n with the chemical potential lsee Eq. (4)j. Second, the
width of the first plateau predicted by the toy model is
in good agreement with our numerical results (see Fig.
2).

Making use of the analogy to the FQHE, we conjecture

that the incompressible states manifest themselves in a
quantization of the Hall conductance of the array. In-
deed, in the absence of dissipation the Hall conductance
o' „= (2e) v/h is fixed if v is fixed. According to our
results, we expect at least two sets of Hall plateaus. One
occurs near the threshold voltage and corresponds to the
fractional quantum Hall effect, cr „=2e2/hm A. nother
is predicted by the toy model and corresponds to the
integer quantum Hall effect, o „=2e2t/h.

The effect can be observed if the charges in the ar-
ray form a low density phase. For uniform arrays with
EJ (( E~ and Co (( C, this phase exists in the range
0 & V —V, & EgCo/(eC) of gate voltage. The irregu-
larities in the array (nonuniform parameters of the cells
and random offset charges at the islands) may suppress
the effect, just as disorder extinguishes the FQHE in two-
dimensional electron gas. An analysis of incompressible
states in arrays with such irregularities seems to be an
interesting problem for future investigations.

We wish to thank C. Bruder, D. E. Khmelnitsky, K. K.
Likharev, A. van Otterlo, M. Tinkharn, G. Zimanyi, and
especially G. Schon and J. E. Mooij for many valuable
discussions. We thank D. V. Averin, R. Chen, and L.
Fonseco for critical reading of the manuscript. This work
was supported in part by SFB 195 of the DFG. One of
us (A.O.) appreciates the hospitality of SUNY at Stony
Brook where part of this work was completed.

* On leave from Institute of Nuclear Physics, Moscow State
University, Moscow 119899 GSP, Russia.

~ Present address: Electrotechnical Laboratory, 1-1-4 Ume-
zono, Tsukuba-shi, Ibaraki 305, Japan. Electronic address:
eveadetlrips. etl.go.jp
U. Eckern and A. Schmid, Phys. Rev. B 39, 6441 (1989);
B. J. van Wees, Phys. Rev. Lett. B5, 255 (1990).
R. Fazio and G. Schon, Phys. Rev. B 43, 5307 (1991).
M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990);C. Bruder,
R. Fazio, and G. Schon, Phys. Rev. B 47, 342 (1993).
H. S. J. van der Zant, F. C. Pritschy, W. J. Elion, L. J.
Geerligs, and J. E. Mooij, Phys. Rev. Lett. 69, 2971 (1992);
T. S. Tighe, M. T. Tuominen, J. M. Hergenrother, and M.
Tinkham, Phys. Rev. B 47, 1145 (1993).
J. E. Mooij and G. Schon, in Single Charge Tunneling, Vol.
294 of NATO Advanced Study Institute, Series B: Physics,
edited by H. Grabert and M. H. Devoret (Plenum Press,
New Y'ork, 1992).
K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev.
Lett. 45, 494 (1980); D. C. Tsui, H. L. Stormer, and A. C.
Gossard, ibid. 48, 1559 (1982).
R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983); T.
Chakraborty and P. Pietilainen, The Fractional quantum

Hall Egect (Springer-Verlag, Berlin, 1988).
Yu. V. Nazarov and A. A. Odintsov, Physica B 194-196,
1737 (1994).
One can neglect the quasiparticle tunneling if the charg-
ing energy and the temperature are small compared to the
superconducting gap; see P. Lafarge, P. Joyez, D. Esteve,
C. Urbina, and M. H. Devoret, Nature (London) 3B5, 422
(1993).
N. S. Bakhvalov, G. S. Kazacha, K. K. Likharev, and S. I.
Serdyukova, Physica B 173, 319 (1991).
G. D. Mahan, Many-Particle Physics (Plenum Press, New
York, 1990), Chap. 10.
Formally the energy decreases with the increase of l. On
the other hand, our approximation g(r) = ~C'(r)~ is valid
if l « n 1n(l/A). Our choice t = n is near the
upper boundary of this range. A rigorously estimated con-
tribution to the energy from the integration of the energy
density over the range r ) n is small [of the order of
O(1) in Eq. (4)] because of a fast decay of 1 —g(r ).
We appreciate the MApLE software package.
J. K. Jane, J. Phys. Chem. Solids 51, 889 (1990).
B. I. Halperin, Phys. Rev. Lett. 52, 1583 (1984); 52,
2390(E) (1984).


