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Parametric B-spline curves offer a flexible and appropriate mathematical description of scattering
length density profiles in specular reflectivity analysis. Profiles combining smooth and sharp features
can be defined in low dimensional representations using control points in the density-depth plane
which provide graded local influence on profile shape. These profiles exist in vector spaces defined by
B-spline order and parameter knot set, which can be systematically densified during analysis. Such
profiles can easily be rendered as adaptive histograms for reflectivity computation. B-spline order
can be chosen to accommodate the aymptotic (large-Q) behavior indicated by reflectivity data. We
describe an interactive fitting strategy in which the Nelder and Mead simplex method is used in the
B-spline control point space to guide the discovery of profiles that can produce given reflectivity
data. Examples using actual and simulated spectra are discussed.

I. INTRODUCTION

In this paper we describe the application of paramet-
ric B-spline curves to the model-free determination of
neutron and x-ray scattering length density profiles from
measurements of specular reflectivity, a problem of cur-
rent and increasing interest.! The goal, briefly, is to de-
termine a p(z), representing the scattering length den-
sity of a thin film as a function of depth, from a spec-
trum |R(Q)|?, representing reflectivity as a function of
the wave vector or, equivalently, the incident or reflection
angle. For a given profile p(z), the specular reflectance
R(Q) can be computed exactly for practical purposes,
but the inverse problem of determining p(z) from |R(Q)|?
is neither straightforward nor entirely well defined, the
loss of phase information in relating |R(Q)|* to R(Q) be-
ing the most evident—but not the only—mathematical
obstacle. While the inverse scattering problem techni-
cally is solvable in one dimension when R(Q) is known
everywhere in Q,2 the approach does not yet appear to be
practical. Methods akin to isotopic substitution in crys-
tallography have been shown to be effective in providing
phase information in x-ray reflectivity from thin films3
by varying the x-ray wavelength through the substrate
absorption edge in order to selectively change atomic
scattering lengths within the films. Maximum entropy
methods—which are model-free, but in a different sense
from the usage we employ below—also have been de-
veloped for obtaining density profiles from reflectivity
spectra.®?®

Most approaches to analyzing reflectivities are variants
of curve fitting® 14 and employ the generic components
illustrated in Fig. 1. These are the following: (1) De-
scribe and (2) render (i.e., approximate) candidate den-
sity profiles; (3) compute corresponding trial reflectivi-
ties; (4) compare trials with reflectivity data, which en-
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tails the choice of an objective function, such as a x?;
and (5) update profiles using an optimization or equiv-
alent scheme to minimize the objective. In this context,
the first stage, the mathematical description of profiles,
is the one which mainly distinguishes model-based ap-
proaches from model-free methods. Model-based fittings
test parametrized formulas, often resulting from or moti-
vated by theoretical predictions.® Model-free descriptions
test restricted function spaces. Since both approaches in-
volve fit variables, distinguishing between them is not en-
tirely clear-cut. The sharpest mathematical distinction
is that models usually are nonlinear functions of their
parameters; function spaces are spanned by linear com-
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FIG. 1. Flow diagram for curve fitting approaches to spec-
ular reflectivity analysis.
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binations of suitable bases. Consequently, models tend
to probe limited classes of profile shapes, especially when
using a small number of fit variables, while model-free de-
scriptions, in principle, have a larger range.

In most model-free and model-based methods, can-
didate profiles of arbitrary shape are rendered into ap-
proximations suitable for computing the corresponding
reflectivities.'> Common rendering schemes are based
on making rectangular approximations to p(z), as in
elementary numerical integration, since the reflectivity
then can be computed exactly for the given rendering
using transfer matrix or continued fraction techniques.
In some model-free approaches, rectangular representa-
tions do double duty as the mathematical descriptions
of candidate profiles, blurring the distinction between
the first two components in Fig. 1. Such box function
spaces usually must be high dimensioned in order to ad-
equately represent smooth profiles, but effective search-
ing of function spaces benefits from low-dimensional de-
scriptions. The competing aspects of rectangular rep-
resentations have been addressed in different ways in
recent model-free analyses, including systematic dimen-
sional refinement® and advanced Monte Carlo optimiza-
tion techniques.'®1! Here we will construct profiles as
parametric B-spline curves, which admit reasonably low-
dimensional descriptions of complex shapes, and render
them as high-dimensional adaptive rectangular approxi-
mations for effectively exact computation of |R(Q)|? ev-
erywhere in Q.

Several recent works have employed nonrectangu-
lar representations of function spaces to describe scat-
tering length density profiles for model-free reflec-
tivity analysis.”®2714 Pedersen” and Pedersen and
Hamley'?™** exploited the utility of (nonparametric)
cubic B-spline curves in this context, based on Glat-
ter’s original applications to small angle scattering.'®
Our use of parametric B-spline curves was arrived at
independently!” and was motivated in part by contact
with literature on computer graphics, in which paramet-
ric B-spline curves and related curvilinear forms have
received a great deal of attention. The concentration on
parametric curves, or z-p trajectories, provides a fairly
general approach to the description of profile shapes and
their discovery by data fitting. Furthermore, the meth-
ods involve mathematical details we think are relevant
and interesting, as will be discussed below.

B-spline theory may be found in several text-
books.'®720 Nevertheless, in order to keep the present
discussion reasonably self-contained and allow for a cohe-
sive development, we give a focused review of parametric
B-spline curves in the Appendix. In Sec. IT we adapt this
material to the analysis of reflectivity spectra and in Sec.
IIT we describe our curve fitting methods in detail. Ex-
amples of applications are shown in Sec. IV. A summary
and conclusion follow in Sec. V.

II. REPRESENTING DENSITY PROFILES

In this section we elaborate on the first box of Fig. 1,
which we introduced in Sec. I. The remaining elements
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of that figure will be developed mainly in the next sec-
tion. In model-free fitting methods, deciding on a math-
ematical description of p(z) essentially means choosing a
function space “large” enough to contain potentially in-
teresting profiles but “small” enough to permit feasible
surveys. Our response to these conflicting demands is to
restrict candidates for p(z) to parametric B-spline func-
tion spaces. This actually involves two separate mathe-
matical notions. Parametric functions representing p(z)
are trajectories (general curves) in the z-p plane. Most
z-p trajectories are not p(z) functions, in fact, and thus
are unacceptable as physical profiles. However, the same
flexibility that permits “too much” variation also enables
the description of p(z) functions with features, such as
corners and cusps, that are not easily provided other-
wise. Thus the practical application of parametric curves
to our fitting problem requires finding ways to sensibly
restrict parametric flexibility without suppressing it all
together. This means allowing the fitting procedure to
probe near the boundary between physical and nonphys-
ical profile shapes. The B-spline representation provides
one way to handle this.

B splines are localized, piecewise continuous polyno-
mial functions from which general splines can be con-
structed, and they serve as bases functions for suitably
defined spline function spaces. For our purposes the ef-
fectiveness of B splines springs from a useful compromise
between smoothness and locality. Constructing extended
curves from localized bases usually entails losing some de-
gree of smoothness (continuity of derivatives). The more
localized the descriptions, the less smooth the curves, in
general. At one extreme, rectangular representations of
curves using box functions provide the sharpest spatial
resolution but the least degree of smoothness; even con-
tinuity is lost. At the other extreme, Fourier represen-
tations give the smoothest possible descriptions but the
least sharp spatial resolution or locality. Smoothness can
be mimicked in rectangular representations only by using
many boxes, while locality can be mimicked in Fourier
representations only by using many frequencies. Gen-
erally, but not always, low-dimensional rectangular and
Fourier representations are too restrictive for model-free
applications. B splines, on the other hand, have mech-
anisms for adjusting the degree of smoothness, and thus
locality, which can be adapted to various applications.

Parametric B splines are parametric curves in which
the component coordinate functions are each represented
as B-spline curves. The conjunction of these distinct el-
ements provides a means of embedding physically mean-
ingful p(z) curves in moderately low-dimensional func-
tion spaces that prove to be at once rich and manageable.

A. Defining the space

Scattering length density profiles p(z) may be repre-
sented by parametric B-spline curves of suitable order.
We soon will choose cubic B splines, k = 4, but for a
while we retain the generality of an arbitrary k. Using
the conventions of the Appendix, Sec. 1, these curves
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have the mathematical form

C(u) = (2(u), p(u)) = ZV,:Bi,k(u) ) (1)

=0

where u is the evolution parameter of the curve, the
B; (u) are B-spline functions of order k, uniquely de-
fined by a discrete set of parameter values {u;}7** called
the knot sequence, and

Vi=(2i,Pi); t=0,...,m, (2)

are the control points of the curve in the z-p plane, which
for given order and knot sequence uniquely specify C(u).

As discussed in the Appendix, Sec. 2, the coordinate
functions z(u) and p(u) belong to spline vector spaces
S* in which they vary independently. Thus the paramet-
ric curves (z(u),p(u)) belong to direct product spaces
S* ® S*.2! Unrestricted direct product spaces are too
large for the problem at hand, however. In addition to
all the curves which may describe physically meaningful
p(z), they contain many that cannot. These are reen-
trant z-p trajectories (having loops, etc.), which are not
single-valued functions.?? The geometrically relevant el-
ements of S* ® S* are trajectories for which the position
coordinates z(u) are nondecreasing functions of u to en-
sure that z values do not recur along the curves. Let us
call this portion of the space S*. Then we have

Sk @ 8k > sk O sk, (3)

The second relation in Eq. (3) follows from the fact that
(for k > 0) S* is equivalent to a subspace of S* ® S*
in which 2(u) is an affine tranformation of u, which also
makes it a subspace of S*¥. To produce monotonic z(u),
it suffices to restrict {z;} to monotonic sequences:

Zg <z < -

< zpy, . (4)

The proof is simple. Nondecreasing z(u) requires a non-
negative first derivative z(})(u). The derivative of

Z(’u) = ’mz-"l z,-B,-,k ('u,) (5)
=0
is
AW = k-1 i _ﬁ_:.Zi_—lBi,k—l(U)a (6)
imb—kpg itk—1 T Ui

for us < u < wus41.2®> The denominators in Eq. (6)
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are never negative, and B splines are everywhere non-
negative, Sec. 1 of the Appendix; so the ordering in Eq.
(4) is sufficient to make z(1)(u) > 0, as required. For
k > 2, strict ordering is not necessary for monotonic be-
havior, however. If z; < 2;_; for some i, the sum in Eq.
(6) may still be non-negative. Higher-order spline curves
tend to be stiffer in this regard; a larger k entails more
terms in the sum, providing more opportunities for com-
pensation of a negative contribution. Thus the boundary
of 8* is convoluted and difficult to characterize, but func-
tions on this boundary are important descriptively. They
provide instances of p(z) in which overall smoothness is
punctuated by sharp features, such as edges and corners.
It is desirable that model-free fitting methods be able to
find them. The constraint of Eq. (4) is overly restrictive
but relatively easy to impose. We describe a strategy for
doing this in Sec. IITA.

It is desirable to be able to refine the description of a
curve by adding more control vertices without initially
perturbing it. Remarkably, this is possible;2%:2¢ a B-
spline curve can be exactly rerepresented by a longer con-
trol sequence. Refinement follows naturally from the vec-
tor space properties of B splines;!¥72%25 any spline curve
may be embedded in spaces of higher dimension. A gen-
eral solution of this problem is provided by the “Oslo”
method.?42% The basic idea is to choose one or more
curve segments for refinement and subdivide the corre-
sponding parameter knot segments. The Oslo algorithm
then computes a new B-spline basis on the larger knot
sequence and finds the expanded control graph needed to
reconstruct the original curve in the new basis. The Oslo
algorithm is defined in the Appendix, Sec. 2.

B. Choosing B-spline order

The degree of smoothness required of functions in-
tended to represent physical scattering length density
profiles is difficult to pin down and will depend, among
other concerns, on the range and quality of the reflec-
tivity data being analyzed. Typically, we expect model
density profiles to be more or less smooth, with occa-
sional interruptions by sharp features, possibly at the
edges of the film and at interior interfaces.?® One of the
few formal quides to smoothness requirements in this
context is provided by the Riemann-Lebesque-Lightill
theorem,?” which relates the asymtotic (large-Q) behav-
ior of a Fourier transform to the integrability of the direct
function and its derivatives. It is well known, (see, e.g.,
Refs. 28, 29) that as Q — oo, the specular reflectivity
|R(Q)|? is given exactly by the Born approximation

1672
Q?

IR(Q)* ~ lel@]I*, (7

where
Q)= [ 9 p(aa: (®)

is the Fourier transform of p(z), and Q is the scatter-
ing wave vector. According to the Riemann-Lebesgue-
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Lighthill theorem, if p(™(z) is square integrable, then
plQ] falls to zero at least as fast as Q™"!, for Q —
oco. The case n = 0, meaning square-integrable p(z),
conforms to the original Riemann-Lebesque lemma. If
p(®)(2) is the highest derivative that is square integrable,
then p[Q] falls to zero no faster than @~*~'. The limit
s — oo corresponds to “smooth” functions in the for-
mal sense; then p[Q] falls to zero faster than any power
law (e.g., the Fourier transform of a Gaussian). If r de-
notes the highest derivative which is continuous, then
s =r+1. Thus, if C” is the (highest) continuity class of
p(2), then p[Q] falls no faster than Q~"~2. Therefore, for
p(z) € S*®S*, |R(Q)|? falls no faster than Q~2*~2. The
case k = 1 (Q~*) corresponds nominally to Fresnel re-
flection from sharp interfaces. However, the description
of sharp interfaces does not require the use of k = 1 B
splines. As discussed in the Appendix, k collinear con-
trol vertices produce a straight segment, and these can be
vertically aligned to form an edge. Similarly, k=2 (lin-
ear) spline curves are not required for tentlike corners.
These can be formed by k—1 coincident control vertices.
In general, parametric B-spline representations of p(z)
can display isolated features that are sharper than the
nominal smoothness dictated by B-spline order.

The limiting degree of smoothness required of p(z) is
set effectively by the fastest anticipated fall of the reflec-
tivity, in concert with other, harder-to-quantify consid-
erations. For example, if the data exhibit a Fresnel-like
(Q™*) fall at large Q, p(z) must contain at least one sharp
edge or step of signigicant height; it is likely, however,
that a smoother overall description than that afforded
by k£ = 1 is needed for a low-dimensional model. The
observed fall at large @ is allowed by a description based
on B splines of higher order. Similarly, an asymptotic
Q8 requires at least k = 2, but a low-dimensional linear
model may not be correct, overall. On the other hand,
there would seem to be little gain in using an unnecesarily
high-order description. Aside from the heavier computa-
tional burden this entails, it also means that more control
vertices have to be involved in the description of sharp
features, and it forces tighter, longer-ranged correlations
among spline segments.

In this work, we use cubic B splines, £ = 4, for
the parametric descriptions of p(z), which would appear
to offer an effective compromise of these competing de-
mands. In particular, k=4 accommodates an asymptotic
fall as strong as Q ~'°, which is fast compared to typical
reflectivity data, but just fast enough for density profiles
having everywhere continuous curvature. Each segment
of the curve needs four control vertices, and no more than
four consecutive segments interact. In this description,
true verticals and flats need four collinear vertices, and
true cusps require threefold vertex multiplicitites. The
effects of rendering, discussed below, act to weaken these
exacting requirements.

C. Fixing end points

We assume that the end points of p(z) are known and
fix them by constraining the vertices at each end of the
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control graph. These dependent vertices are known as
“phantoms” to the convey the idea they may also be in-
troduced behind the scenes.?%:3% Let the candidate films
extend from a front face at z = 0 to a back face at z = L,
where L is the film thickness. If in fact L is not known
with reasonable accuracy, or cannot be inferred from mul-
tilayer diffraction peaks, different values must be tried.
We do not use L as a dynamic fit variable. For k£ = 4 and
an arbitrary knot sequence, we have derived the phan-
toms for the curves of Eq. (1) as

v_o _ (0, p(O)) - a1V1 — (12V2 (9)
ao
and
Vm _ (L7 P(L)) — b1V 1 =02V 2 , (10)
bo
where the coefficients are
ag = (U4 — u3)2
(ug —u1)(ug —uz)’
_ (Ua - U1)(U4 - Ua) (Us - us)(us - Uz)
a; = "
(ua —u1)(us —uz)  (us —uz)(us — us)
(uz — up)?
_ , 11
7 (us — uz)(ua — ua) (1)
and
bo (um+1 - um)2

B (Um43 = Um) (Umi2 — Upm) ’

b, = (Um+3 = Um+1) (Um+3 — Um)
(um+3 - um)(um+2 — Um)
(Um+1 = Um—1)(Um+2 — Um—1)
(Um+2 = Um—1)(Um+2 — Um)

+

k]

(um+2 - Um+1)2
by, = . 12
2= Cmra — tm2) (tmp2 — i) (12)

We assume, further, that the end-point values of p(z) are
given by the scattering length densities of the incident
and substrate media. Apparant deviations from this be-
havior are easily accounted for by control vertices near
the end points. These constraints, therefore, do not prove
to be overly restrictive and can be changed for particular
applications.

On a given knot sequence, a candidate p(z) thus is
defined by a control graph

v();Vlv"'va—lana (13)

which comprises a subgraph visible to the fitting proce-
dure,

VZVI’V27'-'an-—27Vm—1’ (14)

and the phantom vertices Vo and V,,, which are com-
puted with Eqgs. (9) and (10). Considerations germane
to B-spline knot selection are discussed in the Appendix,
Sec. 4. We initialize p(z) on uniform parameter knot
sequences, Eq. (A15), with & = 4. If we let IV be the
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FIG. 2. Fictitious scattering length density profiles made
with parametric uniform cubic B splines. The curves consists
of 12 visible segments divided by 13 knots (e). The first and
last of these are fixed points at (p, z) coordinates (0,—1) and
(10,1). The flat portions to the left and right are not part of
the spline. The curve is defined by 13 visible control vertices
(+) and 2 phantoms (@) calculated to fix the ends. The line
connecting the vertices is the control graph. Four collinear
control vertices, 3-6, produce a flat portion in segment 4.
Triply degenerate vertices, 8-10, produce a corner cusp at
z = 7. The curve ends with a vertical slope at (10,1).

number of visible control vertices and M the number of
knots on the curve, then for this case N = M. Figure
2 illustrates some basic anatomy of parametric B-spline
scattering length density profiles which are relevant for
applications. Our B-spline computational methods are
outlined in the Appendix, Sec. 3.

III. FITTING REFLECTIVITY DATA

A. Searching the space

We use the Nelder-Mead simplex method3' 733 to
search the z-p plane for visible control graphs V which
lead to acceptable agreement between calculated and
measured reflectivities. A simplex in n-dimensional
Cartesian space is a polyhedron having n + 1 vertices.
Since we have preempted the term “vertex” for use with
parametric spline curves, we refer to simplex vertices,
henceforth, as nodes. A simplex is formed by joining ev-
ery node to every other node. When the n edges incident
to a node are linearly independent, the simplex spans the
n-dimensional space. In the simplex method the nodes
are vectors holding the fit variables. The dimension of
the space depends on how one chooses to group these
variables. For parametric B-spline curves it is natural to
consider individual control vertices, V; = (z;, p;), as be-
ing two-dimensional fit variables. A node V then consti-
tutes an (m — 1)-dimensional vector in the simplex space,
with each of its components (i.e., slots in the list of fit
variables) holding a control vertex. A simplex comprises
m such nodes, V,, for¢g = 0,...,m—1. Each node is a vis-
ible control graph, which, when augmented by phantoms,
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generates a candidate p(z) for the fit. Each p(z), in turn,
generates a value of an objective function, a function (ac-
tually, a functional) which measures the closeness of the
fit. The nodes of a simplex can be ordered according to
their objective values, from lowest to highest.

The Nelder-Mead algorithm is a set of finite linear
transformations on simplices,3? which are designed to
seek lower values of the objective by systematically driv-
ing the simplex away from high values. Each move starts
with an attempt to replace the highest node by a lower
node, not necessarily a new lowest. The discovery of a
new lowest node triggers an attempt to stretch the sim-
plex in the successful direction; failure to improve on
the highest node triggers a move which compresses the
simplex toward the current lowest node. In all, some
12 different moves are available in the standard method.
The algorithm does not terminate automatically. If the
lowest node is a local minimum (and the entire simplex
is within its basin), the simplex contracts toward it until
stopped. However, the lowest node is never replaced by a
higher one, a property which endows the simplex with a
degree of stability and persistence. The moves are scaled
by the size of the simplex, and so the simplex tends to
move more “slowly” when it is near a local minimum or
in states in which it is difficult to improve on the high
node. In worst cases, the simplex contracts exponentially
without reaching a minimum, which may be the method’s
most serious deficiency. This problem can be mitigated
by expanding the simplex from time to time about the
low node.

Since the simplex moves are linear transformations,
they preserve linear relationships among nodal compo-
nents which are common to all the nodes. As Nelder and
Mead originally pointed out,3! this manifold property can
be used to advantage to impose constraints on the sim-
plex search. For example, a repeating component pattern
common to all nodes is a linear invariant3* and thus is
preserved by simplex moves. As we will demonstrate in
Sec. IV, this provides a handy way of incorporating mul-
tilayer structures into parametric B-spline descriptions
of p(z).

The manifold property cannot strictly enforce the or-
dering of the {z;} indicated in Eq. (4), because an order-
ing constraint is not a linear invariant.®® Thus a sim-
plex that comes near the hard border represented by
Eq. (4) may cross it and ultimately produce unphysi-
cal candidates for p(z). Strict ordering can be imposed
with an explicit sorting operation, but this sometimes
will be incompatible with end-point control; sorting only
the visible sequence {z;}7*"! does not guarantee that the
dependent phantoms will be consistent with the sort,
while sorting the entire sequence {z;} may change the
end points. Alternatively, simplex moves producing out-
of-sort nodes could be rejected, but this would require
expensive testing and decisions about what moves to sub-
stitute without defeating the carefully designed simplex
strategy. For simplicity, in the applications to be de-
scribed in Sec. IV, we sorted the visible {z;}. Our ex-
perience, however, is that this precaution mainly comes
into play in early stages of fitting, before the simplex has
been well trained on the objective. Figure 3 illustrates
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FIG. 3. The unphysical loop results from lifting the degen-
eracy in Fig. 2 with out-of-sort vertices. The unphysical bow
at the right edge results from vertex 13 being too far to the
right. In practice such loops are rarely observed because of
the initialization method used, but bowed edges are common
if the specified film thickness is too small.

behavior in the unphysical portion of the spline space.
For the objectives to be minimized we use ratio-
sensitive functionals'! of the type

E,

D,—E,|?
—r 15
D.ANE,|"’ (15)

1 N
Flp(2)] = >

where D,, is the measurement of |R(Q)|? at Q = Q,, E,
is the corresponding trial value for a candidate p(z), N
is the number of data points, and D,, A E,, is the smaller
of D, and E,,. The exponent p is an integer. D and
E are everywhere non-negative; in fact, each lies in the
interval [0,1]. This objective class comprises symmetric,
non-error-weighted measures of closeness of fit, punish-
ing bad ratios of D and E equally, regardless of whether
D > E or D < E. Ratio measures are well suited to
comparing reflectivity curves, which typically range over
many orders of magnitude.3® We have found that p = 1
works well with the simplex search method, since it is
effective in reducing the rate of simplex shrinkage. For
this case, the objective can be expressed as

N
1 D,V E,
Fo@) = 5 S poag (16)

where D, V E,, is the larger of D,, and E,,. The first term
in Eq. (16) is just the average upper-to-lower ratio of the
two curves.

B. Rendering and computation

For specular scattering from a film having infinite ex-
tents in the = and y directions and a scattering length
density which varies only along the z direction, it is nec-
essary to solve the one-dimensional Schrodinger equation

¥"(2) + kZ(2)¥(2) =0, (17)
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where

47;‘%?)] k(). (18)

K2(z) = k2, [1 -

In Eq. (18), ko, = ksin6, where 6 is the angle of inci-
dence of the neutron beam on the film, measured from
the film surface, and where Ak is the momentum of the
incident beam. In conventional experiments, the film be-
ing studied is sandwiched between fronting (incidence)
and backing media (one of which typically is air) having
constant p(z), with z = 0 locating the film’s front edge
and z = L the back. Then, the wave function in the
fronting medium is

P(z) = e*1* 4 Re k1= (19)
while in the backing medium,
P(z) = Te' (20)

where ky = k,(z) for 2 < 0, and kp = k,(2) for z > L.
In these equations, R = R(Q) and T = T(Q) are the
reflection and transmission amplitudes, respectively, and
Q = 2ko,. Analytical solutions of this problem are not
available, generally, and so a degree of approximation is
needed to compute R(Q) for arbitrary p(z). We employ
a common solution method in which p(z) is rendered in
a rectangular approximation. First, the interval [0, L]
containing the film is subdivided by a mesh of discrete z
values, {Z,,}, and then p(z) is replaced by

p(z) - p(Zm) ’ Zm S z < Zm+11 (21)

which constitutes a set of slabs of constant scattering
length density. In our case, we cut the slabs [Z,,, Zm+1]
by uniformly subdividing each parameter knot interval
[ti, uit1] during B-spline rendering. The slabs thus
vary in thickness along the z axis according to the lo-
cal shape of p(z). We solve the Schrédinger equation
exactly for the slab-rendered p(z) by using the transfer
matrix method.373® This leads to the equation

(inI;T ) =M (mfl(_ff R) ) ’ (22)

where ny = n(2) for 2 < 0, and ny = n(z) for z > L,
M= MpMp_1--- MMy, (23)
for M slabs, and

M, = ( CoS Oy, ;}"—:siné) ’ (24)

—Ny,sind,, cosd,

with 6, = koznm(Zm+1 — Zm), and n,, = n(z) for Z,, <
2 < Zm+1. Equation (22) is then solved for R(Q).

For finite @ these solutions become exact in the limit
that M — oo, but for finite M, rectangular rendering
is intrusive for the reasons discussed in Sec. IIB. Scat-
tering by a stack of slabs ultimately produces Fresnel
behavior for Qd > 1, where d is the largest slab thick-
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ness, regardless of the shape of the candidate p(z). Thus,
a rendered p(z) which fits data up to @ = Qmax for a
choice of M generally will not fit for Q@ > Qnax using the
same M. However, for a given Qmax, there is a small-
est M = Min, which must be empirically determined,
such that using M > My,;, will not visibly improve the
quality of fit. In general, of course, it is desirable to fit
data using large M, to mitigate the effects of rectangu-
lar rendering, while also using the smallest number of fit
variables that can work in order to facilitate the search
for acceptible p(z). In the current method, the descrip-
tive and rendering requirements on p(z) are uncoupled,
as in model-based methods. We can search a relatively
low-dimensional but rich function space without having
to exact rendering penalties over a given, possibly large,
range of data.3®

IV. EXAMPLES

We illustrate the methods that have been described
here with two applications to actual neutron reflectiv-
ity data and one to simulated neutron data. Thus from
this point on we consider only the determination of real-
valued p(z). We have found it effective to start fits with
as few control vertices as can allow reasonable agreement
with low-Q data. Profiles thus trained often can be co-
erced into good fits with the aid of Oslo refinement and
the device of “trickling” data into the fit, one or a few
points at a time. The converse appears not to be true;
profiles initially trained by high-Q data generally do not
lead to good fits. In our experience each set of reflectivity
data presents its own challenges to analysis, which seem
best met by trial-and-error experimentation and a readi-
ness to quickly abandon unproductive strategies. The fit-
ted spline profiles we show below typically are rendered
with 20-30 slabs per parameter knot segment. In all
cases we check that the rendering is unobtrusive over the
range of data used. The fitted profile curves shown in
the figures are plotted with straight-line interpolation of
the rendered spline points.

Figure 4 shows a fit to neutron reflectivity data from a
titanium oxide film.%° The film thickness is 160 A. In the
experiment the fronting medium is silicon and the back-
ing medium is an electrolytic aqueous solution.*! This fit
employs seven visible control vertices on a uniform pa-
rameter knot sequence. The figure also shows the fit4®
obtained from a least-squares model refinement method*2
in which the scattering length density was described as a
collection of constant-density slabs joined by error func-
tion segments. The reflectivities from these two fits lie
close to each other except in the noisy portion of the
spectrum at large Q. This difference may reflect the fact
that the model fit was error weighted, thus emphasizing
the higher reflectivity values (smaller error bars) in the
noisy portion at the expense of the lower values. The ra-
tio objective function used in the spline fit, as mentioned
in Sec. IIT A, is not error weighted. The model fit also
incorporates instrumental resolution while the spline fit
does not. Note that both are unable to fit the data accu-
rately at very low @, but they miss by the same amount.
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Clearly there is a systematic effect in these data that
neither method captures. The two fitted density profiles
have similar shapes.

Figure 5 presents two parametric B-spline fits to the
same data in Fig. 4, each using six control vertices and
uniform knot sequences. The calculated reflectivities are
nearly indistinguishable from each other over the range
of data. The shape of the profile drawn with the solid
line is roughly similar to the spline profile in Fig. 4, but
the profile shown with the dotted line is substantially
different. These two profiles, including the fronting and
backing, are approximately related by an inversion in the
z-p plane about a point (z., p.) near the center of the film,
where z. = L/2 and p. = [p(0) + p(L)]/2. This operation
is not an exact symmetry of specular reflectivity but it
is known to be a symmetry of the Born approximation.®
Specifically, if p(z) is the inversion of p(z), then

p(2) = 2pc — p(2zc — 2) (25)

everywhere in z, and its Fourier transform, for real valued
ol2), is

plQ] = 2p.8(Q) — 9% p[Q]*; (26)
16.0 T T T | T T [ T
. @ -
120 - (@ .
8.0 .
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FIG. 4. Parametric B-spline fit of reflectivity from a thin
titanium oxide film in contact with electrolyte. (a) Spline
profile using six segments, with symbols as in Fig. 2. The
dotted line is the model profile from Ref. 40. (b) Reflectivity
data (points), spline fit (solid line), and model fit from Ref.
40 (dotted line).
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so for Q # 0,
1A[QII* = [plQII*, (27)

independently of the center of inversion, (2, p.). Thus
from Eq. (7), the two profiles produce the same reflec-
tivities, asymptotically. Since the spectrum for the ti-
tanium oxide film at small @ effectively lies beyond the
critical region where the Born approximation necessarily
breaks down, finding an approximately inverted trans-
form of p(z) may not be surprising. It is interesting,
nonetheless, that inverted forms were discovered rather
easily in the course of exploring different spline fitting
strategies for the spectrum. In this case, however, the
inverted shapes can be rejected on physical grounds.?
Figure 6 displays nine B-spline fits to the data of
Fig. 4 employing fitting strategies that resulted in dif-
ferent numbers of control vertices and various uniform
and nonuniform parameter knot segments, ranging from
5 to 15 visible segments. Inverted shapes, in the sense of
Fig. 5, were found for several of these. The correspond-
ing reflectivities lie close to each other over this Q range,
notwithstanding the detailed differences in the density
profiles. However, these profiles are generally similar to
each other and physically meaningful. For example, the

p(10° A7
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FIG. 5. Additional fits to data in Fig. 3. (a) Two spline
profiles using five segments. (b) Reflectivites shown by cor-
responding solid and dotted lines, which effectively coincide,
and the data (circles) as in Fig. 3.
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relatively sharp feature seen in some of the curves near
z = 0 could be interpreted as suggesting a thin layer of
silicon oxide, which often is present on silicon substrates.
Evidently these data do not require the clear presence
of a silicon oxide feature in the profile, but the group of
fits on the whole shows that such a feature is consistent
with the spectrum. To this limited but useful extent, the
reflectivity measurement determines a class of acceptable
scattering length density profiles for the titanium oxide
film.

Figure 7 shows a parametric B-spline fit to neutron
reflectivity data from a multilayer consisting of seven
layers of deuterated polystyrene-protonated polyisoprene
diblock copolymer on silicon, with air as the fronting
medium.® The thickness of the multilayer is approxi-
mately 1420 A. The fit was accomplished with 42 con-
trol vertices, corresponding to 6 vertices per layer, and
a uniform parameter knot sequence. A key ingredient
in achieving this fit with relative ease was to train the
Nelder-Mead simplex to be aware of the approximately
periodic multilayer structure without having to touch the
fitting algorithm. We did this by initializing the fit with
random control graphs, each consisting of seven nonover-
lapping groups of six vertices. The manifold property of
the Nelder-Mead algorithm, Sec. IIT A, effectively hon-

4.0 T T T T
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0.00 0.05 0.10 0.15 0.20
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FIG. 6. More fits to data in Fig. 3. (a) Nine spline profiles
resulting from various knot sequences, and the model fit from
Ref. 40 (thick line). (b) Corresponding reflectivities (solid
lines), and the model fit (dotted line) and data (circles) as in
Fig. 3.
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ored the training space without a need for policing. Of
course, it was necessary to experiment with different sets
of training configurations, including trials having differ-
ent numbers of layers. We tried Oslo refinement in se-
lected layers, but the uniform knot set produced equally
good fits here. We have not attempted to improve this fit
with a higher density of control points, since we believe
that the neglect of instrumental resolution may limit the
utility of further refinement of this spectrum. We note
that while the spline multilayer profile is approximately
periodic, there are small departures from perfect regular-
ity which seem physically reasonable and are difficult to
model using more highly constrained methods.

Finally, Fig. 8 shows a parametric B-spline fit to a sim-
ulated neutron reflectivity spectrum from a fictitious pro-
file, which was generated from three piecewise continuous
sinusoidal segments. The fit used 18 control vertices. The
parameter knot sequence for the fit is shown in Table I.
Note that the reflectivity falls ten orders of magnitude
over the given @ range. The table indicates that the fit
started with five control vertices and the uniform knot
sequence 3,4,5,6,7. The remaining knots were added
over the course of the fit using Oslo refinement. The
subdivisons of the [3,4] segment reveal that the leading

8.0 T ’
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FIG. 7. Parametric B-spline fit of reflectivity from a
seven-layer diblock copolymer multilayer on silicon, with air
as the fronting medium. (a) Spline profile using 7 x 6 control
vertices (41 segments). The phantom vertices are off scale.
(b) Reflectivity data (points) and fit (line).
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TABLE 1. Visible parameter knot sequence for the para-
metric B-spline fit shown in Fig. 8.

3.0 3.125 3.1875 3.25 3.375 3.5 3.75
4.0 4.25 4.5 4.75
5.0 5.25 5.5 5.75
6.0 6.5

7.0

edge of the fictitious profile proved most difficult to fit in
this strategy. In fact, this example proved to be difficult
even knowing the goal profile. The successful strategy en-
tailed first getting a close fit to only the low-Q portion of
the spectrum with a relatively small number of segments,
Fig. 9, and then using the “trickle” tactic described at the
begining of this section to coerce the fit over the entire
spectrum. Additional intervention was needed, however.
The fit shown in Fig. 8 started with the one shown in
Fig. 9, which used eight control vertices and a subset of
the knot sequence in Table I, but it was necessary, ulti-
mately, to forcibly translate the control graph in order to
get the peak and the valley of the eventual fitted profile
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FIG. 8. Parametric B-spline fit of reflectivity from ficti-
tious density profile. (a) A 17-segment spline fit (solid line)
to the model profile made from 3 piecewise continuous cosine
segments. The phantom vertices are far off scale. (b) Model
reflectivity data (points) and fit (line).
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to be able to align exactly with the goal. The locations
of these features relative to the fixed end points (Sec.
IIC) are not secured by good fits to the truncated re-
flectivity spectrum because of trade-offs in the density
profile shape that depend on the number of control ver-
tices. One sees similar “slippage” in the titanium oxide
fits of Fig. 6. Data at sufficiently high @ eventually may
discriminate such features, but the relevant portion of
the control space effectively may no longer be accessible
to the searching algorithm. Figure 10 illustrates a com-
plementary behavior. The fictitious goal profile is the
solid line, while the dotted line is a manipulated version
of the fitted profile in Fig. 8, obtained by moving control
vertices by hand. The spline curve, while seemingly close
to the model, actually weaves about it on a scale vary-
ing between approximately 50 A and 200 A. The corre-
sponding reflectivity spectra break away from each other
at large Q, where |R(Q)|? is very small for each, due to
the sensitivity of large-Q scattering to dp(z)/dz (Refs. 7,
9) and higher derivatives (Sec. IIB). In this example, the
derivatives of the piecewise cosine and parametric cubic
B-spline curves of Fig. 10(a) are farther apart from each
other than the profiles themselves are, especially along
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FIG. 9. Parametric B-spline fit of reflectivity from ficti-
tious density in Fig. 7. (a) A seven-segment spline fit (solid
line) to the model profile (dotted line) as determined by the
portion of the refectivity shown in part (b) of this figure.
Note “inboard” phantom at right. (b) Model reflectivity data
(points) and fit (line) on a linear ordinate scale.
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the leading edge and in the dip between 600 A and 1000
A. Of course, as Fig. 8 illustrates, B-spline profiles can
be found that lie close to the model while also producing
reasonably close fits of the spectrum in the indicated Q
range. A fit procedure, naturally, will tend to find pro-
files that lie close to the goal in the reflectivity measure,
even if—as the previous examples have illustrated—they
do not always lie pointwise close in real space. How-
ever, as shown in Fig. 10, the “distance” between density
profiles in the reflectivity measure also depends on their
effective “smoothness,” and density profiles that appear
to be pointwise close do not necessarily produce the same
reflectivities.

V. CONCLUSION

We have seen how parametric B-spline curves offer use-
ful low-dimensional representations of scattering length
density profiles in model-free analysis of specular reflec-
tivity. The parametric representation affords an easy
device for the depiction of relatively free-form profile
shapes that may exhibit complicated features combining
different degrees of smoothness. Furthermore, paramet-
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FIG. 10. (a) The piecewise cosine model profile of Fig. 7
(solid line) and a spline approximation (dotted line) made by
manipulating the control vertices of the fitted spline profile
of Fig. 7. The insets show magnified sections indicated by
the dotted lines; on the left, 0-60 A, on the right, 650-750
A, which is typical of the range 600-1000 A. (b) The corre-
sponding reflectivities (solid and dotted lines, respectively).
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ric curves are easy to render adaptively by binning the
parameter u common to both the z(u) and p(u) com-
ponents. Cubic B splines, in particular, are mathemat-
ically appropriate for profiles that are likely to be phys-
ically meaningful, and, in the curve fitting context, pro-
vide an effective balance between local and global con-
trol of profile shape. The Oslo algorithm permits di-
mensional refinement of B-spline descriptions while fits
are in progress. Also, efficient B-spline computational
procedures are available for practical implementation of
these methods.

The Nelder-Mead simplex method is well suited to
searching parametric B-spline spaces for fitting reflec-
tivity spectra, but any optimization technique could be
adapted to this purpose. The manifold property of the
simplex algorithm affords passive enforcement of various
constraints that are especially useful in these applica-
tions, including an effective means of honoring the re-
stricted periodicity appropriate to the description of mul-
tilayers, as was discussed in Sec. IV, Fig. 7.

The use of parametric B-spline curves helps in the dis-
covery of classes of profile shapes that are consistent with
the data. As in the application to titaniun oxide dis-
cussed in Sec. IV, Figs. 4-6, and in the example of Fig.
9, given spectra may not be able to determine profiles
in detail, but parametric B-spline curves can point to
features that are common to classes of fitted shapes.

Based on these experiences, we remark briefly on the
roles of model-free and model-based fitting procedures
for analyzing reflectivities. While fitting to models is the
more restrictive approach, such restriction may be what
is desired when the goal is to test specific mathemati-
cal predictions of profile shape. Because function space
is so large, it is difficult for model-free methods to find
shapes having particular functional forms. For example,
say the model fit shown in Figs. 4 and 6 is the model
to be tested. None of the model-free curves found using
parametric B splines fit this function exactly, and several
not even closely, yet all reasonably fit the given spectrum.
On the other hand, in model-based methods the models
being used may be guided more by intuition than theory.
This was the case in the titanium oxide model fit,*® which
is typical of many model-based approaches to reflectiv-
ity analysis, we believe. Then the concerns of testing
the model are somewhat different, and it becomes help-
ful to have model-free methods available, as well, to put
proposed models into context in regard to what profile
shapes given spectra may support. Finally, of course, it
may occur that no model easily can be found to explain a
spectrum. Here model-free methods, such as the one we
have described, become the tools of first choice, and the
results may guide further refinement using models that
are suggested by such analysis.

APPENDIX: PARAMETRIC B-SPLINE CURVES

1. Basics

B splines, Bi,k,{u'.}(u), are non-negative, unimodular,
piecewise functions of a variable u.2° The pieces com-
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posing a B spline are kth-order polynomials, bounded
by a discrete, ordered sequence of fixed u values, {u;},
called knots. The index 7 locates the B spline on the knot
sequence. For each i, B;j(u) is composed of k polyno-
mial segments on the contiguous intervals formed by the
consecutive knots, u;,u;y1,...,U;1+x, and are otherwise
zero. For nondegenerate knot sequences, B splines of or-
der k belong to continuity class C*~2; this means they
are continuous everywhere and have everywhere contin-
uous derivatives, up to and including the (k — 2)th, but
generally not beyond. The class C~! signifies piecewise
discontinuous functions, which accommodates the £ = 1
case. The continuity requirement, along with normaliza-
tion,

k-1
Y Bijr(w) =1, w<u<uy, (A1)
e

completely determines B; 1 (u) on a knot sequence.

Parametric B-spline curves are particular instances of
parametric curves. The parametric representation of a
curve means that its coordinates are functions of a real-
valued parameter. A parametric curve C(u) in the z-y
plane thus has the form

C(u) = (z(u),y(v)),

The curve is a trajectory in the plane, swept out as the
variable u, called the evolution parameter, moves from
Umin tO Umax. In the case of parametric B-spline curves,
these coordinate functions are expressed as linear combi-
nations of B splines,

Umin < % < Umax -

(A2)

C(u) = > ViBik(uy(u), (A3)
where the fixed vectors
V; = (miayi)a 1= imin,-'-yimax, (A4)

are called the control vertices of the curve.?? These deter-
mine the curve for given order and knot sequence, since
the B splines are unique, but generally are not on the
curve itself.

For the curves of Eq. (A3) we use a standard correspon-
dence between the control vertices and the knot sequence,
which for given k is summarized by2°

iminzov
imaxzmzk_la
k
{ui}g™ =uo < - up—1 <o S Umgr < < U

(kth knot from the left end),
(kth knot from the right end). (A5)

Umin = Uk—1

Umax = Um+1

A “standard” curve is defined by m + 1 control vertices
and is traced out as v moves from ugx_3 t0 Uymy;. The
m — k + 3 parameter knots ug_1,...,U,t1 are mapped
onto the curve, subdividing it into m — k + 2 segments.
There are m + k + 1 parameter knots, in all. The first
k —1 parameter knots and the last k — 1 parameter knots
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are not mapped to the curve; their purpose is to provide
a sufficient number of B-spline segments to ensure that
each mapped parameter segment catches its full comple-
ment of k B-spline pieces. A standard curve is contained
in the convex hull of the control graph. The control graph
is the figure obtained by linearly interpolating the con-
trol vertices; its convex hull is bounded by the smallest
convex polygon containing the control graph. In fact,
the convex hull property applies to each segment indi-
vidually. It follows that k collinear vertices produce a
straight line segment, since their convex hull degenerates
to a line.

C(u) is the union of its m — k + 2 nonoverlapping seg-
ments, C;(u), each of which is a weighted sum of k seg-
ment polynomials from k consecutive B splines:

m—k+1

C(u)= > Ciu). (A6)
=0

Segments of a standard curve are determined by overlap-
ping sets of k control vertices, with V; being the first in
the sequence to have an effect on C;(u), and Vf_; the
last. Segments C;(u) and Cy (u) are independent of one
another if |l — I'| > k — 1, for then they have no control
vertices in common. The parametric B-spline represen-
tation thus provides graded local control of the shape of
curves, the range of control depending on the smooth-
ness of the curve, in the sense of its continuity class. The
more continuity that is required, the greater the order
that must be used and the greater the segmental range
of the B splines composing the curve. The smoother the
curve is, in the precise sense of its continuity, the more
extended the range of its control vertices; the less smooth
it is, the more localized the control.

The continuity of parametric B-spline curves is not
determined solely by the order k. Rather, C*~2 is the
smoothest continuity class curves can be in. The actual
continuity depends also on whether the knot or control
sequences have degenerate entries. Degeneracies in either
have similar geometrical consequences: The continuity
class of a kth-order B spline having a u-fold knot or ver-
tex multplicity is C*~#~', where x = 1 means nonde-
generacy. In particular, in curves of order k, when k — 1
consecutive vertices occupy the same point, they draw
the curve into a corner cusp (discontinuous tangent) at
that point.2° It is noteworthy that such a simple device
produces sharp features in an otherwise smooth (to the
eye) curve, in contrast, say, to the use of Fourier compo-
sition. In the current application we use nondegenerate
knot sequences but allow degenerate control vertices to
occur in the fitting procedure.

2. Vector spaces and refinement

For a fixed knot sequence {u; }7**, B i, {u:} (v)|5" are a
basis for the spline space S(P*, {u;}* ™%, C*~2) of dimen-
sion m + 1. We abbreviate this as S, or as S*({u;}5* %)
when needed. The fully articulated notation conveys that
elements of S* are formed piecewise from elements of P,
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the space of kth-order polynomials, with C*~2 continuity
at nondegenerate knots. Thus “splines,” in general, may
be defined as linear combinations of B splines.'® The el-
ements of S* are the coordinate functions, and the basis
B; k,{u;} (#)|5* can be lifted to the 2m-dimensional direct
product space S*®S*, whose elements are the parametric
spline curves C(u) in Eq. (A3).

Now consider that the knot sequence {ui}g‘“‘ is con-
tained in the sequence {wj; }mtntk | which is larger by
n knots. This means that every w; in the smaller set
coincides with some w; in the larger set. In prac-
tice, the n extra knots of {w;}7**™** are inserted into
{u; g“”‘, a process called knot refinement. Conven-
tionally these new knots only go into the standard
interval [ug—1,Um+1) of the original sequence. Then
Sk({w;}mt*) < S*({w;}7™™**); the original spline
space is a vector subspace of the refined vector space.
The refined space has a “new” B-spline basis N; x(u) =
B; k,{w,} (), which serves also a basis for any of its sub-
spaces. Thus the original B splines can be expanded in
the refined basis:

m+n

B;x(u) = Z @; & (3) Njx(u) - (A7)

The transformation coefficients o;(7) are called dis-
crete B splines and can be calculated from the two knot
sequences.?4

A curve C(u) lifted from S*({u;}7**) by a control
sequence {V}7* can also be lifted from an embedding
space S*({w;}7"™**), using a refined control sequence
(Wit

m+4n

C(u) = ZViBi,k(u) = Z W N; x(u). (A8)

Indeed, substitution of Eq. (A7) into Eq. (A8) leads
£020,24

szzai,k(j)via j:0a"'1m+n‘ (Ag)

=0

This method of spline curve refinement is known as the
“QOslo algorithm”2425 and is incorporated into our fitting
procedure.

3. Recurrence and implementation

On a given parameter knot sequence, B splines satisfy
the recurrence!®20
U — U;

Uu; —u
”’—‘Bm,ﬂ(u) ,

Bir(u)= Uit — Uit

)

————— B (u)+
Uiy —Ug

(A10)

for r = 2,3,...,k. This is seeded by B;1(u), which is
unity for v € [u;,u;y1), and zero otherwise. Degenerate
knots are accommodated by ignoring terms with vanish-
ing denominators. The curves C(u) can be computed
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directly from a similar recurrence, found by substituting
Eq. (A3) into Eq. (A10) to obtain®?2°

V[r~—1] _ U —U; v[r] Uiyl — U V[r]
2 (’LL) Uigr—1 — U ? ('LL) + Uiy 1 — Us z—l(u) ’

(A11)

for r = k,...,2. When Eq. (Al1) is initialized with
Vl[k] (u) =V, for i =1,...,m, it terminates with

C(u) = Vil (), (A12)
where § is the unique index such that us < u < ugy1.
The pseudocode for this procedure is given in Ref. 20,
Chap. 20. Actually, Eq. (A12) is computationally ex-
pensive where fine-grained rendering is needed. In our
calculations, we use, instead, a more efficient variation
of this scheme, prescribed for situations in which several
values of u are likely to trigger the same value of §.%*
A similar recursive procedure can be developed for the
Oslo algorithm, Eq. (A9). For that we use a version of
the pseudocode in Ref. 45.

4. Parameter knot selection

While the number of parameter knots in the sequence
{u;}7** is fixed by the number m of control vertices
used to make C(u), the actual location of these knots
remains to be chosen. The choice can be guided by the

convenient fact that B splines are invariant under affine
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transformations of the u axis. Let w = a@ + b, for any
constants a and b. Then

Bi i {u} (v) = Bi g qay (@), (A13)

for up < u < Umyr and for 4o < @ < Up4x. This is seen
by substituting

U — Uu; u— u;

uz'l —_ ’u,,':u - ﬁil —_ ’l_l,in
in Eq. (A10), for any 4,4’ and ¢". Thus, from Eq. (A3),
it follows that, for a given control graph,
C(u) = C(a). (A14)
Uniform B splines are composed on uniform knot se-
quences, {u;}7""* = ug 4 iA, for any constant A. They
have the unique property of being translates of each
other:

Bi,k (u) = Bo]k(u - ’LA) .

Because of affine invariance, uniform knot sequences can
be restricted to the integer sequences?’

0,1,...,k—1,...,m+1,...,m+ k. (A15)
These are convenient starting points for adding knot de-
generacies and for Oslo refinement, both of which destroy
uniformity. In our reflectivity analysis, we will always
begin with uniform sequences and, if desired, subdivide
intervals by halving for Oslo refinement.
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