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Convergent real-space cluster expansion for configurational disorder in ionic systems
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We present a rapidly converging, real-space expansion to compute the electrostatic energy of point-
charge configurations on a fixed lattice. The rapid convergence is obtained by requiring that the expan-
sion only reproduce well the configurations with energies below some cutoff energy. The convergence
rate can be systematically varied by changing this cutoff. This expansion should prove useful for compu-
tations in which only low-energy states are required, such as free-energy and phase-diagram computa-
tions.

I. INTRQDUCTIQN

Considerable interest exists in the first-principles corn-
putation of thermodynamic properties and phase dia-
grams of multicomponent materials. In many cases a lat-
tice model is used to compute the thermodynamic poten-
tials starting from a suitable model Hamiltonian. Al-
though lattice models only explicitly account for
configurational entropy, it has been shown that the effect
of vibrational and electronic disorder can be included by
course graining the full partition function to the partition
function of a lattice model. ' A lattice model can therefore
be seen as the last step in integrating the partition func-
tion over all the degrees of freedom of a crystalline solid.
For this reason, these models have become the corner-
stone of the first-principles computation of thermo-
dynamic properties in rnulticomponent crystalline ma-
terials. In this paper, we investigate the applicability of a
real-space lattice model to an ionic system consisting of
point changes and discuss the inherent problem of long-
ranged Coulombic interactions.

To construct an effective lattice model Hamiltonian for
a (pseudo)binary material, the energy is expanded in an
orthogonal basis set of cluster functions:

a i&a

In Eq. (1), cr; is the occupation variable that takes on the
value +( —1) when site i is occupied by an A (B) species
and the vector o =-

I o „crz,o 3, . . .o „J labels the
configuration of the complete system. The summation in
Eq. (1) is over all figures a of lattice points, and the
coefficients V are effective-cluster interactions (ECI).
Typically, the ECI for a given system are determined by

fitting a truncated form of the cluster expansion [Eq. (I)]
to the energy of different ordered arrangements. For
metallic systems, these energies are often determined in
the local-density approximation. Although only the
ground-state energy is expanded as a function of
configuration in Eq. (1), the effect of vibrations and elec-
tronic excitations could be included by expanding the
relevant free energies. In the model system we are going
to study, these contributions are neglected.

The practical use of expansion (1) lies in the rapid con-
vergence of the ECI with cluster size and separation dis-
tance between points in the cluster. There is some indica-
tion that in metallic systems this is the case when the
elastic effects are treated properly. ' ' Recent interest in
applying the cluster expansion to ionic materials,
however, necessitates a careful reconsideration of the
convergence of Eq. (1) in systems where strong electro-
static interactions are present. This is the purpose of this
paper. We will compute the ECI for a model system in
which fixed charges q, and qz are distributed on a static
fcc lattice. As only charge-neutral systems will be inves-
tigated, the composition of the system is determined by
the ratio q, /qz. For such a pairwise interacting system
with no relaxations, the effective cluster interactions can
be determined analytically, and the only nonzero interac-
tions are effective-pair interactions given by

2
q&

16m@or,

where eo is the free-space permittivity.
It is clear that the r ' dependence of the ECI does not

lead to a rapidly convergent expansion and therefore
prohibits the use of a real-space cluster expansion to
compute the free energy' ' of this system. This is an
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unusual situation, as in most systems the ECI converge
much more rapidly than the bare atomic interactions. In
this paper, we will however show that the r ' depen-
dence of the ECI is the result of the high-energy regions
in configuration space and that much faster-converging
expansions can be obtained by not requiring that the clus-
ter expansion reproduce these regions with high energy.

II. PROCEDURE

To determine the ECI numerically, the electrostatic en-
ergy for 291 periodic configurations on the fcc lattice
with q&

= —
q2

=—1 was computed by means of the Ewald
summation technique. ' The configurations have primi-
tive unit-cell size ranging from 2 to 32 atoms per unit
cell. The energies ranged from —1.6366 to 58.239 per
ion in units of q /8vreod where d is the nearest-neighbor
distance. These dimensionless units correspond to
Madelung constants and will be used for all results in this
paper. Values of the ECI were obtained by performing a
least-squares fit to these energies with two different Ham-
iltonians: an intermediate-ranged Hamiltonian including
the constant energy term (empty cluster interaction) and
pairs up to the eighth-nearest-neighbor distance and a
long-ranged Hamiltonian in which pairs extend up to the
fifteenth-nearest-neighbor distance. The latter Hamil-
tonian contains 18 terms as there are two distinct ninth-
and thirteenth-nearest-neighbor interactions on the fcc
lattice. Since all structures have the same composition
there is no need for a linear term in the Hamiltonian.
For each Hamiltonian we will compare three sets of ECI:
(a) the exact but truncated ECI [Eq. (2)], (b) the ECI ob-
tained by fitting to all 291 structures, and (c) the ECI ob-
tained by fitting to only the structures with energy below
some cutoff value E, . In most cases, E, was chosen as
zero, although there is no particular reason for this
choice. With E, =O there are 195 structures below the
cutoff energy and 96 above. All ECI are normalized by
the first-nearest-neighbor interaction (V, ).

III. RESULTS

Figure 1 shows the ECI for the intermediate ranged
Hamiltonian (V& to Vs). The effective interactions ob-

tained from fitting to the structures with energy below
zero (broken line with open squares) converge much fas-
ter than the exact ECI (solid line with filled squares). The
eighth-nearest-neighbor interaction in this fit is less than
1% of the nearest-neighbor interaction, as compared to
35%%uo for the exact ECI. The slow convergence of the ex-
act ECI is recovered when structures with large energy
are also included in the fit (broken line with filled circles).

The quality of the fit for the rapidly converging cluster
expansion is illustrated in Fig. 2. In this figure the energy
computed from the cluster expansion is plotted versus the
exact electrostatic energy. It can be observed that for the
low-energy structures the fit is extremely good. The
root-mean-square (rms) difference between the cluster ex-
pansion energy and the exact energy for the structures
with energy below zero is 0.0403. It is remarkable that
such a good fit can be obtained for 195 structures with
only nine effective interactions. For the higher-energy
structures, the cluster expansion energy starts to deviate
significantly from the exact energy. Although Fig. 2 only
shows energies up to 10, the complete set of structures in-
cluded structures with energies up to 58.239. The predic-
tive power of this fit can be tested by fitting to only a sub-
set of the structural energies and comparing the predicted
and exact energies for the structures left out of the fit.
We performed this predictor test by fitting the Hamil-
tonian with first- through eighth-nearest-neighbor pair
interactions to 88 of the 195 structures with energy below
zero. The resulting ECI are very similar to those ob-
tained in the full fit and were used to compute the ener-
gies of the other 87 structures with energy below zero.
The rms error for these 87 structures was 0.0481, only
slightly higher than the rms error obtained when the
structures are included in the fit (0.0403). This indicates
that we can predict the electrostatic energies for these
structures with high accuracy without including them in
the fit.

Figure 3 shows the value of the ECI obtained by fitting
the long-ranged Hamiltonian (V, to V, ~) to the electro-
static energies. Again the interactions obtained from
fitting only the structures with energy below zero (broken
line with open squares) converge much more rapidly than
the exact solution (solid line with filled squares) or the in-
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FIG. 1. Comparison between the exact ECI
(filled squares with solid line) and the ECI ob-
tained with two different fits {broken lines).
The ECI obtained by fitting a Hamiltonian
with first- to eighth-nearest-neighbor interac-
tions to the energy of all 291 structures are
shown in solid circles. The ECI indicated with
squares were obtained by only fitting to the
structures with energy below zero.
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FIG. 2. Energies as reproduced by the rapidly converging
cluster expansion (open squares in Fig. 1) versus exact electro-
static energies. The energies are in units of q /8meod where d is
the nearest-neighbor distance.

teractions obtained from fitting all the structures (broken
line with solid circles). The rms difference between the
exact and fitted energies for the low-energy structures has
now decreased to 0.0157.

Figures 1 and 3 show that the ECI converge faster
when only configurations with energy below a cutoff (E,)

are included in the fit. The effect of varying E, is sys-
tematic: The convergence of the ECI can be accelerated
or slowed by, respectively, bringing the cutofF energy to
lower or higher values. This is demonstrated in Fig. 4
which shows, as a function of the energy cutoff, how
many interaction shells have to be included so that the
last ECI has decayed to l%%uo of V, .

IV. DISCUSSION

Although the exact ECI in this system decay only as
r ', it is clear that an extremely good fit to the low-

energy states can be obtained with a rapidly decaying set
of effective-pair interactions. The change in the value of
ECI as the interaction range in the Hamiltonian is ex-

tended from the eighth- to the fifteenth-nearest-neighbor
distance, is to be expected here since we are not obtaining
the exact ECI. In all cases, however, the ECI remain
repulsive and convex decaying with distance, a signature
of electrostatic interactions. The convergence rate of the
ECI can be systematically varied by changing the cutoff
energy.

The fact that a rapidly converging cluster expansion
can be obtained should prove to be extremely useful to
predict ground states and phase diagrams of ionic sys-
tems with real-space models. In these cases, the system
will only sample the low-energy states so that a rapidly
converging expansion can be used without sacrificing ac-
curacy. In this respect, it is important to note that the
high-energy structures that were not used in the fit are
still predicted to have a high energy, so that they do not
interfere with the low-energy states: For the long-ranged
Hamiltonian (V, —V») all configurations with exact en-

ergy above the cutofF were predicted to be above the
cutoff by the cluster expansion. With the intermediate-
ranged Hamiltonian, only one structure with energy
above the cutoff was predicted to be below the cutoff by
the cluster expansion.

The cutoff energy will determine for what range of en-
ergies the cluster expansion is valid. In our example,
the cutoff energy was 1.6366 above the ground-state
energy [in units of (q, —

q2 ) /32m rod] In .an
( A )2(B+ 8+ )06 perovskite, for example, the distance
between the 8 ions is typically around 0.4 nm so that this
energy cutoff corresponds to an electrostatic energy of
1.85 eV above the ground-state energy. It seems there-
fore unlikely that a system in equilibrium will ever sam-
ple states that are not well reproduced by the fast decay-
ing cluster expansion.

The rapid decay of the electrostatic ECI fitted to the
low-energy part of configuration space can be understood
from the requirement of local charge neutrality in struc-
tures with low energy. Low-energy structures do not
have long-ranged charge imbalance, implying that, on the
average, ions do not efFectively interact with their envi-
ronment outside some radius of charge neutrality. Of
course, ions interact individually over much larger dis-
tances, but on average, the electrostatic field from the re-
gion far away does not depend on the details of the ar-
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FIG. 3. Similar to Fig. 1, but for a Hamil-
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FIG. 4. Shell at which the effective-pair in-
teraction has decayed to 1% of the nearest-
neighbor interaction as a function of the cutoff
energy.
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rangement in that region, provided the charge is constant
there. Only in structures in which there are large
charged regions will long-ranged effective interaction be
necessary. In the latter case, the short-range correlation
functions are not affected by the charge imbalance, hence
a short-range cluster expansion cannot reproduce the
electrostatic energy in those cases.

Our results parallel earlier observations that the radial
distribution functions of ionic liquids can be reproduced
by model simulations with relatively short-ranged in-
teractions between the ions. ' ' It thus seems to be fairly
general that low-energy states in ionic systems may be
modeled with short-ranged interactions. Some light can
be shed on the origin of these phenomena by considering
the well-known Ewald summation method. In the Ewald
technique the electrostatic energy is divided into three
terms: E„,=E,+E„+Ek,where E, is a constant term,

Q—gq;,

E„ is a real-space pairwise term,

I erfc(ar )E„=—
q;q,

l,J

and Ek is summed in k space,

Ek = —g S(lt) exp

S(k) is the Fourier transform of the set of point charges.
For a large-enough value of the parameter a, the real-
space contribution is rapidly convergent. Since Ek is
dominated by the structure factor intensity near the ori-
gin, its magnitude will be small for structures with no
long-wavelength charge imbalance. For these structures,
Ek can be neglected and the energy can be obtained in
real space with a limited interaction range. We verified
this numerically. Using a=1.41 divided by the nearest-
neighbor distance, we found that for most of the struc-
tures with E„,& 0, Ek was between —0.05 and 0.05. For
structures with E„,& 5, Ek becomes of the same order of

magnitude as the total energy. The technique of neglect-
ing Ek in the Ewald sum has been used by some research-
ers to accelerate molecular-dynamics simulations of ionic
systems. ' ' To test the accuracy of this approximation
and compare it to the cluster expansion we computed the
formation energies for all 291 structures using only the
terms E, and E„with the latter term truncated after the
fifteenth-nearest-neighbor distance. We chose a equal to
0.475 as this gives the same ratio for V»/V, as for the
fitted expansion in Fig. 3. Although this approximation
resulted in much more accurate formation energies than
can be obtained with the truncated 1/r interaction, the
rms error for the structures with E &0, was a factor 2.5
larger than with the fitted Hamiltonian.

Since the exact ECI for our model system decay as I /r,
all the expansions presented here will only be accurate in
a limited region of configuration space. In less ionic sys-
tems, both charge transfer and screening can reduce the
energy of high-energy configurations so that it can be ex-
pected that even the exact ECI in these Inaterials will de-
cay faster than r '. In metals, for example, atoms will
typically only transfer charge from atoms that are io
close proximity so that configurations with long-range
charge imbalances will never occur. Convergence of the
ECI for these systems was already demonstrated by
Magri, Wei, and Zunger. In their model system, the
charge on an atom was variable and proportional to the
number of unlike atoms in the nearest-neighbor shell,
ensuring that an isolated charge is screened within the
nearest-neighbor shell. This charge-transfer mechanism
prevents states in which like atoms are clustered together
to have a very high energy, and therefore leads to a rapid-
ly converging expansion. Although first-principles
electron-density calculations have confirmed that this
simple charge-transfer model is realistic for metallic al-
loys, ' its applicability to strongly ionic systems such as
oxides or halides has not been verified. However, our
work demonstrates, that even if these energy lowering
mechanisms do not occur, a convergent cluster expansion
can be constructed for the important low-energy part of
configuration space. One can thus be confident that ionic
systems can be modeled with short-ranged real-space
cluster expansions.
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V. CONCLUSION

We have shown that even in a rigid electrostatic system
that undergoes no screening or charge transfer, a rapidly
converging cluster expansion can be constructed that ac-
curately reproduces the low-energy configurations. This
expansion can be constructed by fitting the ECI to a set
of low-energy structures. The convergence rate of the
ECI increases as less high-energy states are used in the fit.
When including configurations with very high energy in
the ECI fit, the exact r ' behavior can be approached. It
is thus clear that short-ranged real-spa e cluster expan-
sion can be used for applications where only low-energy

configurations are required, such as phase-diagram and
free-energy computations. Although our model consisted
of ions on a rigid lattice, our conclusions should remain
valid when relaxations are allowed.
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