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Experimentally, magnetically modulated resistance (MMR) techniques are effective in ascertaining the
properties of granular superconductors, which can be modeled as a network of Josephson junctions.
Each junction is parametrized by a critical current, with a capacitance and resistance in parallel to ac-
count for the nonsupercurrent components. The overall current-voltage behavior of the network, in the
presence of an external magnetic field, is given by a set of coupled nonlinear ordinary differential equa-
tions, which are studied numerically. Features of interest in the simulated experiments arise from effects
of the applied field on couplings, and the transitions between multiple solution classes of the differential
equations. Through these simulations of the phase dynamics, details of the weak link MMR signal can
be understood, the typical signal being reproduced with large enough networks.

I. INTRODUCTION

Granularity is a common feature of superconducting
materials, particularly those with high 7T,, which have
small and anisotropic coherence lengths so that even
small scale disorder can lead to weak links. That such
samples are often describable as disordered arrays of
Josephson coupled grains was clear soon after these ma-
terials became available,! and was confirmed by subse-
quent experimental work as well.2 It has proved difficult
to grow good and large single crystals.

Parallel to the intense interest in high-T,, junction ar-
rays have an intrinsic physical interest.®> Ordered net-
works have been a subject of study as oscillator arrays,
focusing on features relating to coherence, stability,*>
and nonlinear dynamics.® The statistical mechanics of
junction arrays have been studied, with work done on the
effects of frustration,”® glasslike properties,” and critical
behavior,!®!! focusing on the phase transition in an exter-
nal magnetic field and applied current.!?

The magnetically modulated resistance (MMR)
method, being a form of modulation spectroscopy where
obscured structure is uncovered by examining a deriva-
tive response,!® has been very effective in determining the
quality of superconductors,'® particularly in revealing
multiple superconducting phases,!®> and weak links? when
present. The method consists in applying a field of the
form B+ B sinwt, with B; small and B, <B,,. The resis-
tance then is approximately

R(B,+Bsinwt,T)=~R(B,, T)+ OR
B |B,

B sinwt . (1)
The response is phase detected at the modulation fre-
quency o, picking up the derivative signal proportional
to AR /3B which, close to T,, =(3R /3T )(dT,/3dB).
Thus, a superconducting transition results in a relatively
narrow intrinsic peak, centered around 7, with a height
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proportional to R /9T. Multiple phases result in multi-
ple intrinsic peaks.!’

The weak-link resistance produces an extrinsic peak
below T, which is not proportional to dR /97, but arises
from the strong magnetic-field dependence of the weak-
link contribution to the resistance tail. More important-
ly, it changes shape in a characteristic manner with the
applied field strength B; shifting to lower temperatures,
broadening and decreasing in height with increased fields
(Fig. 1). It is thereby distinguishable from the intrinsic
effects. Rough weak-link models reproduce much of the
qualitative extrinsic peak behavior,? and similar modeling
efforts to understand resistive tails'® reinforce this con-
clusion. Under much higher fields than those employed
in MMR experiments, flux pinning, creep, or flux-
trapping effects are expected to produce tailing as well,
even with single crystals.'” At low fields, these effects
should be negligible.

The region of the sample explored in MMR experi-
ments depends on the frequencies of the driving currents
applied to the sample. For reasons of convenience, we
here consider magnetically modulated electrical resis-
tance (MAMER), which involves the application of a dc
current and measuring the voltage across the sample.
Thus the overall resistance, including that arising from
weak links in the current path, is probed. A further
simplification in the model is gained by restricting atten-
tion to two-dimensional granular networks, analogous to
thin-film studies, thereby avoiding the more complicated
forms of field penetration in a three-dimensional junction
network.!®

Most discussions of resistivity in junction arrays center
on the flux-lattice dynamics, particularly since the XY
model is amenable to description in terms of vortex
behavior and the Kosterlitz-Thouless transition.!®2°
Here, however, we do not focus on the vortices, but the
grain phase dynamics, which provides a more direct ap-
proach to the weak-link resistance.
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An adequate treatment of the weak-link MAMER sig-
nal will have to account for the strong coupling of junc-
tions to one another within the network. The voltages
across the junctions (V «<d¢ /dt with ¢ the macroscopic
phase difference characterizing the junction) oscillate
strongly, with amplitudes comparable to the average volt-
age. Furthermore, an additional constraint that must be
taken into account, one that does not appear in studies of
Josephson junctions as circuit elements (e.g., Refs. 21 and
6), is that the phases are constrained: ¢ is not an in-
dependent variable for each junction. In the London
gauge, a uniform macroscopic phase 8; is associated with
each grain i, which enters into the phase difference of
each junction that grain takes part in with neighboring
grains; these 0, are independent.

In studying the time evolution of the grain phases, we
begin with networks containing a small number of grains,
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FIG. 1. The typical shifting behavior of the MAMER peak
with varying magnetic fields B,. The dotted curves are the
MAMER response, the solid lines appearing above them are the
dc resistance (dashed lines are X 10, in order to emphasize the
tailing). On a sample of EuBa,Cu;0,_,, using an external
current of 5 mA. (a), (b), (c) with B;=5 G, (d) with B;=1 G.
Taken from Ref. 2.
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and cross over to larger system sizes. The results ob-
tained from detailed network models of many grains ap-
proximate to the general case, and can be related to the
understanding gained by the study of mesoscopic sys-
tems. This establishes a baseline of behavior for pure
weak-link effects. There is also interest in the detailed
behavior of mesoscopic networks of junctions, as highly
nonlinear dynamical systems worth investigation in their
own right. Such systems may also be experimentally real-
izable, contributing to our understanding of Josephson
junction networks at the level of phase dynamics.

II. THE COUPLED JUNCTION NETWORK

To study the detailed MAMER response of a granular
system, we model it as a two-dimensional randomly
clustered network. In order to focus on the weak-link
behavior, the intrinsic peak is included in a phenomeno-
logical manner, i.e., only junction-crossing currents meet
with resistance. The external magnetic field is applied
perpendicular to the plane of grains and is assumed to
penetrate uniformly; the effects of fields generated by
currents within the network are neglected. The geometri-
cal complications that occur with real granular systems
are absorbed within the disorder accounted for by ran-
domly varying grain parameters. Following the
McCumber model for a single junction, each contact be-
tween adjacent grains is parametrized by a normal resis-
tance and a capacitance in parallel to an ideal Josephson
junction. This allows for a realistic description that
departs from the usual idealized square-lattice context;
junction arrays are studied in Refs. 22-24, without in-
volving details that would be superficial at this level of
analysis.

Each of the current components through a junction
can be expressed in terms of the macroscopic phase
difference across the junction, ¢,;, leading to an ordinary
nonlinear differential equation:

®,  d’4; @

dé;;
5= it 5 Gy
27 dt 2

Yodt

with C being the junction capacitance and G the conduc-
tance for the normal quasiparticle current.

The gauge independent form for the phase difference is
$¢,;=6,—6,— 4, , (3)
where 6 is the macroscopic phase within a grain, which is
spatially uniform in the London gauge. The phase shift
A;; is dependent on the applied magnetic field, and is im-
portant when there are junction loops, in which case it
cannot be gauged away.

It proves convenient to work with dimensionless pa-
rameters; defining i=I1/J, ¢=C/C, g=G/Y9, and
i,.=I./9, where J,C,§ are appropriate current, capaci-
tance and conductance scale values for the system. The
time ¢ is rescaled as

T=wct=-q70‘§t 4)

to obtain a final form of
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iij =Bcij($,-j +g,1¢,1+iC,JSln¢’j , (5)

where ¢=d¢/dr. An analog of the single junction
McCumber parameter in the rescaled equation appears as
B=2wJC/P,9*. The modulation frequency will also be
expressed in rescaled form, so that the applied field is
B=By+BsinwgT.

The full set of coupled ordinary differential equations
(ODE’s) required to specify the time evolution of the
phases O; is obtained by current conservation on each
grain i;

i+ 0 =0 ©)
J

with ‘%) signifying the externally applied current to a
grain. The number of equations can be reduced by one,
since we are free to choose an overall phase, giving N —1
independent equations and variables for an N grain sys-
tem.

The normal capacitance and conductances, ¢ and g,
will be taken to be constant over the temperature ranges
of interest. Factors that enter into the critical current
and the phase shifts are where the temperature and field
dependences manifest themselves. If the grains are small
compared to the penetration depth, the magnetic field
can be taken to be uniform in space, while the macro-
scopic phases remain constant within each grain. The
critical current becomes

A(T,B)
c0 A(Bo)

2kT

i.(A,T)=i tanh (7)

with the gap parameter taken as the standard approxi-
mate Bardeen-Cooper-Schrieffer (BCS) form (assumed
useful for nonzero fields also)

A(T,B)=A(By)tanh(1.74'T, /T —1) (8)

with A(B,)=1.76kT,(B,), using another BCS result ex-
tended to nonzero fields. It is sufficient for our purposes
that these approximations reflect the general behavior,
rather than be correct to any high accuracy. The current
at T=0, i., can be related to the normal tunneling con-
ductance scale as i ,~7GnaA(Bg)/2ed, or fixed by
determining the single junction I, at a given temperature.
The (weak) magnetic-field dependence enters through the
critical temperature, T,(B). This is approximated linear-
ly, as the modulation field B, is small;

dT,
TC‘(BO +B,Sinw3’r)2 TC(BO )+ T

4B BOBlsina)B'r . 9)

The phase shift A is straightforward for small grains,
27 i
A,.j—gofi Al . (10)

With grain sizes non-negligible compared to the
penetration depth, which is the case of interest, the phase
shifts have a more complicated dependence on the
geometry. The London gauge is available, since each
grain is simply connected; so in grain interiors A« —J_,
and the phase 6; is uniform within each grain i. When
the pair tunneling between grains is dominated by very

small regions that are closest to each other, Eq. (7) can be
applied directly. The other limit of interest is that of rec-
tangular long junctions, where the full interference effects
come into play through a flux-dependent modulation fac-
tor. This can have important consequences with small
networks, while it is qualitatively not significant when
disordered networks with large numbers of coupled
grains are studied. Since the interference within mesos-
copic scale networks is an interesting question, the strict
rectangular limit will be considered in general.

The i, and A expressions given for small grains can
now be taken as coming into the description of
infinitesimal current densities. The approximation em-
ployed will be that within each junction the magnetic
field is uniform. Since the field is expelled from the inte-
rior of the grains, the effective uniform field between the
grain surfaces will be significantly larger than the applied
field. This can be thought of as the applied field multi-
plied by an “area” factor,? approximately the total area
perpendicular to the field, 4, divided by the area be-
tween grains that has a nonzero field, 4 ol

4,

B,=a;B~—B . (11)

gl

All previous equations dependent on B, such as Eq. (9)
can be taken to depend on B, where appropriate, with
implied a, factors. In the following, B,,=a,B, and
B,,=a,B, will be used.

In the case of a rectangular junction, the dependence of
the critical current on the field is well known?® leading to
the supercurrent expression

sin(7® /P,)
TP /P,

i, =i, (A, sin(0,—0,— A ,i4) (12)
for the whole junction; with 4,4 the phase shift Eq. (10)
for the midpoint of the junction, and i.(A,T) being iden-
tical to that in Eq. (7).

When more than one junction exists in a loop, it is only
possible to gauge away one of the 4 ,,;’s by fixing a coor-
dinate origin. Consider the case of three grains, with
three rectangular junctions in between, as the simplest ex-
ample of such a loop. The relationship between the ap-
propriate A _.4’s for each junction will depend on the
geometry. It is no longer possible to rely on a flux argu-
ment alone, as only one equation can be obtained to re-
late the three phase shifts,

D ¢=A4A,p+ Ayt 435 =Py - (13)

loop

The vector potential itself must come into play, not the
flux alone.

Considering the complexity and disorder of real sys-
tems, it is not meaningful to calculate detailed relation-
ships for different geometries, only order of magnitude es-
timates are needed to guide parameter assignments. It
will be sufficient to use Eq. (13) as a guide to assign values
to phase shifts even when they are underdetermined. In
any case, a degree of accuracy for phase shifts is impor-
tant primarily for the study of mesoscopic networks. At
larger sizes, a random phase-shift distribution becomes a
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fair approximation, though our simulation accounts for
the phase-sift constraints in this case also.

III. QUALITATIVE ANALYTIC RESULTS

While the complex nonlinear set of ODE’s presents no
practical alternative to reliance on numerical simulation,
some helpful analytic results exist that are invaluable in
understanding the behavior of the solutions.

The long-time average of the scaled time-dependent
voltage (v =V§/J) across the junctions, v;;(7)=4¢,;, is of
interest for the MMR response

$um (14)
-

(v ),= lim

T—> 00

This also means that the average voltage can be obtained

from the leading term in the asymptotic expansion of the

phase functions, 8; ~v;7+o0(7). The remainder of the ex-

pansion includes an oscillatory function, the limit cycle.

However, this asymptotic series is not practically obtain-

able, as the v;’s are strongly dependent on the limit cycle
function.

Nevertheless, some qualitative information can be ob-
tained from the differential equations without solving
them, looking at solutions that have a periodic form for
the limit cycle, when the external field is constant in time:

L=
0;=v,r+ay’ + 3 a’cosnwr+bsinnwr . (15)
n=1

From the form of equations such as Eq. (5), particularly
the sing term, an important condition for the existence of
periodic solutions can be derived:

v, =no, (16)

a single w giving the frequency for all oscillations. The
periodic solutions are thus labeled by a string of integers,
and the voltage across a junction v;; =v; —v;. A periodi-
city index of O for such a voltage can be roughly taken to
indicate a junction that is “superconducting,” *1 being a
“normal” oscillation, +2 a period doubling and so on.
Work on small networks indicates that solutions with n;
being O or =1 predominate.
A solution labeled by

'r’:(nl,...,anl) (17)

need not exist at every point in parameter space. The
constant phase solution where the whole circuit is super-
conducting, for example, cannot exist for currents larger
than a critical value. There are chaotic solutions that are
not periodic; corresponding to index integers taking
infinite values. The existence of chaos is expected even in
small networks, since it occurs in driven single junc-
tions,?” and the currents within the network oscillate
even if the applied current is constant.

In any case, we can expect that multiple solutions with
different 1) values can coexist, with convergence to either
being determined by the initial values of 6; and 6;, which
were left unspecified. A significant capacitance term in
Eq. (5) means that a no-passing rule and a consequent sin-
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gle asymptotic limit cycle?® does not exist.

The problem of tracing all such families of solutions,
which show up as distinct branches on the I-V curves for
the system, while interesting, is very computationally in-
tensive, and not critical for understanding MMR
behavior in general. Qualitatively, however, we can ex-
pect discontinuities in average voltages as a function of
temperature or current, arising from jumps between
different branches. Changing 7 means changing i,’s, and
a continuous deformation of the I-V curves, leading to
transitions. Studies of junction arrays have found jumps
in I-V characteristics, and have interpreted them as a re-
sult of the introduction of new vortices into the array.?*
The discontinuities that are associated with transitions
between different solution families are more general, as
they appear in single-plaquette networks as well, where
no changes in vorticity take place.

These discontinuities are readily apparent in mesoscop-
ic systems, but tend to get averaged out into a smoother
shape when the number of grains increases. The reason is
most likely related to the rapid attractor crowding with
increasing degrees of freedom that occurs in oscillator ar-
rays,® which should be similar in this respect to granular
networks, making transitions much easier, frequent, and
resulting in progressively smaller discontinuities.

The important point for the simulation is the link be-
tween the frequency of the overall voltage and its aver-
age, {v)=no, n being an arbitrary integer, when the ap-
plied field is constant.

In typical experimental conditions, the modulation fre-
quency will be much smaller than the natural frequency
of the voltage oscillations: wp <<®; with @ being related
to the average voltage as in Eq. (16). This is almost al-
ways the case, except when the network nears total super-
conductivity. In such a situation, the voltage oscillations
will behave like the external field was constant over many
natural periods, and will adiabatically change as the
external field very slowly varies. So solutions are expect-
ed to be the appropriate limit cycles [Eq. (15)] according
to the field value at that time.

We write the expected solution at a time 7, as

9=v(Be)(T—To)+ao(7'0)+pm(Be)(T—To) (18)

with the function p being an oscillatory part with field-
dependent frequency and form, and v(B,) being the aver-
age voltage for the solution of the equations at a given
time 7, and field B,(7,), with the explicitly 7-dependent
terms held constant at their value at 7.

We can patch the solutions for all 7, together by set-
ting the “‘constant” @, in Eq. (18) appropriately, getting

dv | _
6(r)=v(B,(1))r— fdfrd—l;_ +Puis, o () - (19)

Corrective terms to the oscillatory part, indicated by p,
are ignored, as the high-frequency oscillation will give a
negligible sinwz7 Fourier component. Corrections hav-
ing to do with the induced voltage arising from an elec-
tric field E < —3 4 /9t are in a similar fashion negligible
on account of Eq. (19) and the fact that the applied field
frequency wy <<1. This expression, with constant field v
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values, reproduces the correct derivative forms, so the
leading asymptotic terms for the time-dependent field
differential equations are derived from the time-
independent solutions.

IV. SIMULATION RESULTS

The ODE’s are numerically integrated at constant
fields, in order to obtain the time-averaged voltage across
the network. Two separate sets of 8 and 6’s are kept
track of, corresponding to the high and low fields By+B;
the difference between the high and low v’s computed for
each temperature gives a good approximation to the
MAMER response.

The intrinsic peak is included in a purely phenomeno-
logical fashion, as a proper accounting for losses within
grains would make the phase dynamics problem much
more complicated, and would have any appreciable effect
only close to T,. Therefore, a model that has proved use-
ful previously? is employed, and the intrinsic and extrin-
sic responses are treated as entirely independent. The in-
trinsic resistance is described as

—a(T/T,—1+aB)

R, x[1+e 17! (20)

with adjustable parameters a and a obtained from experi-
mental fits; the intrinsic MAMER response is
dR;/3B| By

The system will be defined by a number of parameters
and scales that were introduced previously. Order of
magnitude estimates useful for the simulation are ob-
tained by reference to experimental conditions. Table I
lists the relevant material parameters, with some sample
values. In it, / and d are typical junction lengths and sep-
arations. The capacitance scale C~el?/d; e~10¢, is
taken here.

The scale ¢ is estimated from sample resistance data

TABLE 1. Sample parameter list. All values given are order
of magnitude estimates that prove useful for realistic simula-
tions.

Typical

Variable value Units
1 1 um
d 1 nm
d'~d+2A 20 nm
as=l/d’ 500
e 0.1 pF
g 0.1 Q!
J 0.2 mA
J.(0) 2 mA
I 0.1 mA
B, 50 G
B, 1 G
fB 10 kHz
T.(B,) 100 K
dT./dB !Beo 1 mK/G
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just above T,; J is taken to be equal to I, which is about
the average current through an individual grain in large
experimental systems. The scale J,(0) is about the aver-
age zero-temperature critical current at applied field B,
which can be estimated from higher-temperature values,
or by other means. It is typically about an order of mag-
nitude larger than I.,. With these parameters, terms in
Eq. (5) are comparable in magnitude, so that neither
resistive nor capacitive currents are generally negligible.

Mesoscopic grain clusters are simulated with free
boundary conditions, and are generated by randomly dis-
tributing grain centers within an area, subject to the con-
dition that they cannot be closer than a certain length, re-
lated to I. The grains themselves are formed by the Voro-
noi cells around these centers [see inset diagrams in Figs.
4(a) and 5(a)], which gives the length for each junction.
This length /;;, is used in determining individual junction
parameters, based on the overall scales. A constant
external current is applied to one grain on the border of
the network, emerging from one opposite to it on the per-
imeter of the cluster.

The easiest case to study is that with three coupled
grains. This is the smallest configuration with interesting
behavior and I-V branch structure, and also the one
where the features are most distinct, and easily comput-
able in a fashion that allows fairly detailed understanding
at the level of voltage oscillations. With the benefit of
comparisons to larger grain networks, it is even possible
to see the first signs of the emergence of the typical
MAMER response. This is also a unique physical sys-
tem; though a “Josephson triode” has been experimental-
ly studied,? its analysis was in terms of triangularly ar-
ranged independent junctions as circuit elements, not
coupled grains.

Figure 2 displays a sample I-V curve for the three-
grain configuration, where all grains were taken to be
identical for convenience in mapping out the possibilities
exhaustively (differing grain parameters brings about no
significant qualitative change in the picture). The
features represented are the trivial fully superconducting
branch, n=(0,0); a solution that exists at all v that has a
periodicity index =(1,—1); and a branch where one
junction has a zero average voltage, ‘“‘superconducting,”
for 7=(1,0). In between the major branches there is a
region where strange oscillating behavior sets in, starting
with n=(2, —2), owing apparently to chaotic behavior.
This feature consists of many small branches close to
each other; detailed study of its geometry or possible
fractal characteristics has been postponed for future
work, since its immediate significance in understanding
MAMER responses appears minimal.

The existence of multiple branches and hysteresis in
the three-grain I-V curve is not surprising, as a simple
branch structure and hysteresis exists for a single junc-
tion as well. In analogy to that, we can point out that the
existence of a non-negligible capacitance term in the
ODE’s Eq. (5) is important in allowing multiple
branches.>°

The MAMER simulations on this system clearly
display the discontinuities expected (Fig. 3). The most
common behavior is for the oscillations close to T, to
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FIG. 2. I-V curve for symme-
trical three-grain system. Be-
sides the trivial superconducting
branch, which is vertical, there
are two main branches with
7=(1,0) and n=(1,—1), and a
feature between these that corre-
sponds to higher periodicities
and chaos. Inset are sample
wave forms for the two main
branches, and for when the
] period doubling first occurs.
The voltage across each junction

0.5

v(t)

is shown; the time average of the
voltage traced in grey is the V
appearing on the I-V curves.
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have a periodicity of (1, — 1), which become forced into a
(1,0) branch as the temperature is lowered, producing the
initial discontinuity in the average voltage, shown in Fig.
3(a). This typically is followed by a transition to the fully
superconducting state as T is decreased further, introduc-
ing a second discontinuity. There are cases where jumps
to branches with higher periodicity occur, even chaos,
but this is relatively uncommon. There are aspects of
these plots that are of further interest. The first “peak”
below T, is showing the rudiments of the trend of shifting
to lower temperatures, broadening and lessening in
height, though the shape bears little resemblance to the
smooth weak-link peak of experiment. This is the first
sign of the MAMER weak-link response. The rest,
though often large in magnitude, is entirely the result of
the small system size, which allows persistence of the
solution for By+B; on a certain branch for large-T
ranges. Another effect of small size is in the strong sensi-
tivity to the applied field, and the possibility of negative
MMR responses; the effects of fluxes through junctions
and phase shifts are quite pronounced.

More properly mesoscopic system sizes begin to
display a clearer trend towards reproducing the extrinsic
peak behavior, e.g., with 20 grains. However, the conse-
quences of small size and boundary effects manifest them-
selves in the unpredictable shape of the peak, sometimes
including double peaks; and the clear discontinuities that

remain, though these become much smaller in size (Fig.
4). Furthermore, sensitivity to the grain configuration is
present, and ‘“peaks” at lower temperatures resulting
from persistence on certain branches can occur. These
peaks, though to be expected in mesoscopic systems, are
spurious in terms of the extrinsic MAMER response of
more realistic system sizes.

Simulations more relevant to real experiments are
achieved when the number of grains exceeds N ~ 100,
where discontinuities are washed out within the noise lev-
el, and finite size and boundary effects are reduced. Such
large grain clusters are simulated with quasiperiodic
boundary conditions in one direction. The grains are
randomly generated on a long rectangle, @ Xb in dimen-
sions, @ <b. The shorter sides are where the external
current is applied, while the long edges are identified,
y =y +a, like on a cylinder. It must be noted that these
conditions are not strictly periodic, on account of the
coordinate dependence of the vector potential entering
into the phase shifts. However, the effective randomiza-
tion of A4;; at large N means problems with phase-shift
constraints are not very important, while the benefit of
reducing boundary effects is considerable.

With N =125 (Fig. 5) the typical MAMER behavior is
readily apparent: both the peak shifting behavior and the
shape of the extrinsic peak closely corresponds to com-
mon experimental observations. Simulations were also
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FIG. 3. Some MAMER simulations for an (asymmetric) three-grain system. The signal is derived from the difference of upper and
lower field voltage averages, as with (c) being obtained from (a). The applied field B, increases as (b) 1, (c) 2.1, and (d) 5; scaled ac-
cording to B;=1 from Table I. Note that B, is not changed. Effects of the small system size are apparent, in the discontinuities, and
the behavior of the spurious peaks, including a crossing to negative values in a narrow applied field range. The grey line is the overall
MAMER result, including the intrinsic peak at T/T.(By)=1.
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FIG. 4. MAMER simulations for a 20-grain network, depicted inset in (a), with lines representing the junctions, white space grain
interiors. The signal in (c) is the difference of the Byt B, voltage averages in (a). B, increases as (b) 2, (c) 7, and (d) 10. Size and
boundary effects are less pronounced than in Fig. 3, but clearly present, so that the typical MAMER signal and behavior with field
changes have not emerged beyond a trend.
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FIG. 5. Realistic behavior emerges with N =125, the strip with quasiperiodic boundary conditions shown inset in (a). The plots
are rather noisy, but the typical MAMER weak-link signal shape and behavior through increasing fields B, is present; (b) 10, (c) 18,
and (d) 24. The grey line is a smoothed plot, with the initial intrinsic peak, as usual. The error bars that appear on some points come
from rough error estimates relating to the stability of computed v averages.

run with networks consisting of up to 511 grains; the
behavior observed differs in no significant way from that
with N=125. Accordingly, only results from this net-
work are reproduced in Fig. 5, the smaller grain number
reduces the computational cost and allows for a more
thorough exploration of this system.

One feature of note in the simulations with larger num-
bers of grains is that there is an appreciable degree of
noise in the computed MAMER signal. This is at a level
that does not change when the size is quadrupled to
N=511, and spectral analysis produces no identifiable
difference when different N simulations are compared.
The clearest dependence of the noise amplitude on the
material parameters comes through the grain size: small-
er grains produce less noise. This is qualitatively in ac-
cord with experimental observation,?! though the nature
of the results does not allow direct comparison. The
noise is partly on account of errors introduced by the nu-
merical simulation, along with contributions intrinsic to
the phase dynamics, such as the smaller scale branch
transitions that take place. Therefore, current results
pertaining to noise must remain as rough qualitative
statements.

The disordered nature of the junction network should
be noted in discussing these results. Ordered arrays,
which attract much interest for technological reasons,

display behavior like phase-coherent solutions,>? or even

dependency on applied current direction.> No such
effects appear in the large scale simulations; in accor-
dance with expectations that disorder results in decreased
phase coherence.?*

V. CONCLUSIONS

The result of the simulations indicates that the typical
experimental extrinsic peak in MMR studies can be
reproduced by a model relying on weak-link losses alone.
That this is on the basis of accounting for the complex
phase dynamics of Josephson junction networks suggests
that, as expected, weak links are the primary explanation
for the extrinsic peak, rather than effects involving trap-
ping of flux or other possibilities, which may indeed be
important at much larger fields. While numerous
simplifications have been relied on, such as a restriction
to two dimensions and the more straightforward
MAMER technique where MMR frequency regimes are
concerned, these serve to focus on junction dynamics in
detail, and do not affect the general conclusion.

Investigation of mesoscopic scale grain configurations
is valuable in understanding how the extrinsic peak
emerges out of phase dynamics, and in studying the
crossover to typical MAMER behavior with increasing
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system size, but it is conceivable that such small networks
have some interest on their own. Even the simple three-
grain system is not just a collection of single junctions,
and has interesting features of its own; further study of it,
both experimental and theoretical, should be worthwhile.
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