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Multistability of conductance in doped semiconductor superlattices
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We use a simple nonlinear Kronig-Penney model to study multistability and discontinuity in the current-

voltage characteristics of doped semiconductor superlattices in a homogeneous electric field. Nonlinearity in

our model enters through a self-consistent potential used to describe the interaction of the effective electrons

with charge accumulation in the doped layers. We show that the process of Wannier-Stark localization is

slowed down by the nonlinear effect in the doped layers, and that the shrinking and destruction of minibands

in the superlattice by the nonlinearity is related to the occurrence of discontinuity and multistability in the

transport of electrons.

The electric-field-induced Stark-ladder effect, Wannier-

Stark (WS) localization, and the electro-optical properties
and device applications in the semiconductor superlattices

(SL), such as GaAs-A1, 6ai,As, have been studied exten-

sively in recent years. Quantum effects become significant
in such systems because the electron wavelength is of the
same order as the superlattice constant. Recently, there has
been renewed interest in the study of multistability and dis-
continuity in the current-voltage (I V) chara-cteristic of
doped semiconductor superlattices, both theoretically ' and

experimentally. The charge domain theory for multistability
is based on the idea that the charges of the carriers cannot
move continuously as the biased voltage is increased; in-

stead, they accumulate in one well for a certain time and, for
larger fields, move spontaneously to the next well. Micro-
scopic theories so far have not been able to take a complete
account of the quantum mechanical wave nature of the car-
riers.

As a step toward the direction of considering the wave
nature of the carriers, we propose a simple quantum me-
chanical model based on self-consistent potentials, and study
the transport of ballistic electrons in terms of transmissions
of quantum mechanical waves in a SL heterostructure. We
neglect the scattering of the waves by impurities and

phonons. Our emphasis here is not to build a complete model
that takes everything into account, but rather gain an insight
into the nature of electronic wave coherence and interfer-
ences by considering the interwell coupling and the interac-
tions of an electron with a self-consistent potential, while
neglecting scattering and other effects. By solving a tunnel-

ing and transmission problem for the electrons in the quan-
tum well (QW) heterostructure, we avoid making the usual

assumption of strong barriers and weak interwell coupling.
We demonstrate that multistability and discontinuity in the
transport of carriers are related to the shrinking and destruc-
tion of the miniband structure by the nonlinearity in the
doped layers. We assume, for simplicity, that the longitudinal
and transverse degrees of freedom are decoupled, thus result-

ing in an effectively one-dimensional problem. The interac-
tion of an electron with charge accumulation in a doped layer
is represented by a nonlinear term, that is seen to arise from
a self-consistent potential in that layer.

We consider a SL that consists of a square-well/square-
barrier semiconductor heterostructure; this is a model of con-
duction bands representing the mismatch between two com-
ponent materials of the superlattice. We consider two dif-
ferent models for the location of the doped layers. In the first
model we assume that the doped layers coincide with the
quantum barriers, whereas in the second model the doped
layers are located in the center of the QW's. Following Ref.
10, we write the self-consistent Schrodinger equation for
P(x, t), the wave function for an electron in the SL, in the
absence of an external field, as

A2 82
z+ V(x)

2m Bx

+ W(t, t';x, x')I t/i(x', t')i dt'dx' rP(x, t),

where V(x) is the periodic lattice potential and

W(t, t', x,x') is a kernel describing the interaction of the
electron with the electrons in the charged layers.

We are interested in the time-independent solutions,

t/t(x, t)= P(x)exp(iEt), and by assuming that the kernel is
time independent we have the integral part of Eq. (1) propor-
tional to the stationary density of charges in the doped layers.
If the size of these regions is much smaller than the spatial
variations of P(x), the integral part of Eq. (1) can be re-
placed by the summation of the average contributions of the
localized charges inside the wells, i.e., Z „Wb

I P(x„)I,
where b is the width of the layer and W is the average kernel
in the well. The latter is proportional to e n, /C, where e is
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the electron charge, n, is the charge density in the doped
layer, and C is the capacitance of that layer. For simplicity,
we assume that we have ultrathin doped layers and use
6'-function type nonlinear barriers to represent the self-
consistent potentials; this is an approximation which makes
it possible to obtain a closed form expression for the model.
In order for the 8'-function model to be qualitatively compat-
ible with the original QW structure, we require that the
6'-function strengths are equal to the average barrier height in
a cell leading to the replacement of the integral of Eq. (1)
with the sum X„Wb

~
i/1(x)~ 8(x —x„).The problem then re-

duces to that of studying a Kronig-Penney type model with
nonlinear terms.

When an external electric field is applied along the
growth axis of the superlattice, the most fundamental change
that the field makes is the breaking of the translational sym-
metry. The energy levels of neighboring wells are mis-
aligned, resulting in a WS localization due to the turning-off
of the resonant tunneling between consecutive wells.
Wannier-Stark localization has been used to explain shifted
absorption edges of photocurrent' and widened gap regions
in the transmission spectrum. In this case, the time-
independent Schrodinger equation for the electron in an ex-
ternal electric field c~, with energy E, and approaching a
sample of X periodic potential barriers is

h2 d2
2 i//(x)+ g g(~ P~ ) 8(x —x„) —eÃx (//(x)

Pl=1

=E i//(x), (2)

where g(l 0l ) =pl:go+ gzl i//(x)l 1 p is the potential
strength, go and gz are weight factors (pgz= Wb ), repre-
senting the linear and self-consistent nonlinear potentials, re-
spectively, and x„=na, where a is the lattice constant. We
define a characteristic length l(F) = (6 /2me F) '/, and a di-
mensionless parameter X(F)=(2m/A, e 8' )'/ E. It can be
easily shown that in the linear case (gz=O), between two
adjacent scatters, Eq. (2) is transformed into a Bessel equa
tion of order -„whose solution is expressed as a combination
of Hankel functions of the first and second kind. This so-
lution is also valid in the general nonlinear case (gz@O)
since the nonlinear term is localized; we thus have for the
wave function between x„& and x„,

(t „(z)=A z'"H(„',)(z)+B„z'"H",„'(z),

where H(/3 )(z) are the Hankel functions of the first and sec-
ond kind, respectively, and z(x, g~ =-, ) ' (F)t1+x/
X(gl(Q]3/, is a dimensionless coordinate. The effect of
nonlinearity is included through the amplitude coefficients
A„and B„which will be determined subsequently through
boundary conditions.

We calculate the transmission coefficient for an electron
in a SL in the presence of an external electric field, and use
Landauer's formula to obtain the corresponding conduc-
tance. In order to do that, we must find the wave amplitudes,
(A„,B„),of Eq. (3). Considering the continuity of P(x„) and
the discontinuity of its derivative due to the 6' function at
x=x„, a recurrence relation connecting (A„+, ,8„+,) with

(A„,B„) is obtained as follows:

A„ i=[1+w„(~i//„) )h( )/h( )]A„+w„(~i//„~ )h( )/h( ) 8„,
8„., = [I—w„([P„~')I „")/h„")]8„-w. ([P„[')I„")/I „")A„,

where w„=(2m'/fi )(~zz„) ' ptgo+gz~ p„(z„)~ ] and all
the /i„'s are products (or sum of products) of Hankel func-
tions of z„: h„=Hi/3(z„)H 2/3(zpg) Hi/3(zn)H 2/3(z~),
I (1) H(l)( )H(2)( ) h(2) H(2)( )2 and I (3)

=H(l/3)(z„) . When the self-consistent interaction of the elec-
trons in the doped layers is absent, i.e., when g2= 0, then Eq.
(4) becomes independent of amplitudes A„and 8„, and it
essentially represents a transfer-matrix-type of equation. We
observe that by using the properties of the 8 functions, the
nonlinear Kronig-Penney problem of Eq. (2) is replaced by
the simple, invertible nonlinear map ~ of Eq. (4). In this
map, iteration by one step is equivalent to scattering through
a 8'-function barrier. In order to analyze the properties of the
map M8 and calculate the transmission coefficient T for the
electrons in the presence of the field P~; we use the standard
back-propagation approach, i.e., we fix the amplitude of the
outgoing wave at site % and iterate backwards to find Ao, the
desired input amplitude. We vary the values of A& and obtain
the complete set ofA&'s that corresponds to a given Ao. The
transmission coefficient through the superlattice with jest'

doped layers is given by T= (A/v( /(Ao(, whereas using the
Landauer formula, ' ' 6= (2e /h) T(1 —T) ', we also ob-
tain the conductance 6 for the SL.

In Fig. 1 we show the electrical conductance 6 as a func-
tion of the field strength Ã for various values of g2. In the
linear case (gz=O) and for a moderate electric field, the
wave function of the electrons inside each quantum well is
localized (WS localization) and the transmission is reduced
due to the field induced reduction of the resonant tunneling
between adjacent wells. As the electric field increases, the
electrostatic potential energy of the electrons in each QW is
enhanced by the amount of ca@'; if this value becomes com-
parable to AEg, the energy gap between two minibands,
enhancement in transmission is expected because of the in-
tersubband resonant tunneling. In the case of many mini-
bands this process of enhanced transmission repeats itself
also at higher field values resulting in the oscillatory pattern
of the continuous curves in Fig. 1. This oscillatory behavior
is a manifestation of the competition between WS localiza-
tion and the intersubband resonance-induced delocalization.
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FIG. 1. The effects of nonlinearity is shown from the
conductance-field (G-k) diagrams. For small nonlinear parameter

g2, the transimission and conductance curves are tilted and shifted;
for large g2, multiple transmissions and conductions become pos-
sible. The energy is chosen in the third transmission band (see Fig.
2), but multistability is also observed at other energies. An arrow is
used to indicate a location of discontinuity. Other parameters are
given in the text. The absolute values are used for the field
strengths.

We note that the delocalization effect is completely absent
from a single band model. The effects of WS localization and
the intersubband resonance-induced delocalization can be
observed through phptpn absprptipn and luminescence

In the case of weak nonlinearity (go=0.05 in Fig. 1), the
oscillatory behavior of transmission coefficient and conduc-
tance in the field remains similar to the linear case. However,
the left and right sides of each peak become asymmetric,
which means that (a) the WS localization process is slowed
down in the presence of nonlinearity in the doped layers, as
shown by the smaller slopes of the increasing curves in Fig.
1; and (b) the widths of the minibands shrink in the presence
of moderate nonlinearity, so that the intersubband resonances
occur in a narrower range of field values, resulting in the
rapid drop after T or G reaches a peak value. Finally, drastic
changes are observed in the case of strong nonlinearity
(g2= 0.25 in Fig. 1). We notice that WS localization process
is further slowed down in a increasing field, whereas the
miniband structure is totally destroyed by the nonlinearity,
resulting in abrupt changes in transmission and conductance,
including the occurrences of discontinuity and multistability.
In Fig. 1 we use a =20 A, N=40, and F. =0.32 eV (this
energy is roughly at the center of the second miniband of the
linear model). For the barrier strength, we use p = 2.0 eV A;
g2=0.05 and 0.25, respectively, with go=1.0—g2.

In Fig. 2 we plot transmission and gap regions in the
energy-field parameter plane; the regions of multistability are
distinguished from regions with single transmission states
and gaps. First, we notice that transmission bands become
narrower and move downward in the energy direction with
an increasing field strength, and the first band dies out at a
field K') 2.2 kV/cm. Second, the two bands around energy
E= 0.3 eV are the result of the breaking of a single transmis-
sion band of a corresponding linear lattice (not shown) by
nonlinearity. We can see that Fig. 1 (F=0.32 eV) is consis-
tent with Fig. 2 as far as multistability is concerned. If we
consider the fact that there is always a distribution in energy
for the electrons, we need to calculate the transmission and
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FIG. 2. Contour plot of multistability in the E—F parameter
plane. The black regions represent gaps or unstable regions; the
dark gray regions are stable transmission states without multistab-
lility and the light gray areas are the multistable states. Multistable
states in the third transmission band (largest in this figure) exhibit
an oscillatory pattern.
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FIG. 3. The current-field characteristic for the second model.
Possible sweep-up and sweep-down paths are shown as the field is
either increased or decreased. The current values (small circles) are
obtained by calculating the conductance under different fields. Pa-
rameters are given in the text. The absolute values are used for the
field strengths.

conductance according to that distribution. However, when
the deviation is not large, Fig. 2 indicates that the typical
behavior shown in Fig. 1 of multistability should remain the
same. We used g2=0.25, and other parameters are the same
as in Fig. 1.

A second model has been used to study the nonlinear
effects in the presence of the field in. more detail. In this
model the doped layers are placed in the middle of the QW's
instead of the barriers. After we obtain the conductance G as
in the case of Fig. 1, we use field strength F and sample
length Na to obtain the voltage V=NaF, we then use
Ohm's law to obtain the current, J=GV. The current-field
characteristic diagram and possible sweep-up and sweep-
down paths for this second model are presented in Fig. 3. We
use the following parameters for numerical calculations in
Fig. 3: for the barrier potential, go= 1.0, g2=0.0; and for the
doped layers, go=0.5, g2=0.5. The rest of the parameters
are the same as in Fig. 1.
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To give some intuition on the physical aspects of the map
of Eq. (4), we can use an asymptotic form for the solutions.
For the parameters of interest, z~&1 for all the x's; thus we
can use the asymptotic form of the Bessel functions,

H„' (z)=
2 u7r

exp ~i z-
mz ( 2 4l (5)

where p is the order of the Hankel function. Equations (3)
and (4) can be simplified by using Eq. (5), and the recursion
relations can be written as

An+i = vL1+ ivy(l t/tnl )Mn

+ z/w„(l P„l ) B„exp(—2ik(x„)x„),

B +i= r/! 1 ivn(lt/Inl )jB
—riiv„(l P„l') A„exp(2ik(x„)x„}, (6)

P (x)=(z /z) A„e'"" '+(z /z)' B e '" ' (7)

This solution corresponds to two modified plane waves

where z/= (z„/z„+ i) 't, A „=$2/mz„ t A „exp(i8), and

B„=g2/mz„' B„exp( i8), with —0=(2/3)k t —(5/12) m.

We observe that the kinetic energy of the electron in the
field, and the wave number, k(x), are an increasing function
of x, k(x) =ko[1+(1/4)X t kox —(1/24)X kox + ],
with ko= $2mE/fi. The asymptotic solution is then written
as

propagating in opposite directions. We note that the effect of
the doped layers is to introduce a periodic "nonlinear kick"
in the system described by the map of Eq. (6).

We have demonstrated that the occurrence of multistabil-

ity and discontinuity in the transport processes of electrons
can be explained by introducing self-consistent potentials
representing the nonlinear space charge effects due to elec-
tron accumulation in the doped semiconductor layers. We use
a simple model in which the doped layers are assumed to be
ultrathin and act as nonlinear "kicks" on the wave packets of
electrons. The introduction of 8'-function-type potentials is
not essential in obtaining the multistable behavior in trans-
mission. One of the advantages of this model is that a fully
quantum-mechanical treatment can be applied without using
an effective Hamiltonian. Comparing with the tight-binding
model, which is good for weakly coupled QW heterostruc-
ture, our model inherently creates a series of minibands
(multiple conduction subbands structure), while the interwell
coupling of the wave functions of all the QW's is also taken
into account. These couplings are important for tunneling
and transmission of electrons. However, we should point out
that our model does not take into account any scattering
processes. This model can be easily modified to study other
heterostructures in an electric field, such as a SL consisting
of alternative n- and p-type doped layers and modifications
made by impurities and disorder.
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