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Syrnn1etry properties of chiral carbon nanotubes
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The method of zone folding is applied to the calculation of the phonon mode frequencies in carbon
nanotubules. The Raman and infrared-active mode frequencies are determined for nanotubules of
diBerent diameters and chiralities.

Carbon nanotubules form an important class of ma-
terials with many potential applications. Extensive
studies have been carried out on the electronic and lat-
tice properties of these materials. Some of the sym-
metry properties and their consequences for the elec-
tronic and lattice properties of nanotubes were recently
investigated. In this work, we study the vibrational
properties of carbon nanotubes. In particular, the fre-
quencies of Rarnan and infrared-active modes are calcu-
lated for various tubule sizes and difFerent chiralities.

A carbon tubule is obtained by rolling a two-
dimensional (2D) graphene sheet in such a way that two
lattice points on the sheet, such as 0 and A in Fig. 1, will
be folded one onto the other. Such a tubule is specified
by a pair of integers (n, m) such that

OA = Ch ——nai + ma2,

dIt = d if n —mg3dr,
=3d if n —m=3dr, (2)

and r is any integer. It follows that the number of carbon
atoms per unit cell of a tube specified by the integers
(n, m) is 2N such that N = 2(n + m + nm)/d1t.

For a chiral nanotube, the fundamental symmetry op-
eration is given by R = (g, r), where 7 represents a trans-
lation along the tube axis and is equal to Td/N, while @
is the angle of rotation along this axis and is given by

ai and a2 being the lattice vectors on the 2D sheet. There
is no loss of generality if we consider only cases where
n & m.

A nanotube can be viewed as a one-dimensional crystal
with a fundamental lattice vector T along the direction
of the tube axis. Denoting the highest common divisor
d of n and m by the bracket (n, m) = d, then T is given
by ' T = i/3C/de, where

Here A = 0, 1, . . . , d —1, and

0 = (p(m + 2n) + q(n + 2m) ) (d/d~),

where p and q are integers that are uniquely determined
by the equation

mp —nq = d,

FIG. 1. Construction of the nanotube from the 2D
graphene sheet. If the sheet is rolled such that the tip and
tail of t h coincide, a chiral nanotube results. The vector T
is the fundamental lattice vector of the 1D nanotube, 0 is the
chiral angle, and O' = Chg/2vr, Q being the angle defined in
Eq. (8).

subject to the conditions q ( m/d and p ( n/d. The
point reached from 0 by a translation vector pai + qa2
is at a distance w from t h.

In order to find the space group of any chiral tube
specified by (n, m), we first prove that (B,N) = d. To
begin with, we consider the case where d = 1 and n mg—
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3r, so that dR = 1 also. It follows from Eq. (5) that 0 is
odd. We assume that (0, N) = a, where a must be odd
since 0 is odd. In the following we show that a = 1.

Using Eqs. (3) and (5), we can write

(n + m)B = (p + q) N + (n —m),

(n —m)O = (p —q)N —3(n+ m).

Because (0, N) = a, it follows that (n —m, 3(n + m)) =
ja, where j is some integer. Since n —m is not a multiple
of 3, this implies that

(n —m n+ m) = ja.

Defining the integers A and B such that A = (n —m)/ja
and B = (n + m)/ja, it follows that n = ja(A + B)/2
and m = ja(B —A)/2. Since a is odd, it follows that a
is a common divisor of n and m. The assumption that
(n, m) = 1 then implies that a = l.

For the case d = 1 and n —m = 3r, we can pro-
ceed similarly as above and show that (0, N) = 1. It is
then readily apparent that in the general case for which
(n, m) = d g 1, we have

(O, N) = d.

For the case of d = 1, the space group of a chiral nano-
tube specified by (n, m) is the product of the translation
group and a group CN/~, denoting a cyclic chiral group
of order N, given by

C/v/& —(+/v/& Rm/n . Rm/n R/v/n —E) (10)

where 'RN/~ is the symmetry operation 2' N, T N
and E is the identity element. Since (0, N) = 1 for
d = 1, the angle of rotation in the operation 'RN&& is
never an integral multiple of 2' for all integers i such
that 0 ( i ( N.

For the general case when d g 1, the cylinder is sep-
arated into 8 sections connected by the elements of the
cyclic group of rotations Cd. Thus we can write the chi-
ral group of the nanotube as the product of two cyclic
groups,

where

such that (n, P) = 1. We consider the group

N/d'
(R/ttfti/Q R~d/ii R~g/ri E}'

where the angles are de6ned modulo 2'. We assert that
'R~+& g E for all integers i such that 0 & i & N/d'.(N/d') —i

To show this, we first note that (0/d, d) = d' and
{0/d, N/d) = 1 implies that (0/d, N) = d' which in turn
implies that (0/dd', N/d') = 1. Then the angle

i 0 . (0/dd')
Nd (N/d')

is not an integral multiple of 2a, and thus R~&&&
' g E.

We note that since (n, P) = 1 and

e
i

27r = 27rP/n,

it follows that the sequence of rotations

N/d 2N/d a.N/d
Nd/O' Nd/O' ' ' ' Nd/0

is equivalent to a permutation of the sequence of rotations

(C, C, . . . , C = Ef,

which is a subgroup of Cd. The chiral group of the nano-
tube may be written as the product C = Cd x 8 which
is of order N since among the o.N elements in the prod-
uct, only N elements are distinct, because 2 contains a
subgroup of Cd of order o.. Further simplification may be
achieved if (o., d') = 1, for then C = 2 x Cdt in which case
the direct product has N elements that are all distinct.

In all the cases considered above, the irre-
ducible representations of the group C are given by
&, B,Ei, E2, . . . , EN/2 i. In the E irreducible represen-
tation, the characters of any operation C corresponding
to a rotation by an angle ( are given by

i2~(n
~(C) =

The A representation is completely symmetric, while
in the B representation, the characters for the product
groups are y(R~~/ri) = —1 and y(Cg) = +1. This fol-
lows by noting that if (0/d, d) = d' g 1, then the fact
that d' must be odd, that N/d is even, that

and

Cg = (Cg, Cd, . . . , Cg ——E)
N/d 2N/d Nd/dd'

d/d Nd/0 & +Nd/0 & +Nd/~

I N/d
C~~/n = (R/v&/ri +zv~/n . . ~/vq/n = Ek

where the angles of rotation in CNd/& are de6ned modulo

(2n/d) instead of 2n, and 22stsfn = (2e as, Td/ftf).
The inconvenience of having angles defined modulo

2vr/d instead of 2vr may be removed according to the
following scheme. Let us set (0/d, d) = d'. Then we can
write d = nd', 0/d = Pd' where n and P are integers

dfand that C~/~ ——Cz implies that if y('R~z/ri) = —1,
then &(C&/d ) = +1 and y(Cg) = +1.

The phonon mode frequencies of the 10 tubule at the
I' point, cuiD(k = 0), are approximately given in terms of
the phonon frequencies in the 2D graphene sheet, cu2D (k),
according to the following relationship



11 178 BRIEF REPORTS 51

The phonon frequencies of the 2D graphene sheet are ob-
tained from a Born —von Karman force constant Inodel
which accounts for the results of Raman, infrared, neu-
tron, and electron energy loss spectroscopies.

At the I' point in the Brillouin zone of the nanotube, we
can classify all the phonon modes according to the irre-
ducible representations of the relevant symmetry group.
The nanotube modes, obtained by setting p = 0 in
Eq. (18), correspond to the I'-point modes of a graphene
sheet; consequently, they are completely symmetric and
thus they transform according to the A irreducible rep-
resentation.

Next we consider the modes obtained from Eq. (18)
by setting p, = N/2. These modes in the nanotube
correspond to modes in a graphene sheet at the point
k = NKr/2 in the 2D hexagonal Brillouin zone, where

Ki ——(27r/Cg) Ch.
Under the action of the symmetry operation B~~g~,

an atom is carried into another atom separated from it,
in the 2D graphene sheet, by the vector r = paq + qa2,
where p and q are integers defined by Eq. (5). It is readily
shown that

(28, 16) .
I I II I I

(n, m)

(21, 12) -l III I I

(148) --I III I I

(7, 4) -.
I I II I

400 800 1200 1600

Frequency (cm-')

FIG. 2. Calculated Raman-active mode frequencies for
nanotubes specified by {n,m) given by (7,4), (14,8), (21,12),
and (28,16). All these nanotubes have the same chirality but
difFerent diameters.

and since 0/d is odd, it follows that for the phonon mode
with wave vector NKr/2, two atoms in the graphene 2D
sheet separated by r have displacements that are com-
pletely out of phase. Thus y(Brvdyrr) = —1. Similarly,
we can show that y(Cg) = 1, and we deduce that the
nanotube modes obtained. by setting p, = N/2 transform
according to the B irreducible representation of the chiral
symmetry group C. Similarly, we can show that nanotube
modes at the I' point obtained from Eq. (18) by setting
p = rl, where 0 & rl & N/2, transform according to
the E„ irreducible representation of the chiral symmetry
group. The Raman-active modes transform according to
the A, Ei, or E2 irreducible representations of C, while
the infrared. -active modes transform according to the A
or Eq irreducible representations.

As an example, we have calculated the frequencies
of the Raman- and infrared. -active modes, for two nan-
otubes whose chiralities are specified by (n, m) = (7, 4)
and (n, m) = (8, 3). The (7,4) tubule was selected to il-
lustrate the case n —m = 3d while for the (8,3) tubule
n —m g 3d. In Figs. 2 and 3, we show, respectively,
the calculated frequencies of the Raman and infrared
modes for nanotubes specified by (n, m) = (7, 4) as a
function of the nanotube diameter, by considering mul-
tiples of (n, m), namely (14, 8), (21, 12), etc. The cor-
responding mode frequencies for nanotubes specified by
(n, m, ) = (8, 3), calculated as a function of the nanotube
diameter, are shown in Figs. 4 and 5.

Inspection of Figs. 2 and 4 indicates that the calculated
Raman spectra for both chiralities are similar, and the
same observation applies to the calculated infrared spec-
tra. It is also observed that if a bundle of nanotubes,
all with the same chirality and diameter, is synthesized,
it will be possible to observe many Raman-and infrared-
active modes, spread over a large frequency range. For a
bundle composed of nanotubes w:th different chiralities

(28, 16) III

(n, m)

{21,12) -- III

(14, 8) --
I II

{7 4)

400 800 1200

Frequency (cm-')

1600

(32, 12) -I III I I

(n, m)

(24, 9) -1 I II I I

{166) --I
I II I I

(8, 3) --
I I 11 I

400 800 1200

Frequency (cm-')
1600

FIG. 4. Calculated Raman-active mode frequencies for
nanotubes specified by {n,m) given by {8,3), {16,6), {24,9),
and {32,12).

FIG. 3. Calculated infrared-active mode frequencies for
nanotubes specified by {n,m) given by (7,4), (14,8), (21,12),
and {28,16).
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FIG. 5. Calculated infrared-active mode frequencies for
nanotubes specified by (n, m) given by (8,3), (16,6), (24,9),
and (32,12).

and diameters, on the other hand, the figures indicate
that only the modes with frequencies 1590 cm and

865 cm will be observed, since these modes are Ra-
man and infrared active for all nanotubes regardless of
their chiralities of diameters.

Raman scattering experiments on nested nanotubes
of various diameters and chiralities obtained by the dc
arc process have revealed the existence of a somewhat
broad feature at 1574 cm in the first-order spectrum.

Raman spectra taken on wall deposits containing single-
walled nanotubes of various diameters and chiralities pro-
duced in the presence of Co in the core of the carbon
anode exhibit additional features. A strong doublet
is observed at 1566 cm and 1592 cm, as well as a
broadband at 1341 cm . The existence of a doublet near
1580 cm is consistent with our calculations for all chi-
ralities that have been considered, if we assume that the
nanotube diameters are not too large. The observation
of a broad Raman feature near 1341 cm is not read-
ily explained by the present calculations for chiral nan-
otubes of small diameter. Contributions near 1340 cm
might arise from nanotubes of larger diameter than con-
sidered here, or from the presence of other graphitic ma-
terial within the sample volume. A large concentration
of (n, m) armchair tubules could also give rise to wreak

Raman scattering intensity near 1340 cm
In conclusion, the results presented in this work should

be useful in guiding experiments which might be used
to characterize the type and size of fullerene tubules.
Presently there are no published experimental infrared
spectra for carbon nanotubes. Hopefully, the calcula-
tions presented here might stimulate such work.
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