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Photonic gaps in the dispersion of surface plasmons on gratings
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An analytic model is presented that reveals the physical origin of the photonic band gap created by
Bragg scattering of surface plasmon polaritons on gratings. The model leads to simple functional forms
for the gap width, central frequency, and field distributions which are confirmed by comparison with nu-
merical calculations and experimental data.

The propagation of waves through periodic media is
fundamental to the understanding of many physical phe-
nomena, for example, the electrical conduction of crys-
tals. There is currently great interest in the interaction of
light with media that are periodic at optical wave-
lengths. ' In a way similar to the conduction of elec-
trons through a crystal, energy gaps open up in the
dispersion relation for the propagation of light through
such media when the wavelength of the light is commens-
urate with the periodicity of the material, creating a pho-
tonic band gap. Interest in such phenomena is intense
because it ofFers the possibility of controlling the optical
properties of materials, particularly spontaneous emis-
sion, by design at the mesoscopic scale (10—1000 nm).
We report in this paper on band gaps that arise for the
propagation of surface plasmon polaritons on a corrugat-
ed metallic surface. Such band gaps have been reported
before and have been used to control phenomena such
as surface enhanced Raman scattering. We present in
this Brief Report a theoretical description that provides a
clear physical explanation for the origin of the band gap
and the associated field distributions. In addition, direct
comparison between our analytic theory, a full numerical
solution to the problem, and experimental data provide
confirmation of the theoretical model.

Surface plasmon polaritons (SPP's) are electromagnetic
modes which may propagate along the interface between
two media whose optical permittivities are of opposite
sign. We consider the situation of SPP's propagating on
a metallic grating, with their wave vector perpendicular
to the grating grooves. If the wave vector of the SPP
mode is ~ and that of the grating is 2v, then Bragg
scattering of the mode occurs and a SPP standing wave
will be set up. Using symmetry arguments we expect two
standing wave solutions; one with field maxima at the
grating peaks, the other with maxima at the grating
troughs. Since there is an energy associated with the SPP
field distribution we expect the two standing-wave solu-
tions to have difFerent energies; this will manifest itself as
a gap in the dispersion curve of the SPP. Consequently
we have formulated a model that concentrates on the sur-
face modes rather than the overall optical response of the
system, as has been done by previous authors. ' In so
doing we provide simple analytic expressions for both the
gap width and the central frequency. Further, we
confirm our expectation from symmetry arguments as to

the location of the standing-wave solutions, and find that
the energy difference arises from the way in which the
electromagnetic fields and associated surface charges are
distributed with respect to the grating.

The defining solution of the electromagnetic field equa-
tions for a SPP mode propagating on a planar interface
separating two regions of relative permittivity c., and c2
arises from the matching of the tangential E and H field
components. This leads to the condition k,"'/c,

&
=k,' '/c2

where k,'" and k,' ' are the components of the mode wave
vector normal to the surface. Consider a SPP with wave
vector ~ and angular frequency co. This mode has associ-
ated fields that decrease exponentially away from the in-
terface in both regions, that is, k,"'=ig, and k,' '= —iq2,
so that
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with q; = [t~ —(to/c) e; j'~ . From Eq. (1) we see that the
surface mode exists if c., and c2 have real parts of opposite
sign, when the above condition implies that
(coo/c) =tt (1/s, +1/E2), the dispersion relation for a
SPP on a planar interface.

Consider the corresponding situation when the surface
has a nonplanar profile that has periodic components in
the form

f (x)=a sin(t~x)+b sin(2ttx) .

The periodicity of 2~ associated with the b term couples
left and right moving surface modes of wave vector w,

while the periodicity of a associated with the a term cou-
ples normal incidence external radiation to the modes. If
a is small then the dominant coupling between the +~
SPP modes, or more generally between symmetric and
antisymmetry combinations of these, comes from the b
term. In the absence of the grating these combinations
represent two degenerate solutions of frequency cop but
when the grating is present the degeneracy is removed,
and the new solutions are appropriate linear combina-
tions of the symmetric and antisymmetric standing
waves. Experimentally it is well established that an ener-
gy gap opens up, and we wish to determine its magni-
tude and the central frequency of this gap. Since Eq. (1)
was obtained by matching the field distributions at the
planar surface we must now analogously match the fields
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H (B,Y)
F~(u, v)= =exp(iA~Q) g ~ exp(im~v) .

gm

F~ ( u, v ) is an eigensolution associated with propagation
in the "u direction" involving the eigenvalue A,~ (the ana-
log of k, in the planar case) and P=(/, ) is the associated
eigenvector that determines the relative magnitude of the
Fourier components of the tangential E and H fields in
the solution. We are concerned with only the surface
plasmon (TM) modes so that the associated E field will
lie in the xz plane and the H field will be in the y direc-
tion.

(3) The model developed assumes that the dominant
mechanism responsible for the gap is the coupling of the
degenerate symmetric and antisymmetric standing modes
of wave vector ~ via the 2x component of the grating.
Within this model it is further assumed that xb « 1, and
that terms of order (kb) and higher are negligible.

Solutions on either side of the interface are expressed
as linear combinations of the symmetric and antisym-
metric standing mode eigenvectors g+ and i' . Match-
ing of the associated tangential fields at the boundary
yields the following coupled equations that replace Eq.
(1):

(2)

where g=~ b(1 ——', p) and ri;(co)=[a (1 —p) +g—e;(co/c) (1—p)]', with p=2(vb); p is the ratio of the
amplitudes of g and P+. Equation (2) implies that
p = +i with corresponding frequencies co+. Strictly
speaking one should include the dependence of c,; upon cu

as considered by Seshadri' ' but in the context of the
small frequency shifts considered here this effect is negli-
gible.

The solution of Eqs. (2) for co+ yields the following ex-
act results (within the framework of the model):

across the corrugated surface.
A variety of methods have been used in numerical

computation to satisfy the boundary conditions on the
corrugated surface, but a method developed by Chande-
zon et al. ' is particularly appropriate. The application
of this method to the current problem involves the fol-
lowing stages.

(1) The transformation of Maxwell's equations to a
nonorthogonal coordinate system v =x, w =y, and
u =z f (x)—since in these coordinates the surface is de-
scribed by u =const.

(2) For propagation normal to the grooves there is no
dependence on y (or tc) and any solution to Maxwell's
equations in each region can be developed in the form
F(u, v)= g F (u, v), where

Eco
C2

2

co 1 ~+
c' 2[ c

2

c

2

'2

4 b
[1—3(~b) ],

EiE2

(3a)
2

[1—2(~b) ]c

(3b)

nl(~+) =ni(1 —p)+ k

n~(~+) =nz(1 —p)+k

(4a)

(4b)

where g&=v( —e&/E2)'~ and gz=v( —cz/E&)'~ are the
inverse decay lengths for a planar surface. Note that for
an ideal metal c.2~ —~ and there is no gap.

Before examining these results let us look at what our
model tells us about the field distributions for the two
standing-wave solutions. There are three field com-
ponents associated with the modes, H~~~~, E~~~~, and E&,
where

~~
and N refer to parallel and normal to the local

surface. From the inodel we find that at the grating
surface H ~~, E

~~

cos(~v+ ~/4), and that F~,o.—

isin(~v+n/4), w.here o.* is the surface charge density
associated with the mode. Thus in the high-frequency
solution the normal field component and charge distribu-
tion have a maximum amplitude at the troughs of the 2~
component whereas for the low-frequency solution they
occur at the peaks.

The decay of the fields away from the interface are
determined by ri, (co+) and g2(~+). Typically medium 1

is a dielectric and medium 2 a metal, for which F2&0.
From Eqs. (4) we see that ri, (co+) (vP„q2(~+))gz,
whereas g, (co ))q„q(cd )(gz so that for the high-
frequency solution the field is enhanced in the dielectric
and reduced in the metal; the converse is true for the
low-frequency solution. The grating perturbs the field
distributions associated with the charges. When the
charges are located at the troughs the field is squeezed in
the dielectric and extended in the metal resulting in an in-
crease in energy, the opposite is true when the charges
are located at the peaks, see Fig. 1. It is now clear that
the energy difference arises from the different
configurations that the electromagnetic field and associat-
ed charges take with respect to the grating for the two
solutions. This is confirmed by an explicit calculation of
the total energy associated with the field and surface
charge distributions derived from the model presented
above.

In addition we are able to compare the results of our
model with those obtained using a full numerical solution
to the problem —one that combines the approach of
Chandezon et al. ' mentioned above with a scattering
matrix formalism. ' In Fig. 1 we show the result of cal-
culating the normal electric field distribution E& close to
the grating surface for the high- and low-frequency solu-
tions. The results confirm the nature of the mode solu-
tions discussed above for both the position of the field
maxima and the decay length of the two solutions.
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partially absorbed rather than totally reAected. However,
the reflectivity in the gap also depends on the relative
coupling strengths of the two modes, which in turn de-
pends on the relative phase of the ~ and 2~ components,
the effect of which is the subject of ongoing work.

Let us now return to our results for the energy gap. As
discussed above Eq. (5) shows to first order that the width
of the gap is linear in 6, as found by others using optical
response theories. ' Previously these results were
checked against experimental work undertaken by Pock-
rand and analyzed by Raether, ' producing an apparent
discrepancy. However, in that experimental work a
"momentum gap" rather than an "energy gap" was mea-
sured. The experiment involved examining the dispersion
curve by scanning the momentum for a range of fixed fre-
quencies, achieved by measuring the reAectivity as a func-
tion of angle of incidence. More recently Weber and
Mills' have shown how such experiments can give rise to
misleading results for the energy gap and showed that the
reAectivity should be measured by scanning the frequency
with the momentum (angle of incidence) held fixed. Since
these previous results are inappropriate we undertook a
frequency scanning experiment to determine the func-
tional dependence of the gap width on the amplitude b of
the 2~ component of the grating.

In our experiments gold gratings were produced by
coating corrugated silica substrates. By examining the
frequency dependence of the reAectivity of these samples
as a function of angle of incidence, the band gap is readily
determined. The gratings have twice the pitch needed to
produce the requisite wave vector for a band gap at the
desired frequency. Nonlinearities in the holographic fa-
brication of the grating meant that they had two main
periodic components: one at the fundamental pitch hav-

ing a wave vector of ~ which serves to couple the surface
modes to photons, a second with half this pitch and thus
wave vector, 2~: it is this latter component that provides
the Bragg scattering to form the energy gap. The ampli-
tude of the Fourier components of the gratings at ~ and
2~ were determined by fitting theoretical models to the
angular dependence of the reAectivity of the bare gold
gratings. Our experimental results for Au as a function
of the amplitude b are shown in Fig. 2, confirming the
linearity to within experimental error. We further find
them to be in excellent agreement with the results of both
our model presented here, and the full numerical solu-
tion. Our experimental data are unable to confirm or
deny the change in co with b as given by Eq. (5b) because
the grating amplitudes are too small and because of the
contribution from other terms in the surface profile, par-
ticularly the x component.

In conclusion we have presented a new analytic model
that provides a physical explanation for the origin of the
photonic band gap due to Bragg scattering of surface
plasrnon polaritons on gratings. The details of the model
have been compared to both numerical and experimental
data with good agreement. The model provides an easy
way to predict the width and position of energy gaps with
experimentally relevant parameters. Work is currently in
progress to confirm experimentally the shift in co with
the amplitude b, to examine large amplitude gratings, and
to extend the study to crossed gratings.
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