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Exchange energy for electrons in two dimensions: EfFects of finite temperature
and finite thickness
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The efFects of Gnite temperature and finite thickness on the exchange energy for a two-dimensional
system of electrons such as those con6ned in quantum wells are evaluated and expressed as a
parametrized correction factor [1 + (vr /16)7' lnr —0 874r. + 1.786r ]

—0.109r + 0.0076r for
0 ( r ( 0.4 and 0 ( r ( 5.5. Here r = knT/(5 Ks/2m*) is the ratio of thermal energy to the
Fermi energy and K = K&L, Kz and L being the two-dimensional Fermi wave number and the
thickness, respectively. The absolute value of the (negative) exchange energy is decreased by these
eKects.

Recent progress in semiconductor technologies has pro-
vided us with a variety of nanostructures as fields for re-
search in fundamental physics and as useful elements for
electronic devices. One of the simplest and the most im-
portant structures may be the one-dimensional quantum
well which enables us to realize two-dimensional systems
of electrons. There have been proposed many devices
with new functions based on this structure where the ef-
fects coming from the many-body interactions between
electrons sometimes play an important role. A typical
example may be the modification of energy levels due
to accumulation of carriers: Among various elements af-
fecting the level structure, 2 the mean-field (Hartree) and
the exchange-correlation interaction are responsible for
this modification.

In many cases the Kohn-Sham formulation of the
density-functional theory has been applied. In these
analyses of electronic states, many-body interactions are
described by the mean-field (Hartree) and the exchange-
correlation potentials. In the Kohn-Sham equation, the
Hartree potential is given exactly by solving the Poisson
equation for the charge distribution. The geometrical ef-
fect can be taken into account by employing appropriate
numerical procedures such as the finite element method,
if necessary. The exchange-correlation potential, how-
ever, has to be determined through some approximate
expression in terms of the density. The purpose of this
paper is to give possible modifications in a parametrized
form useful for such formulations.

When we neglect both the temperature and thickness
of the well and regard our system of electrons as purely
two dimensional, we may apply the results of numerical
experiments on two-dimensional electron liquids at T = 0
of Tanatar and Ceperley. For two-dimensional electrons
in GaAs, however, the Fermi temperature at the typical
density of 10 cm is. .about 40 K and the eAect of finite
temperature may not be negligible even at 4.2 K.

When we denote the planar density of electrons by
%„ the application of two-dimensional results may be
valid if the two-dimensional mean distance (sr', ) / of

electrons is suKciently larger than the thickness of the
well I or, in terms of the two-dimensional Fermi wave
number K~ = (2vr%, )~/,

The characteristic distance of the correlation between
electrons in the plane is (7rN, ) / and (1) means that
I can be neglected at this distance. In many cases, how-
ever, the value of the left-hand side does not seem to be
negligibly small; %, 10 cm 2 and L 5 x 10 A gives
v = 0.4. In this paper, we will give the exchange energy
between electrons in quantum wells for finite tempera-
tures and finite thicknesses in a parametrized form.

The (first-order) exchange energy is given bys

CI y A2 CT

drgdrzg*, (rg)

(2)

Here the spatial part of the one-particle state g(r) is in-
dexed by o. and n is the occupation number of the state
(n, o), o being the spin, and e is the dielectric constant

When electrons are in a quantum well perpendicular
to z and we denote the coordinates parallel to the well

by R as r = (R, z), electronic states (envelope functions)
are given by

1
QK, , (R, z) = /- exp(iK R)P, (z).

Here the area S is the system size along the well and in-
dices of these states are the two-dimensional wave num-
ber K and the index i of (normalized) eigenstates with
respect to z. In what follows, we assume that electrons
are in the ground state Po(z) with respect to the motion
in the z direction. Substitution of this wave function into
(2) gives
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with Kq2 ——Kq —K2. Since (rq —r2) = (Rq —R2) + (zq —z2), the above expression reduces to

2

U,„=— ) ) ) n, .n„,.
K1 K2

dzzdz2 exp( —K&2 Ized z21)14'o(zx)
I l&o(z2) IKi2 (5)

For Po(z) we use an approximation

Po(z) = (2/L) cos (7rz/L), L/2 —& z & L/2. (6)

This approximation may be justified a posteriori by the fact that our result gives a correction typically of the order
of 10%. After integrating with respect to zq and z2, we have

2 1 3 1 1 —exp( —Kq2L)
2sS )-) - ) ' ' K)2 1+ (Kg2L/27r) K L 8vr (Kg2L)2 1+ (K)2L/27r)K1 K2

When L = 0, the expression in curly brackets reduces to
unity.

At T = 0, nK~ = 0(Kp —K) and the exchange energy
has been given as

T ln T. The coefBcient is calculated as

U,„(L= 0, T = 0) 16 (10)

U,„(L= 0, T = 0)/SN, = —(4v 2/3~)(7r&. )'/ . (8)

The eÃect of finite thickness is expressed by the ratio
U,„(L,T = 0)/U, „(L = 0, T = 0) which is a function of

Values of this ratio are shown in Fig. 1 and can be
interpolated by a formula

= 1 —0.109' + 0.0076K
U, (I,T=0)

U,„L= 0, T =0

where T = k~T/(h2KJ2 /2m). We numerically evaluate
the values of U,„(L = 0, T)/U, „(L = 0, T = 0) for small
values of 7. and express the results by an interpolation
formula

U. L=O, T &0 = 1 + r ln7 —0.874~ + 1.786'
U,„(L= 0, T = 0) 16

for 0 & T & 0.4 (ll)

for 0&@&5.5 (9)

with relative errors less than 1%.
In the case of L = 0, it is easily seen that the leading

term of the finite-temperature efFect is proportional to

as shown in Fig. 2. The relative error of this expression
is less than 1%. The exchange energy is decreased by
the Rnite-temperature eKect. It should be noted that the
term proportional to w is adopted only for numerical
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FIG. 1. EfFect of finite thickness. Absolute value of the
first-order exchange energy is reduced by this factor depend-
ing on K~I, Kg and I being the two-dimensional Fermi wave
number and width of the well, respectively.

FIG. 2. EfFect of finite temperature. Absolute value of the
first-order exchange energy is reduced by this factor depend-
ing on kaT/(h K&/2m" ), T and 6 K&/2m, * being the tem-
perature and the Fermi energy, respectively.
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purposes and the expansion with respect to 7 may include
such terms as w ln 7..

Both finiteness of temperature and finiteness of thick-
ness reduce the absolute value of the exchange energy.
We also evaluate the ratio U,„(L,T)/U, „(L = 0, T = 0)
in the case @&here they are finite at the same time. The
results are shown in Fig. 3 and approximately interpo-
lated by simply shifting the value for r = 0 as
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FIG. 3. Reduction factor for finite temperature and finite
thickness. Solid lines are interpolations for numerical results
shown by dots with k~T/(h K+/2m*) = 0, 0.1, 0.2, 0.3, and
0.4.

for 0&r &0.4 and 0&/ &5.5 (12)

with relative errors less than 2%%up.

I.et us now discuss the applicability of our result. We
have assumed that only the ground state with respect to
z is occupied by our electrons. This gives an upper limit
for the electron density
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FIG. 4. Applicability of our result. In the hatched. area,
the exchange eKect is important and our correction factor is
substantial.
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5'IG. G. Contribution of first-order exchange energy U „ in
total exchange-correlation energy U„, at T = 0. It is still
dominant for R as large as 10.

which is plotted in Fig. 4. In order for the exchange
effect to play an important role, the parameter B,
1/(7rN, ) / a~ of two-dimensional electrons needs to he
larger than unity (a~ = eh /m*e is the Bohr radius).
We plot the condition B, = 1 in Fig. 4 for electrons in
GaAs (m*/m, = 0.067 and e = 13). In Fig. 4 we also
plot the conditions K = 1 and r = 0.1. We see that
our correction factor is applicable and also significant in
the domain with shading which includes typical values of
electron density and well thickness in experiments.

The above results are related to the first-order ex-
change energy. In Fig. 5 we plot the ratio of the
first order exchange energy at T = 0 to the total
exchange-correlation energy U, obtained by Tanatar and
Ceperley. Comparing Figs. 4 and 5, we may conclude
that the first-order exchange energy is still the main part
in the domain where our result applies.

Though exact values of the correlation energy at finite-
temperatures are not known even for I = 0, the finite
temperature effect is expected to be in the opposite di-
rection to that on the exchange energy. ' The finiteness
of thickness, on the other hand, reduces the absolute val-
ues of both energies through modification of the Coulomb
potential. In our parameter domain, the latter may be
the main efI'ect as shown in Fig. 3 and the former will
be weakened further dna to partial cancellation when the
correlation energy is taken into account.
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