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Magnetoresistance of a two-dimensional electron gas in nearly parallel magnetic fields
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The transport properties of a two-dimensional electron gas in the presence of magnetic fields
applied parallel to or slightly tilted from the plane of the confined electron gas are described. To
analyze the experimental data the Gnite width of the electron layer has been taken into consideration.
It is shown that the Hall field across the layer gives the significant contribution to the conductivity
which might be dominant for the observed positive magnetoresistance.

The magnetoresistance of two-dimensional electron
systems has attracted physicists for many years. The
main attention has been paid to the configuration in
which the magnetic field is applied perpendicularly to the
system. Much less effort has been devoted to the study
of the in-plane configuration, when the applied magnetic
Geld is nearly parallel to the electron gas plane. In 1990
Leadley et a/. have reported positive magnetoresistance
with the angle rising between the two-dimensional elec-
tron gas and the magnetic field direction in the range
of a few degrees for a fixed magnetic Geld strength. It
has been suggested that this efFect is due to the pearlike
shaped Fermi surface of electron gas, which arises due
to the break of the time reversal symmetry in strong
in-plane fields when the confining potential has an asym-
metric, about triangular, shape. However, neither quan-
titative nor qualitative analysis of the effect has been
presented till now.

To understand the origin of the observed positive mag-
netoresistance, we have analyzed the electron conduc-
tivity for the particular case of a nearly in-plane con-
figuration with a weak perpendicular component of the
magnetic field, B~. It allows us to include the effect
of B~ semiclassically, while the influence of the in-plane
component, Bt~~, to the electron energy spectrum will be
fully taken into account. The conductivity will be inter-
preted in terms of the Chamber's solution of the Boltz-
mann's equation with a uniform relaxation time. It will
be shown that the Hall electric field across the electron
gas layer has the significant effect on magnetotransport.

Let us first briefly summarize the properties of a free
electron gas confi. ned in the z direction by a poten-
tial V, „r(z) and subjected to the inHuence of magnetic
fields, ' which are controlled by the Hamiltonian,

p+eA + V, „gz

where m and e are an effective electron mass and ab-
solute value of the electron charge, respectively. In the
case of strictly in-plane magnetic fields applied along y
direction (B~~

= B„),it is convenient to choose the Lan-
dau gauge for the vector potential, A = (B~~z, 0, 0). The
eigenfunctions of the Hamiltonian Ho may be written as
the product of a plane wave, exp(ik x + ik„y) and the
eigenfunction yp(z, k ) of the k dependent Hamiltonian,

I t'hk & p2
Ho(k*) = —m

I + ~(~ z
~

+ + V...r(z) , (2)2 (m ) 2m

I ~'Ep(k. )
m* (k ) 62 Bk2 (4)

The efFect of a weak perpendicular component of the
magnetic field (B~ = B,) may be included through the
dynamics of the electronic motion in k space, which is
governed by the semiclassical equation,

Ok +—eB~v(k) x z —ef
8t (5)

where E is the external electric field and v(k) is the ve-

locity expectation value,

v(k) = —V'gE(k)

As a fi.rst approximation when studying electronic
transport, all quantum phase coherence efFects can be
neglected. At zero electric field, electrons are considered
to move along k-space trajectories defined by constant
energy contours and controlled by the semiclassical equa-
tion of motion, Eq. (5). Transport phenomena can be
interpreted in terms of the electron distribution function

f (r, k), which satisfies Boltzmann's equation. If we also
assume that scattering can be treated in the uniform re-

where io~~ is the cyclotron frequency eB~~/m. The energy

spectrum E(k) is given as the sum of kinetic energy of
free electron motion in the y direction and eigenvalues
Ep(k ) of the Hamiltonian Hp(k ),

h2k2
E(k) = " + Ep(k ) (3)

where k = (k, k„) is the two-dimensional wave vector.
The index 0 points out the fact we are limiting our con-
sideration to the two-dimensional electron gas with only
the lowest energy subband occupied. Due to violation
of the time reversal symmetry, caused by in-plane mag-
netic fields, the Fermi line has an asymmetric shape if
V, „t(z) g V, „t(—z), while in the zero field limit it is
always a circle. With rising magnetic field strength, the
perimeter along k direction increases on account of the
perpendicular perimeter. This efFect may be viewed as
an increase of the electron effective mass m*(k ) in x
direction,
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laxation time approximation, linearizing the Boltzmann
equation with respect to an external electric field leads
to the following expression, due to Chambers, for the
conductivity tensor,

2 „.-(k(t.)) ("(k(t)))..dk, (7)

where fp is the equilibrium Fermi-Dirac distribution
function and p is the chemical potential. The term repre-
sented by angular brackets ( ) stands for the time average
along the electron trajectory calculated using Eq. (5) in
the absence of an electric field,

tp

(v(t)),, v(t) e - dt

with ~ being the relaxation time. The described con-
cept has been successfully applied to explain low field
magnetoresistance anomalies in periodically modulated
two-dimensional systems. ' In the considered case, how-
ever, it has to be modified due to the allowed electronic
transport along z direction.

The in-plane magnetic field BII induces a space sepa-
ration of electron mass centra along z direction. Their
location, often called a guiding center, is given by -expec-
tation values of the z coordinate,

Z(k ) = —
lii k

m*(k ) )

( )

Treating the time t as a parameter, an electron which
stays at the time —oo in a given state k will appear to
change its properties in terms of the states classified by
the wave vector k + eA(t)/h. It results in the guiding
center shift in z direction. All electrons are shifted in the
same direction and the original equilibrium charge dis-
tribution, determined by the fixed positive background
charge, is destroyed. The induced z-dependent electro-

A(t) = rt e—

where l~~ stands for the magnetic length (I = h/m~~~).
The effect of electron transitions in z direction of the
real space could be taken into account by adding a cor-
responding diffusion term to the Boltzmann equation as
has been done for example by Beenakker for' the case of
periodically modulated two-dimensional electron gas. We
will, however, use another procedure which is more con-
venient for the considered case. To stay within the uni-
form relaxation time approach, which models the energy
dissipation, the collision term entering the Boltzmann's
equation will be modified in the spirit of the Mermin's
approach. We will show that it leads to a correction term
to the conductivity defined by Eq. (7).

The applied electric field Z = (Z, 8„) accelerates elec-
trons in x and y directions. In the presence of in-plane
magnetic field (B~~ = B„)the acceleration of an electron
in the x direction is accompanied by a shift of its guiding
center in z direction. This can be easily shown including
t, which is adiabatically switched on, into the Hamilto-
nian 80 by the time dependent vector potential,

static potential forces electrons to return back to their
original positions Z(k ). The force can be characterized
by a local electric field E' acting on an electron in the
state k and giving the additional contribution eF z to
the Hamiltonian Hp(k ) defined by Eq. (2). The re-
sulting eigenenergies can be expressed with the help of
eigenenergies of the unperturbed Hamiltonian Hp(k ), as
follows:

Ep(k ) = Ep(k ) —vghk + —mvq
2

where k = k + mvq/h. The expectation velocity value
in x direction is changed by the drift velocity vg = 8,/Bl
and the guiding center is shifted by AZ = —v~/or~~ due
to the effect of f, . To restore the equilibrium charge
distribution, it is suggested to compensate for the guiding
center shift, due to the electric field E', by the shift LZ
induced by E', . It gives the following value of the drift
velocity:

«(t)
II

1 BZ(k ) eF 7. ~-~g
e

lII '9k m
(i2)

eLo-
27r2

v (k(tp)) (co~~ Z(k (t))) g dk . (14)

Here, we have included electron dynamics due to the
nonzero perpendicular magnetic Geld B~ inserting the
time dependence of k into the time average in the
spirit of Chambers' arguments. This conductivity con-
tribution Aa (B~) to the xx component of the con-
ductivity tensor, given by Eq. (7), is analogous to the
guiding-center-drift term for the periodically modulated
two-dimensional electron gas.

For the simplest form of the confining potential,

V„g ———mB z2 2

2
(i5)

analytic expressions for the conductivity components can
be obtained. The efFective mass given by Eq. (4) becomes
independent of k, m*(k ) = (1+m~~/0 )m, the Fermi
surface has the elliptic shape and integrals entering Eqs.
(7) and (14) can be easily evaluated. The resulting ex-
pressions for the resistivity are given as follows:

The Hall field builtup in real systems is, however, mod-
ified by the screening effect. In the considered case of
noninteracting electrons the introduced electric Geld E',
Eq. (12), may be viewed as a slave field defining the
transformation k = k +mv~/5, which leads to the equi-
librium charge distribution and, consequently, to a local
equilibrium across the electron gas layer. This procedure
excludes z dependence of the transport problem with the
persisting meaning of w as an energy relaxation time.

At the time t = to the final value of E' is reached and up
to linear terms in applied electric field the corresponding
contribution to the conductivity is given as

1 e7 10Z(k)
Do (B~ = 0) = — fp — dk . (13)2~2 m l2II Bk

Integrating by parts and introducing the time average
integral, we get
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fA 1+(d 7

C 7A 1+ 4) '1

BJ 1 + (dc+
P~y = Py~ = m.

~~a + Mrn C

where a, = eBi/gmm* is the cyclotron frequency and
n, is the areal electron concentration.

In the case of B~ ——0, the diagonal resistivity com-
ponents have the Drude form, m/(e27n, ), with the zero
field electron mass m. Neglecting the correction term
Ao would lead to the same form for the resistivity com-
ponent p, but with electron mass m*. The correction
term, Eq. (14), just eliminates the effect of increasing
electron effective mass with in-plane magnetic Geld. On
the other side, the relaxation time may generally depend
on BII. In the simplest approach of isotropic scattering
within electron gas plane, it is inversely proportional to
the density of states and we get

m m.*
7p )m* m

II+

where 7p is the zero field relaxation time. This gives rise
to the positive magnetoresistance with respect to BII.

The perpendicular component B~ of the magnetic field
induces the resistance increase till a saturation value for
high enough B~ (w, v )) 1) is reached. The equality
of both diagonal components is the result of the consid-
ered harmonic confinement Eq. (15). Any asymmetry
of the Fermi line in k direction leads to the increase
of p~~ on account of p». Let us point out that while
such an asymmetry itself may cause similar behavior of
the p component, the magnetoresistance of p» com-
ponent becomes independent on B~ if the conductivity
contribution Ao', Eq. (14), is not taken into account.

The harmonic confinement, Eq. (15), and the uniform
relaxation time we used. are not too realistic assumptions.
Nevertheless the resistivity given by Eq. (16), with the
confinement frequency 0 being the single fitting param-
eter, qualitatively describes the main features of the ex-
perimental magnetoresistance traces as shown in Fig. 1
and Fig. 2. The data have been taken at the tempera-
ture 4.2 K on standard Al Gai As-GaAs heterostruc-
tures grown by the molecular beam epitaxy. The typi-
cal layer structure consists of a 2 pm GaAs buffer, 100
A spacer, 1000 A of Si-doped Al Gai As (2: 0.32),
and 200 A. cap layer of GaAs. The Hall bar samples of
400 pm conducting channel width have been used for the
measurement. At helium temperature 4.2 K, they have
typically the carrier density and the mobility in the range
n, = 3.0—5.5 x 10is m and 20—41 m /Vs, respectively.
The relatively small carrier density ensures the existence
of two-dimensional electron gas with only the lowest sub-
band occupied in the whole range of the used magnetic
field strength, up to 5 T. All samples show negative mag-
netoresistance applying magnetic field perpendicularly to
the electron gas, as shown in the inset of Fig. 1. This of-
ten observed effect, more pronounced at lower tempera-
tures, is supposed to be caused by the localization effects
which are excluded from our model calculation. There is

0—
0

FIG. 1. Magnetoresistances AR /Ro [(a) J J B~~] and
AR„„/Ro [(b) Jf[B~~] as functions of the in-plane magnetic
Geld BII for B~ ——0; Ro denotes the zero Geld resistance.
The dashed line represents the model calculation for harmonic
confinement frequency 0 = eB, „&/m with B o r = 16 T. The
inset shovrs negative magnetoresistance for the case of zero
in-plane Geld.

also a slight instability of our samples to the thermal cy-
cling. Note, that for a technical reason the configuration
can be changed. at room temperatures only. This effect is
responsible for the difference in magnetoresistance traces
as functions of B~.

The effects of in-plane magnetic fields and those
slightly tilted by an angle 0 from the direction paral-
lel to the two-dimensional electron gas plane have been
studied in two difFerent configurations with respect to
the applied current direction. The resistivity component
p corresponds to the current applied perpendicularly
to the magnetic field direction (J J B~ ), while p» has
been measured with the current applied along the in-
plane component of the magnetic field (J~~B~~).

Both positive magnetoresistances do not differ sub-
stantially in the case of in-plane magnetic fields. A
little stronger magnetoresistance of p in contrast to
pyy p

shown in Fig. 1 for the sample with n, =5.2 x 10
m and the mobility 35 m /Vs, is not an universal fea-
ture. Very often just the opposite behavior has been ob-
served. The result of the model calculation presented in
Fig. 1 corresponds to the case of harmonic confinement
represented by the frequency 0 equal to eB, „r/m with
B f —16 T. The value of wp has been determined from
the zero Geld mobility of the sample.

The result of the model calculation for the same
parameter values and experimental magnetoresistance
traces obtained by tilting the direction of the magnetic
field from the inplane orientation (with the fixed mag-
netic field strength) are shown in Fig. 2 as the function
of resulting perpendicular magnetic Geld component B'~.
To exclude partly localization effects, we have slightly
modified the definition of the magnetoresistance in this
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FIG. 2. Angle dependencies of the magnetoresistance
shown as functions of B~ ——Bsin8 for two fixed values of
the magnetic field strength B, B(B~ = 0) denotes the resis-

tance for the in-plane field orientation. Dashed lines represent
the model calculation with B, „g ——16 T.

case. The value LA is the difference between measured
resistance at B~ P 0 and that at B~ = 0 for fixed value
of the total magnetic Field strength enlarged by the same
difference taken under the condition of the zero in-plane
field, B~~

——0. In the temperature range 2.1—4.2 K, the
results are practically temperature independent. The ob-
served higher saturation value for p is the universal
feature of all samples indicating an asymmetric con6ne-
ment within the studied structures. The accuracy of the
measurement of B~ did not allow us to check small de-
viations of the Hall resistivity, Eq. (17), from the free
electron value B~/(en, ) predicted for a weak perpendic-
ular component of magnetic Fields.

The used model is too simplified to expect the quan-
titative agreement with the experimental data. While
the electron energy spectrum can easily be improved to
correspond to a real electron systems, the essential lim-
itation is the used uniform relaxation time approach ap-
plicable for the case of an isotropic scattering within two-
dimensional k space. The electron scattering on ionized
impurities should be considered and the electron transi-
tion probability between states k and —k is expected
to decrease at high in-plane fields when the magnetic
length becomes comparable to the width of the potential
confinement. Also, the localization effect may inBuence
the magnetotransport substantially and we consider this
effect responsible for the negative magnetoresistance ob-
served at B~ & 0.3 T. Nevertheless, despite of the used
simplified model, the presented analysis allows us to con-
clude that any more realistic treatment has to take into
account the Hall field across the electron gas layer which,
under particular conditions, might have the dominant ef-
fect on the magnetoresistance.
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