
PHYSICAL REVIEW 8 VOLUME 51, NUMBER 16 15 APRIL 1995-II

Dimensionality of exciton-state renormalization in highly excited semiconductors
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Renormalization of the band gap and exciton state in the presence of high-density electron-hole pairs
is studied systematically for quasi-one-dimensional (q-lD), quasi-two-dimensional (q-2D), and three-
dimensional (3D) systems. By introducing a universal measure of particle packing, it is shown that re-
normalization proceeds less effectively in lower dimensions. The exciton state disappears (Mott transi-
tion) due to the Coulomb-potential screening in the 3D system, the phase space filling in the q-1D sys-

tem, and both of them in the q-2D system, although the screening is important at densities below the
Mott density for every dimension.

Recently, much attention has been focused on confined
semiconductor systems, ' the research of which was ini-
tiated for quasi-two-dimensional (q-2D) electronic struc-
tures. This research is now being directed toward those
of lower dimensions to search for new physics. When
these semiconductor systems are exposed to high excita-
tion, which occurs, for example, in semiconductor lasers
and nonlinear optical devices, their band gap and exciton
energy levels are shifted (renormalized) due to the many-
body eff'ects of the injected electron-hole (e-h ) pairs.
Several authors have compared the band-gap renormal-
ization in the q-2D and three-dimensional (3D) sys-
tems. ' However, to our knowledge, no systematic com-
parison has so far been made of the band gap and exciton
state renormalization among systems of different dimen-
sions. The purpose of this report is to discuss the energy
renormalization for systems of different dimensions on
the same theoretical basis and to clarify the effects of the
various dimensions (dimensionality) on this phenomenon.

We employ two-band (electron and heavy-hole bands)
approximation for simplicity. Moreover, for the q-10
and q-20 systems, we consider only the lowest subbands
in these two bands. Under the assumption of static
screening for the Coulomb potential, band-gap renormal-
ization in q-10 system can be written as

h(K)= —g f;(K')V, (K' —K)
K'

i =e, h

—g[ Vo(K' —K)—V, (K' K)], —

where the first term is the screened exchange energy and
the second is the Coulomb-hole energy. Equation (1) is
the q-10 version of equations derived previously
for q-2D and 3D systems. Here, f; (K)= 1/
(1+expIP[E;(K)—p;]I ) is the Fermi distribution func-
tion for i =e (electron) and h (hole), where
E, (K)=A'K'/2m, and P= 1/ks T. We employ the
analytical form '

a
Vo(z) =

s„ izi+b '

as the effective q-1D Coulomb potential in the real space
between an electron and a hole, where a and b are param-
eters determined such that Eq. (2) accurately describes
the numerically evaluated effective Coulomb potential in
an actual q-10 system. Its Fourier transform is also
known to have the analytical form

Vo(K) = G(bK),

where

G (x)= ——Six sinx —Cix cosx . (4)
2

Here, Six and Cix are the sine and cosine integrals, ' re-
spectively. The statically screened Coulomb potential is
given by V, (K)= Vo(K)/E(K) and the dielectric function
E(K) by

f;(K') f;(K' —K)—
E; (K') E; (K' K)— —E K =1—

VO K 2 'V

i =e, h

using random-phase approximation. Here, in the evalua-
tion of Eq. (5), we replace the Fermi functions with
Boltzmann functions for simplicity. In this way, we ob-
tain a simple form of the dielectric function

1 /2

E(K)=1+~G(bK) g —,'p AK
i =e, h Sm,

where v=4e aPN&/E„ is the q-1D screening wave num-

ber, N, is the q-1D e-h pair density (in units of cm ),
and P(x) is given by

—t 2

P(x) = P dt,2v'~x — x t—
where P takes the principal value of the integration. This
function is normalized so that P(0) = 1. The exciton state
is described by the homogeneous part of the Hethe-
Salpeter equation

QH~~.@(K')=Eq)(K),
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with the Hamiltonian

p AE~«= Es+ +~«) &«
2p

—[1 f,—(K) f„—(K) ) V, (K' K—), (9)

using the statically screened Coulomb potential V {K)
Here, E is the band gap in the absence of e-h plasma and

p = ( m, '+ m h
'

)
' is the reduced mass. The exciton en-

ergy can be obtained by minimizing the expectation value
of the Hamiltonian in terms of the two-parameter (A. and
o) normalized variational wave function for the ground-
state exciton proposed previously,

exp —+(z/A. ) +o.
y(z) =

+2o AK, (2o )

with its Fourier transform

(10)

2CT A,

K, (2o )

o&~'K'+1

+A, K +1

Here, X, is the modified Bessel function. ' The expecta-
tion value is primarily determined by the X value chosen
and is not very sensitive to o..

Systems of higher dimensions can be treated similarly.
Since the detailed calculations for higher dimensions are
reported elsewhere, we mention here only a few
points. In the q-2D, the exciton wave function for the
ground state is usually given by

&8~X'
(g2K2+ 1 )3/2yK =

The Coulomb potential is expressed as

(12)

Vo(K) = F(L,K/n), .
E„E

(13)

where L, is the well width and the form factor I' (x) can
be expressed as the analytical form

F(x)= 8

vr (x +4)
~(3x +8) 4(1 —e ")

x (x +4)
(14) '

for a q-2D system with infinite barrier height IF(0)=1
and F(x)-3/vrx for x —~ ]. The exciton wave function
for 3D is given by the hydrogenic wave function.

The above formulation is based on what Zimmer-
mann" called the free virtual-state (FVS) approximation
for the correlation term of the exciton energy. Recently,
he pointed out that the inclusion of intraband and inter-
band scattering terms could modify the exciton energy to
some degree. Actually, he obtained the exciton energy
twice that obtained by the FVS approximation at very
low densities. At the current stage, we do not know how
these scattering terms may modify the exciton energy in
the high density region we are interested in, since there is
no data in this region. However, we believe that the qual-
itative conclusion of this paper will not be changed by the
inclusion of these terms.

It is clear from the above equations that two factors
are responsible for energy renormalization: the screening

effect for the Coulomb potential and the statistical
carrier-filling effect Iwhat we call the phase space filling
(PSF) effect]. Here, we try to isolate these effects in order
to study which one has the greatest impact on the renor-
malizing properties for each dimension. This can be done
by simply plugging either f, (K)=f&(K)=0 (pure screen-
ing eff'ect) or s(K)=1 (pure PSF efFect) into Eqs. (1) and
(9). The results of this study will be shown later (Fig. 2).

We applied the above formulation to highly excited
GaAs. The material parameters used were
m, =0.067mp plh =0.62tplp and e, =10.8: the potential
barrier heights for the q-1D and q-2D are assumed to be
infinite. The q-1D systems studied have I.„and I, rang-

0

ing from 50 to 130 A and the q-2D systems have I., rang-
ing from 50 to 130 A. We intentionally avoided very
wide quantum structures ' for which the higher sub-
bands cannot be neglected in calculating the energy re-
normalization. The overall results can be summarized as
follows: With increasing pair density Nd (2 =1, 2, and
3), the exciton level E decreases together with the band
gap b,(0)=b„approaching each other. Finally, the exci-
ton level gradually merges into the band gap (disappear-
ance of the exciton state at the Mott transition) at a
specific e-h pair density 2V, (Mott density). This transi-
tion occurs at densities of 7.3X10 cm ', 3. 1X10"

, and 5. 1X10 cm for the q-1D, q-2D, and 3D
systems, respectively. These densities are independent of
the size of the quantum structures. The energy renormal-
ization values corresponding to the above densities are—65, —33, and —11 meV for the respective dimensions
(the quantum-structure sizes used here are
L =L =50 A for q-1D and L, =50 A for q-2D). Ener-
gy renormalization appears to be correlated to the bind-
ing energy of the excitons because the former is approxi-
mately proportional to the latter (Eb =44, 19, and 7 meV
for the respective dimensions in the absence of e-h pairs).
However, it may be dificult to compare the results more
closely for different dimensions because the unit of densi-
ty (a measure of e-h pair packing) differs between them.

Let us speculate on what could be a universal measure
of particle packing. It must be a quantity that transcends
the difference in dimensions in order to make a compar-
ison possible. Several authors ' have used r, (for 3D,
this is defined as the ratio of the Wigner-Seitz sphere s ra-
dius to the Bohr radius ) to compare band-gap renormal-
ization in the q-2D and 3D systems. Comparison using
such a measure, however, does not seem to have a clear
physical meaning because it is just like comparing the ra-
dius of a circle to that of a sphere. In addition, this mea-
sure does not show a reasonable dimensionality for the
energy renormalization in the present study. Particle
number in an exciton-volume r, (d =1, 2, and 3) re-d

veals a reasonable dimension effect indeed, but we do not
employ it since its physical implication is not clear either.
We now introduce a measure that uses chemical poten-
tials. Suppose there is a structure consisting of a semi-
infinite 3D system and a q-1D system joined perpendicu-
larly to it. Let the chemical potentials be p3 and p, for
3D and q-1D systems, respectively. When p3) p„ the
particles Aow from 3D to q-1D, and vice versa. Then, the
whole system approaches the state at which p3=p, at
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which point there is no particle Aow. From this, it seems
natural to consider these systems to be equally packed by
particles when there is no particle fIow between them.
Let us then de6ne the effective density N, s (in units of
cm ) as a universal measure of particle packing: N, tr is
defined as the density in the 3D system at which the
chemical potential has the same value as that in a given
d-dimensional system. An arbitrary density Nd (d = l, 2,
and 3) can be converted into N, s by this procedure. N3 is
of course identical to X,ff.

Figure 1 shows the calculated results of energy renor-
n-'alization in the presence of e-h plasma, the shifts of the
bandgap 6, and the exciton state E as a function of the
effective density. Both the screening effect and the PSF
effect are considered in this calculation. The abscissa is
normalized using the bulk exciton radius a& and the ordi-
nate is normalized using the exciton binding energy Eb for
the respective dimensions in the absence of e-h plasma.
The results of Fig. 1 do not depend on the size of the q-
1D and q-2D systems and, therefore, can be regarded as
intrinsic to the dimension, material, and temperature.
The dimension effects are clear from Fig. 1. In 3D, the
renormalized energy falls relatively quickly with in-
creases in the pair density. This curve becomes more gra-
dual as the dimension lowers. In other words, a higher
N,z is required in lower d systems to attain a certain en-

ergy shift (in its E& normalized form). The lower
e%ciency of energy renormalization may be related to the
conjecture that the Coulomb potential is less effectively
screened by the e-h plasma in lower d systems. More-
over, it is known that even a very weak attractive poten-
tial creates a bound state in the q-1D and q-2D systems,
whereas it does not in the 3D system. ' Thus, the per-
sistent survival of the exciton state in low d systems may
be partly the cause of the low efficiency of energy renor-
malization. These predictions will be clarified in follow-
ing studies.

Figure 2 shows the exciton binding energy as a func-
tion of the effective density for the (a) q-lD, (b) q-2D, and
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FIG. 1. Band gap 6 and exciton state E as functions of the
effective density X,z. The density is normalized using the bulk
exciton radius ab and the energy using the exciton binding ener-

gy cb in the respective dimensions in the absence of e-h plasma.
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FIG. 2. Exciton binding energy Eb as a function of the
effective density X,& for (a) q-1D, (b) q-2D, and (c) 3D systems.
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(c) 3D systems. The solid lines indicate the results ob-
tained from Fig. 1 using cb =5—E„:these include both
the screening and the PSF effects. The dashed lines
denote results obtained by considering only the screening
effect and the dash-dotted lines are for only the PSF
effect. With the increase in N,z, the binding energy de-
creases and tends toward zero, which implies a disappear-
ance of the exciton state (Mott transition). At densities
below the Mott density (N, ), the screening effect is pri-
marily responsible for the decrease in binding energy for
every dimension. This effect varies depending on the di-
mension. In contrast to this, the PSF efFect is far less
inAuential on the Eb decrease at densities below N, . This
is true especially in higher dimensions. Moreover, the Eb

renormalization due to this effect is found to exhibit near-
ly the same behavior irrespective of the dimensions. This
is a reasonable result because N,~ is fundamentally a
measure of particle packing in the K space. In the vicini-
ty of the Mott transition, however, the situation is entire-
ly different among the different dimensions. In the 3D
system, the screening effect is still a main contributor to
exciton-state disappearance. In the q-1D system, howev-
er, the PSF effect becomes dominant in this transition.
Note that the exciton state continues to exist even at
higher densities for the q-1D system under the condition
that only screening is effective. In the q-2D system, both
screening and PSF are responsible for the disappearance
of the exciton state.
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