
PHYSICAL REVIEW 8 VOLUME 51, NUMBER 16 15 APRIL 1995-II

Brief Reports

Brief Reports are accounts of completed research which, awhile meeting the usual Physical Review standards of scientific quality, do
not ~arrant regular articles. A Brief Report may be no longer than four printed pages and must be accompanied by an abstract. The same
publication schedule as for regular articles is followed, and page proofs are sent to authors.

Interconnection between the period of geometric oscillations in a longitudinal field
and the Fermi surface

A. V. Tkach
Institute for Metal Physics, Ural Department ofRussian Academy of Sciences, Ekaterinburg 620219, Russia

(Received 14 September 1994}

We have shown that the period of geometric magnetoacoustic oscillations in a longitudinal magnetic
field is uniquely defined by the configuration of the Fermi surface in the vicinity of the effective orbit.
Hence, these oscillations can be used in the experimental characterization of the Fermi surfaces of met-
als.

I. INTRODUCTION

The geometric oscillations (GO's) in ultrasound at-
tenuation and velocity have played an import"nt role in
investigations of Fermi surfaces (FS's). It must be men-
tioned, however, that the overwhelming majority of these
works deal with the traditional geometry, where the mag-
netic field H is perpendicular to the sound wave vector q
(the Bommel-Pippard geometry).

The history of GO studies in the nontraditional
geometry q~~H is relatively short. Started in 1960 by the
observation of unintelligible oscillations of ultrasound ab-
sorption, ' it was interrupted by a paper by Miller in
1.966. The loss of interest in these themes was connected,
in particular, with the opinion that this phenomenon is
uninformative about the FS. We hope to demonstrate
that this opinion is not fully justified.

The interest in GO's in q~~H geometry was regenerated
in 1992 following the discovery of an unusual polariza-
tion phenomenon: a quasiperiodic (against the reciprocal
magnetic field H ') variation of ultrasound ellipticity.
Subsequent experiments have proved the eAect to be the
appearance of GO's in sound absorption for the two cir-
cularly polarized eigenwaves. Some time later, GO's in
the sound velocity were observed with q~~H. In Ref. 5, a
mathematical description of GO's in a longitudinal field
was partially provided. This work revealed a number of
specific features of these nontraditional GO's compared
to oscillations in the Bommel-Pippard geometry.

In the following note we wish to complete this cycle of
publications and to show that, for q~~H, the oscillation
period t is uniquely connected with the FS geometry in
the vicinity of the efFective orbit.

II. PRINCIPAL RELATION

In early papers (by Mackinnon, Taylor, and Daniel
and by Mackintosh ), it was clearly demonstrated that

the oscillation period versus reciprocal magnetic field in
the case q~~H is defined by the condition

qb, Z —fo=2mN,

where AZ is the dimension of the eA'ective electron trajec-
tory in real space, measured along H (it is inversely pro-
portional to H ), and X is the serial number of an oscilla-
tion. (The value of the phase shift go is not essential in
this context. ) Thus the physical meaning of the period
was revealed right from the start. But the following ques-
tions arise: is the Fermi surface of the metal character-
ized by this period —and, if yes, is this connection of the
period with the FS geometry unique? Those are the ques-
tions about the geometric meaning of the GO period.

Up to now, only Daniel and Mackinnon to our
knowledge have tried to answer these questions, but later
experiments "with Sb demonstrated the inapplicability
of their formula. As a matter of fact, a condition for the
appearance of the Doppler-shifted cyclotron resonance
(see Ref. 11, for example) —not for GO's —was derived
in Ref. 8. The paper by Eckstein, Ketterson, and Eck-
stein finished the discussion of the questions mentioned:
". . . we measure the linear dimension of the orbit paral-
lel to the magnetic field. However, this gives no direct in-
formation about the orbit in p space. . .". The following
is an attempt to dispute this opinion.

It is known (see, for example, Ref. 5) that the effective
orbit in our case is one having an average velocity (over
the cyclotron period) in the direction H~~O, ~~q that is
equal to the sound velocity: u, =s (as a rule, s is three or-
ders of magnitude smaller than the characteristic value of
the Fermi velocity u~).

An expression for AZ may be derived easily in the
framework of the quasiclassical description of electron
dynamics in a magnetic field (for example, Ref. 5):

02
AZ=A ' v, 0 —s dt9. (2)
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Here Q=eH/(cm, ) is the cyclotron frequency, e is the
absolute value of the electron charge, m, is the cyclotron
mass, c is the light velocity, and 0 is the dimensionless
time of the electron motion over the cyclotron orbit. 611

and 02 are the value of 0 corresponding to the so-called
turning points, where U, (0&)=v, (Oz)=s (we consider the
simplest case with a minimal number of turning points R,
i.e. , R =2).

Proceeding from Eq. (1), the oscillation period can be
written in the form

(b,G)

H 2 hc
(b,G)= —I IU, (9)—0]d0= f U,0 ~l

' 2me k~
'

U~
(4)

v~ is the transverse (relative to H) component of the elec-
tron velocity at a given point on the orbit. Here we
define the orbit as a closed curve in k space, resulting
from the intersection of the FS with the plane k, =const.
The turning points ki and k2 are defined by the condition
v, (kI ) =0. Figure 1 shows a plane that is perpendicular

where a definition for the field-independent quantity
AG—:hZXH has been introduced. One must bear in
mind the following: in cases of practical interest, a typi-
cal value of the velocity v, (8) ))s, otherwise the oscilla-
tion period would be extremely small at frequencies up to
1 GHz, and the GO's would be inaccessible to observa-
tion. We can assume, therefore, that s =0 in Eq. (2). The
calculation of the integral in Eq. (2) is reduced to an in-
tegration over the orbital arc dkI in k space (k is the elec-
tron wave vector). As a result,

to an orbit element dkI, a velocity vector v, the effective
orbit k, =k,s., and also an orbit k, =k,s +Ak, (with its
projection). The electron velocity is perpendicular to the
FS-

hc ar'
2me Bk,

hc . AX
AGk( —— lim (6)

2me al, -o Ak,

In Eq. (6), X means the area of the dashed crescentlike
figure in Fig. 1, or the area of the orbit region intercepted .

by the line k1-k2. Finally, we have

t =4m e(hcq)
axe
ak,

(7)

This formula defines a direct relation between the GO
period t and the FS geometry, thus giving a solution of
the problem discussed.

III. VERIFICATION

The validity of the formula derived can be checked
through the experimental data of Beckmann, Eriksson,
and Hornfeldt' on Sb. As shown in Ref. 10, the GO's in
Sb are connected with "ellipsoids" inclined to the three-
fold axis (the magnetic field vector is directed along this
axis). The model for such a sheet of the Sb FS is known,
and it gives us the possibility for explicit calculation of
BX /Bk, . On the other hand, there are data for the
period t; hence the experimental value of the geometric
parameter discussed can be deduced on the basis of Eq.
(7).

The mentioned sheet is described satisfactorily by the
equation

2m0CF
2 211k +22ky +223ky k +33k

(h/2m)
2

CK23=e, 1k„++22
~22

Here m 0 is the electron rest mass, c.F = 18 X 10 ' erg,
u11=15.8, o'23=7. 6, a23=5.9, and cz33 %33 &23/+22.
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The FS section intersected by the plane k, =0 (for which,
as a consequence of the inversion symmetry of the ellip-
soid, U, =0) is an ellipse with the following semi-axes:

1/2 1/2
2~ 2mo~F

Q 0 h a»
2~ 2mo~F

0b =
h a22

U, Ak1
llm

Uz sk, 0 Ak,

It follows from Eq. (5), in particular, that the integration
limits for the second integral in Eq. (4) are the intersec-
tion points of the eft'ective orbit (k, =k,s) with the pro-
jection of the orbit (k, =k,tr+Ak, ). Taking into account
that b,k~dkl is the area element [see Fig. 1(b)], one ob-
tains

FIG. 1. (a) The Fermi surface fragment in the vicinity of the
e6'ective orbit. (b) The orbits (k, =k,&) and (k, =k,~+6k, ),
projected onto the plane (k„,k~ ).

A movement onto another cross section (k, =5k) leads
to the following two effects:

(a) a displacement of the ellipse from k =0 to the
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BX o'23—=2ao
Bk, +22

Equation (10) can be rewritten in the form

are =—A tang,
Z

(10)

where 3 is the effective orbit size measured between the
turning points, and P is the inclination angle of the given
FS sheet relative to H. It is clear from the above that the
form Eq. (1 1) is of greater generality than Eq. (10), which
is valid for an ellipsoidal FS only. At the same time, Eq.

point k = —5ka23/a22.
(b) a change of the line dimensions; for example, the

semi-axis (a ) becomes equal to

a33(5k)
a=ao 1

4mocF

The last effect can be disregarded because it is quadratic
in the infinitesimal value of (5k).

Next, in the limit of (5k)~0, the intersection points of
the two almost equal elliptic trajectories k, =0 and
k, =5k, approach the positions (turning points) (ao, 0)
and ( —ao, 0). This fact implies that X is the area of the
part of the ellipse which is cut off by the line k =0. For
the effective orbit k, =0, this is shown in Fig. 2(a) and for
the section k, =5k in Fig. 2(b). The difference of the two
areas shown, 6X, is equal to the strip area which is
shown cross hatched in Fig. 2(b). Thus,

FIG. 2. Cross sections of an inclined elliptical FS intersected
by the planes (a) k, =0 and (b) k, =5k, .

(1 1) can be regarded as an interpretation of BX /Bk, by
means of simpler geometric quantities (a linear size and
an inclination angle).

The calculated value is obtained from Eqs. (9) and (10):

gyC =0.11 A

On the other hand, starting from the experimental data'
on the oscillation period (t =28X 10 Oe ' at frequency
f=146.5 MHz with S=2.71 X 10 cm/s), we obtain from
Eq. (7)

are 2~e s

Bk, , hc ft
As is seen, a good agreement is obtained between the ex-
perimental and calculated values, thus confirming the va-
lidity of Eq. (7).
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