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A theoretical formalism for the interpretation of scanning-tunneling-microscopy (STM) images is
developed with special attention to the effects of adsorbate molecules placed in the tip-substrate gap.
The STM configuration is treated as a system of three groups of states, the substrate, the adsorbate, and
the tip, in contact with a thermal reservoir, with which it exchanges energy as well as particles. The cal-
culation of the observed current is approached as a transport problem in quantum statistical mechanics
with focus on the description of the arbitrary degree of quantum coherence in the tunnel junction and of
the temperature and complexity of the adsorbate. Expressions are obtained for the STM current and for
the effective resistance of the STM junction. They are shown to allow one to relax some of the restrictive
assumptions made in existing approaches. Particular cases are worked out, observable quantum interfer-
ence effects are predicted, and simple examples suggesting the nature of the mechanism of contrast of ad-
sorbed molecules are presented along with the corresponding images.

I. INTRODUCTION

The purpose of this paper is to formulate a theoretical
framework for the interpretation of images of adsorbates
in scanning tunneling microscopy (STM). Since its inven-
tion,! STM has been employed to produce high-
resolution images of bare conductive surfaces as well as
of atoms and molecules adsorbed on conductive sub-
strates. While data have appeared in abundance, some
crucial questions of interpretation have remained open.
Important examples of features that have not been under-
stood completely are the nature of the giant corrugation
observed in STM images of low-indices metal surfaces,>>
the nature of contrast in images of organic molecules on
conductive substrates,®> and the limit of resolution in
molecular adsorbates.® Other examples include dissipa-
tive effects in the STM junction and the temperature
dependence of the tunneling current. Indeed, there is a
definite lack of a straightforward set of prescriptions that
the experimentalist could use to assign a feature in an ob-
served STM image to a specific factor and theoretical
methods are important tools in understanding the micro-
scopic origin of contrast in STM images.

The primary task of STM theories, viz., the calculation
of the tunneling current in terms of the microscopic vari-
ables representing the STM junction, is complicated by
the fact that the STM junction is a mesoscopic system
with a large number of degrees of freedom, that few sym-
metries exist in the STM configuration to ease the calcu-
lational problem, that the tip structure is unknown, and
that local motion of the atoms involved, as well as the
mechanical instabilities of the tunneling gap, can affect
the transmission of electrons across the junction. A num-
ber of simple one-dimensional tunneling barrier mod-
els’~® have been developed to address the resolution of
STM experiments. The necessity of explaining nontopo-
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graphical features in STM images has prompted more
realistic and detailed theories capable of addressing the
three-dimensional atomic nature of the STM junc-
tion.~13 The main focus in these theories has been on
the relationship between the STM current and equilibri-
um electronic-structure properties such as the local den-
sity of states, the tip electronic structure, the focusing of
the current due to the tip apex atom, the changes in the
space distribution of the STM current in the presence of
adatoms, and the importance of interference effects in
limiting the resolution of molecular adsorbates.
Well-known and successful examples of existing ap-
proaches!®!* include the Tersoff-Hamann theory'® based
on the transfer Hamiltonian method,!® which uses time-
dependent perturbation theory. The key result is a sim-
ple and convenient relation between the tunneling current
and the substrate local density of states at the Fermi lev-
el, evaluated at the tip position. The relation is a power-
ful feature of the theory and has led to the simulation of
STM images of metal and semiconductor surfaces'®™!® in
agreement with experimental results. Lang’s theory'* has
succeeded in showing that, at low bias voltage, the rela-
tion between current and local density of states at the
Fermi level holds also for adatoms. Several authors have
expressed the opinion, however, that the underlying per-
turbative approach to the STM current may not be ade-
quate in all experimental situations and have proposed
current definitions that are claimed to go beyond the per-
turbative regime. Implicit assumptions in perturbative
treatments are that the tip-substrate interaction is weak,
that the temperature is not high enough to complicate
simple quantum-mechanical transfer among sharp levels,
and that incoherence in the transfer is large enough to
validate the use of the Fermi golden rule. Thus it has
been pointed out by Chen!® and by Sacks and Noguera?®
that, in order to answer the problem of the giant corruga-
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tion in metal surfaces, it is necessary to relax some of the
assumptions implicit in a perturbative approach and
redefine the STM current on the basis of more general ar-
guments. The contact resistance experiment by
Gimgewski and Moller?! has brought up the necessity of
nonperturbative theories of current in the context of the
observed current-separation characteristics. Work to-
wards this particular end has been performed by Lang,?
Tsukada et al.,® Doyen et al.,?* Noguera,?® and Chen?®
and has consisted of the extension of the transfer Hamil-
tonian tunneling current using the wave function of the
combined system tip sample. Sautet and Joachim?’ have
adopted the scattering matrix approach and the generali-
zation of Landauer’s theory of current to three-
dimensional transport to calculate the tunneling current
through molecular adsorbates. Except for Tsukada and
Shima’s work, > which studies the tunneling of an elec-
tron dressed with surface phonons, none of the other
methods has taken into explicit account the effect of the
bath interactions on the tunneling current. The
molecular-dynamics simulation of a metal-tip—metal-
substrate system by Todorov and Sutton,?® along with a
calculation of the current with the theory by Pendry,
Prétre, and Kreutzer,? represents another attempt to
treat electronic and (indirectly) thermal effects on the
STM current.

It should be clear from the above discussion that it is
important, and timely, to forge a comprehensive theoreti-
cal tool for the interpretation of STM images. In the
present paper, we develop a framework that is capable of
treating some of the issues discussed above. One of the
features we concentrate on is the effect of arbitrary de-
gree of coherence of electron transfer across the junc-
tion:3® this degree of coherence is determined by the rela-
tive strengths of the interatomic matrix elements and
bath interactions. A study of such coherence effects has
long been important and useful in other transfer situa-
tions as in exciton dynamics.3 132 In the STM context, lo-
cal disorder, relaxation of the interface, and mechanical
and thermal instabilities would lead to the incoherent re-
gime, while close tip-substrate separations (2—3 A), for-
mation of localized bonds, chemisorption at the elec-
trodes, and strong fields would favor a coherent regime.
Since all these factors are usually present during an actu-
al STM experiment, it is likely that electron motion in a
STM junction would possess character intermediate be-
tween the two limit regimes. A theoretical interpretation
scheme capable of treating such intermediate coherence is
thus an important undertaking and is one of the points of
emphasis of our theory.

The paper is set out as follows. In Sec. IT we describe
our approach and state the primary results of our theory,
which consist of expressions for the effective resistance of
the STM junction and for the STM current. In Sec. III
we show the details of the derivation of the results. In
Sec. IV we work out several simple but useful examples
from our theory. These examples address, among other
issues, that of coherence of electron transfer and involve
predictions including a resistance minimum that arises
from quantum interference. In Sec. V we present simple
STM images for illustrative systems and discuss aspects
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of lateral resolution and energy mismatch in STM. Final-
ly, in Sec. VI we present a summary and discussion.

II. OUR APPROACH
AND STATEMENT OF THE PRIMARY RESULTS

We look upon the STM junction as a system consisting
of three parts: the substrate (labeled .S), the tip (7), and
the adsorbed molecular entity (M). We begin with each
of these parts represented by a single quantum-
mechanical state, derive essential results, and then gen-
eralize to the actual situations in which each part consists
of a multitude of states. The states in the three corre-
sponding groups will be labeled by o, 7, and u in the gen-
eralization. In the interest of greater applicability, we
abandon commitment to any particular transport equa-
tion for the electrons at the outset and develop the theory
generally in terms of electron propagators. We develop
expressions for the current in terms of these (probability)
propagators and only later on in the development calcu-
late the propagators and study the effects explicitly.

Our three primary results are an expression for the
effective resistance of the STM junction in terms of its
microscopic properties, a prescription for the calculation
of the steady-state STM current, and an expression for
the transient STM current. The first two are applicable
immediately to existing observations, while the third
would be of interest to future time-resolved STM experi-
ments.

Our expression for the effective resistance R . is

1 T edt[gg(1) =M gp(1)]
Ang
H—™Hs
Jo “dt[ ()= gs(1)]
Anf
npr

(2.1)

Here e is the electron charge magnitude, n, is the number
of electrons in the STM junction, u is the equilibrium
chemical potential of the system, and p; and pg are the
chemical potentials imposed by the driving reservoirs on
the tip and the substrate, respectively. The difference
s —ur is proportional to the bias voltage ¢ at the tip.
The quantity An™ is the difference in the equilibrium
population originating from the local variation of the
chemical potential with respect to the equilibrium poten-
tial that arises from the presence of driving reservoirs.
Specifically, An=nF—P%, where 5 is the electron
probability at the tip in the absence of a driving agency
and P! is the quasiequilibrium population imposed by
the reservoir in contact with the tip. The II’s are aver-
ages of propagators that describe the motion of the elec-
tron in the absence of driving reservoirs: II,,,(¢) is the
probability to find the electron at time ¢ in the state m
given that it was placed in the state n at the initial time.
The labels T and S denote appropriate averages over
groups of states representative of the tip and the sub-
strate, respectively.
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Our prescription for the calculation of the steady-state
STM current I is

e l Anf
S dt [N () =T (2)]
Anth
f+°°dt [Mgg(2)—Tgp(2)]

(2.2)

Our expression for the time-dependent STM transient
current is

‘f ds[Ap(t —s)np(s)—Ag(t —s)ng(s)]

PP [ ds hrp(s)+ P8 [dshp(s) [, (232)

where the response functions A, (¢) and Ag(t) are defined
as

1

Jo =dt () =T pg(t)]e
! (2.3b)

Jo “dt[Tggt) —Thgp(1)]e

fo“"dt Ap(t)e o=

f0+ “dt Ag(t)e ~¥=

where € is the Laplace variable.

Further important simplified results arising from (2.1)
and (2.2) are respective expressions for the low-
temperature, low-voltage, and low-temperature—low-
voltage regimes. At temperatures low with respect to the
Fermi temperature, the expression for the effective resis-
tance is (2.1) with the replacement of u by the Fermi en-
ergy Ep. In the low-voltage limit, the effective resistance
becomes independent of the applied voltage:

¢TS

lim
brs/kgo—0 1
J o dt [T () =T ()]
ongp
o
f+°°dt [Mgs(2)

R Ohm —

-1
T2

6

—Igp(1)]

) (2.4)
ong

o

6

where ng=n,n and ny=n,n' denote, respectively, the
number of electrons at the substrate and the tip, 6 is the
absolute temperature, and the isothermal partial deriva-
tive of the electron number with respect to the chemical
potential is inversely proportional to k6 at high temper-
ature, as is obvious from the statistical mechanics of the
grand canonical ensemble. The further limit of low tem-
peratures reduces this Ohmic resistance R gp,,,, to
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1 +oo
1 R — dr[11
A o= [t

— Il 5(1)]

1 + oo
+G—gf0 dt[ M gg(t)— Mgy ()]

(2.5)

where G2 and G are the projected densities of states at
the tip and substrate, respectively, evaluated at the Fermi
energy Ef.

III. DERIVATION OF OUR RESULTS

We begin with a simplified STM junction consisting of
just a single tip state 7, a single substrate state S, and an
arbitrary number of states of the absorbed molecule and
later on generalize the analysis to arbitrary number of
states in the tip and the substrate.3

A. Simplified analysis

We do not specify the detail of the nature of motion,
which could be coherent or incoherent, bath affected, or
otherwise, and develop the theory in terms of the electron
probability propagators mentioned in Sec. II above. In
the absence of a driving agency, the probability 7,,(¢)
that the electron occupies the state |m ) (S, T, or the ad-
sorbed molecule states) at time ¢ will be given in terms of
the propagators II(¢) and the initial conditions P (0) as

(=S 11, (1)P,(0) . 3.1)

Consider now that a driving agency consisting of particle
reservoirs connected to the tip and the substrate forces a
current through the junction by causing removal of the
electron from the tip state |T') at rate R4 (¢) with accom-
panying reentrance at the substrate state at rate Rg(?).
The equation of motion in the driven system is thus

dP, (1)

dr (3.2)

=(gain-loss),, —98,, rR1(t)+8,, sRg(1),

where the gain-loss term represents changes in popula-
tion due to interactions within the system. We have re-
frained from writing explicit forms for the gain-loss term
to emphasize that the results we derive are independent
of their specific form and to allow us to use a variety of
transport equations of motion depending on the system.

The current at the tip is given by I(¢t)=en,R (1),
where n, is the number of electrons involved. If we in-
voke the fact that no charge accumulation occurs within
the STM junction in the course of an experiment, ignor-
ing thus extremely short time effects, we can equate the
tip current to the substrate current and also write
I(t)=en,R4(t), since, from probability conservation,
R(t) and Rg(t) will be equal to each other. The lineari-
ty of the equations of motion, whatever their detailed
content, results in
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P, ()=n,,(1)
+ [fotdt’RT(t')[HmS(t—t’)—IImT(t-—t’)] :
3.3)

where m can be any state: the substrate S, the tip 7, or
the molecule M.

The integral equation (3.3) is formally solved for the
R’s in terms of Laplace transforms. If tildes denote La-
place transforms and € is the Laplace variable, (3.3) and
the corresponding equation involving R yield

Ry(e)=[77(e)=Pr(e)][ M rp(e) —Tzg(e)] ™!
=Rgs(e)=—[7s(e)—Pg(e)]
X [Mggle)—Tgp(e)]7 1. (3.4)

The current may thus be written in the Laplace domain
by
en, | Wp(e)—Pr(e) N Py(e)—mg(e)

—P
(e)=—7 1= = = =
2 HTT(E)_H HSS(a)_‘HST(E)
(3.5)

b

rs(€)

in terms of the propagators II, the thermal populations 75
in the absence of the driving agency, and the actual prob-
abilities P, and Py at the tip and the substrate, respective-
ly. Until the latter two are known independently, (3.5) is
no more than a formal solution.

Consider now that the entire STM junction is main-
tained in equilibrium with a single reservoir character-
ized by temperature 6 and electrochemical potential p .
The equilibrium population at the tip will be, in standard
notation,

1
PP=3 KT —F—7 > (3.6)
T %I &)1 l_+_e(E§—yT)/kBG

where & denotes the eigenstates of the tip-molecule-
substrate system. On the other hand, if the single reser-
voir has electrochemical potential g rather than u, the
equilibrium population established at the substrate will be
given by

1
h— 2
Py —§§‘,|<SI§>I s gt (3.7)

The application of a bias voltage ¢r¢ means that the
reservoirs in contact with the tip and the substrate are
maintained at different electrochemical potentials p, and
Ws, respectively. The reservoir in contact with the tip at-
tempts to drive the population of the tip state to the
value in (3.6), whereas the reservoir in contact with the
substrate attempts to make the substrate state population
have the value given by (3.7). In the absence of a driving
agency, u and pug would equalize throughout the STM
junction. Under the reasonable substitution of the
respective values (3.6) and (3.7) for the tip and substrate
probabilities in (3.5), we obtain our current expression
given in Sec. II, viz., Eq. (2.2).

In order to understand precisely what dynamic details
go into (2.2), we may model the sink and source terms
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R /(1) and R(¢) explicitly by writing (3.2) in the form

dpP,,(t) ] Pr(t)—PHh
ar =(gain-loss),, —Bm’T———TT—
Péh“"Ps(t)

+8,,,,ST , (3.8)

which shows the action of the two reservoirs as driving
the populations to P! and P{", respectively, the 7’s being
the respective time constants. With the conservation
condition Ry (t)=Rg(t) employed above, (3.8) can be
solved exactly to obtain the current from the relation
Py(t)— P Pg(t)— P

= —en, . (3.9)
T Ts

I(t)=en,

In the Laplace domain, the result is

Pth
ﬁT(s)——Ei
I(e)=en, — =
TT+[HTT(E)_HTS(8)]
th
ﬁs(ﬁ)"'i
=—en £ (3.10)

¢ Ts+[ﬁss(5)_ﬁsr(5)] .

Equation (2.3) for the time-resolved current follows from
(3.10) in the limit that the 7’s, which are the times
characteristic of the tip-reservoir and substrate inter-
faces, may be neglected. In order to probe properties of
the STM junction most conveniently, one attempts to
make these times negligible with respect to other junction
characteristic times. In the following, we will assume, for
simplicity, that this situation prevails and neglect the 7’s.
It is a trivial matter to replace it in situations in which
such a neglect is not valid. In a conventional STM exper-
iment, the acquisition time of the instrument per scanned
point is of the order of 1073-107%s. As other authors'
have pointed out, this time scale is sufficiently large for
most relaxation processes to reach the steady-state re-
gime. Consequently, it is natural to take the steady-state
current I as the primary observable measured in STM ex-
periments. Using an Abelian theorem of Laplace trans-
forms, we multiply (3.10) by the Laplace variable £ and
take the limit that € tends to zero to obtain the steady-
state result. On invoking the symmetry in (3.10) we ob-
tain our central current expressions (2.2) and (2.3).

It is of interest to recognize that the voltage drop be-
tween the reservoirs corresponds to the bias voltage
us—ur=edrs and to define the effective resistance
through

(ps—pr)

Reﬂ'z el

(3.11)
The general expression (2.1) for the effective resistance
follows from (3.11) and (2.2). If the tip and substrate
have equal density of states, the electrochemical potential
difference can be cast in the form

o

on, | MBS NS —PE AT,

T

Hs —HT= 3.12)
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where the populations P * are steady-state populations in
the open system and the displacement P*-n'! from the
equilibrium population originates from the local variation
of the chemical potential with respect to the equilibrium
potential. The isothermal partial derivative of the chemi-
cal potential with respect to the electron number in the
classical limit is equal to k58, while in the quantum limit
it is inversely proportional to the density of states at the
Fermi level. The displacements from the equilibrium
populations in (3.12) are readily calculated and the
effective resistance obtained as

Ou

Reﬁ: on
e

1
o2

S At ([ (0) + o)
0

_[HST(t)+HTS(t)]} . (313)

Equation (3.13) shows that the effective resistance de-
creases with an increase in the density of states at the
Fermi level in the quantum limit (or with a decrease of
the temperature 6 in the classical limit) and that the form
of the propagator integrals determines the spatial varia-
tion of the effective resistance. Observe that, even if the
state |M ) does not appear explicitly in the expression of
the STM resistance, the existence of a state in the junc-
tion not coupled to the reservoirs but coupled to the
states T and S affects the propagators. For instance, |M )
could represent a molecular orbital from an adsorbate, an
impurity, or a water molecule between tip and substrate
in an STM experiment performed in a liquid or, alterna-
tively, a localized state on the surface, a dangling bond,
or the state of an adatom at the tip apex.

The expressions we have obtained for the STM current
and for the effective resistance retain their validity if, in-
stead of a single state |M ), we take a multitude of states
{|M )} not coupled to the reservoirs, as, for instance, in a
cluster representation of the STM junction, provided that
it is reasonable to treat the exchange of particles with the
reservoirs as occurring through a single state at the tip
and a single state at the substrate. The single-
tip—substrate-state derivation is exact and clarifies the
primary features of our approach, but has the shortcom-
ing that, being based on a single-state representation of
the tip and the substrate, it describes only a highly ideal-
ized system. In a realistic case we must take into account
the large number of states involved at the tip and the sub-
strate. A generalization of our approach for this purpose
may be carried out as follows.

B. Generalized analysis

In order to carry out a generalization of the formula-
tion presented in the preceding subsection, we denote the
individual tip and substrate states by 7 and o, respective-
ly, and replace (3.6)—(3.9) by

1 1
P=— Kl P — = »
T, 2;, % | 4o Beh)/kg?

1 (3.14)

1
pPP=— (o)) ———,
ST § %l 1§21 o Fs Hr)/kp0
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de(r)_( - 5 P (t)—P™
4 (eain- 088),, —8,, ; .
P —P_(2)
+8,, | —— | » (3.15)
, iy
P (t)—P" P (t)—P™
I()=en, 3 —————=—en, 3, ————— . (3.16)
T-r o g

We stress that the only states at the tip that contribute to
the current (3.16) have a population P_(¢) different from
the quasiequilibrium P'. 1In particular, in the low-
voltage and low-temperature regimes, the states contrib-
uting to the current coincide with those having nonzero
projected density of states at the Fermi level in the closed
system. If we replace the individual 7’s connecting these
tip (substrate) states that are relevant to the transport by
their average value 74 (74) and invoke the conservation
of the probability inside the STM junction, we reobtain
(3.9), where now Pr=3 P_and P¢=3 P, are sums of
the respective electron probabilities over the relevant
groups of states. It is clear that they are given in the La-
place domain by

~ _ P
Ps(e)=mg(e)— S R, |P.(e)— 87 [Eflml(s)]
) 3
— SR, |P,(e)— : [zﬁw,(e)], (3.17a)
_ P
Pr(e)=m,e)— S R, |P.(e)— 8’ [ I, ()
th
— 3SR, |P,(e)— E" [Eﬁm,(e)}, (3.17b)

where the propagators are the Green’s functions of Eq.
(3.15) in the absence of particle exchanges with the reser-
Voirs.

An averaging approximation, introduced in the context
of exciton transport in the presence of multiple traps un-
der the name of the v-function approximation, ** will now
be used to simplify the analysis considerably. We substi-
tute the sums of the propagators inside the square brack-
ets in (3.17) by their averages. Thus, for example,

HTTm:ni S S, , (3.18a)
T 7 T

Ms(0=—-3 10w, , (3.18b)
N g T
and similarly for the other propagators. Here w’s are
weight factors satisfying ng=3 ,w, and ny;=3 w.. The
substitution of (3.18) into (3.17a) provides directly the La-
place transformed tip population Pr(€) in terms of the
difference between the average propagators, the tip popu-
lation in the closed system 7 (€), and the tip quasiequili-
brium population P{". The central result (3.10) of Sec.
IIT A above then follows with the understanding that the
I’s are propagator averages as described in (3.18). This
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constitutes a usable generalization of Sec. IIT A.

The integrals of the propagators in our various expres-
sions play the role of inverse effective rates between the
electrodes. However, being obtained from microscopic
propagators instead of macroscopic rates, they can de-
scribe coherence effects in the STM current. Further
simplifications of the results can be made by using the re-
lation

1 1
th Pth._ n 2
nr T n, ; 2 1 e(E'" u)/kg6

1
|4 o Em—HT)/kg®

’

(3.19)

where p is the chemical potential in the absence of a driv-
ing agency. Given the fact that for all normal situations
the temperature 0 is small compared to the Fermi tem-
perature of the system, we can approximate the Fermi
functions in (3.19) and write
1 7
th th
—PP=—|"dE G;(E) . .20
i — P nefuT (E) (3.20)
Here G;(E) is the projected tip density of states at energy
E:

Gr(E)=T3 3 |{rlm)|*8(E,,—E) . 3.21)

The low-voltage (but arbitrary temperature) expansion
N — P~ (39 /du)g(t— 1) and the corresponding re-
lation for the substrate yield the Ohmic limit, i.e., Eq.
(2.4). In the combined low-voltage low-temperature lim-
it, we further obtain (2.5) in terms of G2 and G¢, the pro-
jected densities of states evaluated at the Fermi energy
E. The resistance diverges to infinity when either the
tip or the substrate has a zero projected density of states
at the Fermi level.

IV. EXPLICIT CALCULATIONS
FOR SIMPLE SYSTEMS

We apply the general theory developed above to some
specific model situations to illustrate the procedure for
the calculation of propagator integrals and to examine
the manner in which microscopic factors affect the spa-
tial variation of the current. The first system we study is

J

_ cosh[(N —2|m —n|)£/2]

1 2F sinh() sinh(NE)

mn(€)

— _ cosh[(2N —|m +n —1|—|m —n|)&/2]cosh[(m +n —1|—|m —n|)&/2]
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a chain model with incoherent interactions. Our purpose
is to elucidate the effect of the partitioning of the system
into the bath and the STM junction. The second system
we consider is also a chain model, but with arbitrary de-
gree of coherence. Coherence effects on the spatial
dependence of the STM current are our target of study in
this second system. The third study concentrates on
small systems, collections of two, three, and four atoms,
also with an arbitrary degree of coherence.

A. Chain models: System-bath partitioning

The study of chain models in the STM context has
been shown to be important by Garcia and Garcia, 35 who
used numerical solutions of the Schrédinger equation to
address long-distance transfer in thick adsorbates such as
Langmuir-Blodgett films, polyalkanes, proteins, and
DNA. The importance of the models arises from the
fact that a tunneling mechanism between the tip and the
substrate across a 20—50-A-wide gap is difficult to under-
stand®®%7 in the absence of real transfer to states located
in the intervening space. Let us consider our STM junc-
tion to be a linear chain of M + 1 equivalent sites, whose
ends are connected to longer chains that represent the
bath, the tip being taken as the (N /2)th site (N even) and
the substrate as the (N /2+ M)th site. If the evolution of
the electron among these sites is incoherent and proceeds
via nearest-neighbor rates F, we have

dP,(t)
o =F[P, (t)+P,_(t)—2P,(1)]
N/2+M—1
—(F—f) 2> Sun+1Pusald)
k=N/2
N/2+M
+ X Sn-1Pr(0)
k=N/2—1
N/2+M
-2 3 §.,.P, 1), 4.1)
k=N/2

where P, (2) is the population of the site n at time z. Two
features characterize the bath: the ratio M /N, the rela-
tive size of the system with respect to the bath size, and
the ratio f/F, the inhomogeneity of the junction with
respect to the bath. We study first the size effect alone
setting f =F and then the inhomogeneity effect using
N/M — ». For the former case, the propagators are
given in the Laplace domain?® by

(4.2)

1L, ()

where the two results hold for periodic boundary condi-
tions and a chain with ends, respectively, and where £ is a
function of the Laplace parameter € defined as

coshé=1 +2—EF . 4.4)

F sinh(&) sinh(N§)

, 4.3)

[
Since, for the chain under consideration, T and S in (3.6)

‘are the sites N /2 and N /2+ M, respectively, we obtain

cosh(N&/2)—cosh[(N —2M)&/2]
2F sinh(&) sinh(N§) ’
4.5)

HTT(E)——HTS(E):
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ﬁTT(S)_ﬁTS(E)

_ 1 cosh[(N —1)£/2]
F  sin(£)sin(N§E)

X {cosh[(N —2M +1)§/2]—cosh[(N +1)§/2]}
(4.6)

for the two cases. The effective resistance in the periodic
case is thus

Reﬂ-:CODSt[ﬁTT(O)_ﬁrs(O)]
=const[[145(0)—1I(0)]
M M
= — [1+ == 4.
=const >F N (4.7)
while, for the chain with open ends, it is
M M—1
R g=const——; oF 1— N (4.8)

We do not display the constant factor in (4.7) and (4.8)
explicitly here. If the number of sites N of the whole
chain (STM segment plus bath) is much larger than the
number of sites M of the segment, the second contribu-
tion in (4.7) and (4.8) is negligible. The bath behaves
ideally when N /M — oo, i.e., when the number of degrees
of freedom of the bath is much larger than the number of
degrees of freedom of the system. The effective resistance
of the chain segment is that of M resistors in series, each
resistor being associated with the resistance 1/2F. We
see here an explicit demonstration of how one might
neglect the reservoir rates R appearing in (3.5) and calcu-
late STM quantities only from the junction properties. In
the present case, the reservoir rates vanish comfortably in
the limit N /M — .

We next study the case of a STM junction with un-
equal rates (f#F), embedded in a chain (bath) with rates
F, and with N — « and M =1 for simplicity. The evolu-
tion (4.1) is readily solved by the defect technique,’**°
with the help of the translationally invariant Green’s
functions ¥, =¥, _, of the periodic system (f =F).
The propagators are simply related to modified Bessel
functions in the time domain

< 1

‘P =, 4,9

ole) Ve(e+4F) @.9a)

~ 2F ——

L 4 =—==—[e+2F +Ve(e+4F 4.9b
(&) Yy [e e(e )] ( )

These, when substituted into the propagator difference
Py(e)—P(e)=Tl1p(e)— T 15(e)

Uo(e)—P,(e)

T 1—2F— A ¥le)—

= , (4.10)
Y,(e)]

yield the effective resistance as being proportional to
ﬁTT(O)—ﬁTS(O)=( 1/2f). This result, while obvious,
shows the explicit manner of operation of our expressions
and confirms that, in the presence of a reservoir with an
infinite number of degrees of freedom, the effective resis-
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tance depends entirely on the transport across the STM
junction.

B. Chain models: Coherence effects

Coherence effects on the STM current from one of the
points of focus of the present paper. Let us consider such
effects for the case of an infinite chain. The STM junc-
tion consists now of M +1 equivalent sites, with longer
chains forming the bath as in the first of the models ana-
lyzed in Sec. IV A, with N being infinite and the Oth and
the Mth site being the tip and substrate, respectively.
The evolution equation for the density-matrix elements

pmn 18
d(p,,,(t)
dt

th
~Prmn)
P =_i[H’p(t)_pth]mn

—(1=8,,, )l ppn () —p2,) ,  (4.11)

where H is the Hamiltonian and p'!, are the thermalized
values of p,,,. Termed the stochastic Liouville equation
in exciton dynamics,*? this equation describes bath in-
teractions through a single dephasing rate . The Hamil-
tonian H is simple: electron transfer proceeds via
nearest-neighbor interaction matrix elements V. Motion
is coherent if ¥ /a> 1, which would be representative of
an electron mean free path much larger than the site-to-
site distance in the chain, incoherent if V/a <1, which
would mean that the electron loses phase memory at
every site, and possessing intermediate coherence other-
wise. The general procedure’>*° of using an equation
such as (4.11) for STM calculations will be detailed else-
where.*! In the context of a theory of transient grating
experiments [42], Kenkre has derived an expression for
the propagators of (4.11), along with their coherent and
incoherent limits. Expressions in the time domain are
also available in terms of Bessel functions.** The results
of Ref. 42 yield, for the present problem,

ﬁTS(O):ﬁSS(O)_ﬁST(O)

_ 4 ¢
—Efodk

HTT(O) -
sin®(Mk)
VI1+(4V /a)’sin?k —1
4.12)

Proceedings as in Ref. 42, it is straightforward to show
that (4.12) reduces to a quantity that is proportional to
a/V? in the incoherent limit and to ¥ in the coherent
limit.** Using (3.9) and suppressing the explicit factor in-
volving the chemical potential and the electronic charge,
we find the dimensionless effective resistance

:ﬂr:Vfg’[HTT-I—HSS—HTS‘—HST](t)dt to be given in
the two extreme limits by

2
1l |« ™ sin(Mk)
R i*;lcoherent = E —f/‘ fO dk W s (4.13a)
1 sm sin’*(Mk)
coherent f sink (4.13b)

A lot of coherence analysis that has been published in the
context of exciton transport’*%° can be brought over into
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the STM field through these connections. Experimental
I-z characteristics, i.e., curves of current vs tip-substrate
separation, exhibit, in the range of large separation, a de-
cay of the current with a rate of one order of magnitude
per angstrom. This spatial variation of the current is
often used as a rule of thumb in STM to estimate the ex-
pected corrugation in the image due to topographic
features. The I-z characteristics acquired over the whole
range of accessible separations and the observation of
anomalous giant corrugation in images of low-index sur-
faces of metals suggest that the variation of the current
with the tip-substrate separation could be slower than in
the tunneling regime. The constant-current mode be-
comes then more sensitive to variations of the current at
different scanning locations.

Also of significance in the STM context is the M
dependence of the effective resistance as given by (4.12).
Figures 1(a) and 1(b) make this dependence clear. It is

10 ‘3
10° 4
o ]
* 10 3
kS
& 1
10 3
] coherent
100y \ _______________
3 incoherent ,/,

FIG. 1. Coherence effects on the effective STM resistance of
a chain segment as given by (4.12) as reflected on the depen-
dence on (a) coherence and (b) length. (a) The dependence on
the dephasing rate a for various values of M. Dashed lines are
the coherent and incoherent asymptotes from (4.13). (b) The
dependence on the length M for different values of a. The resis-
tance is normalized by its value at M =1. Notice the sublinear
dependence on M in the coherent and partially incoherent re-
gimes.
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straightforward to evaluate (4.13a) and show that the spa-
tial dependence in the incoherent limit is linear, i.e., that
the effective resistance is proportional to M. One can see
from Fig. 1(b) that, in the coherent limit, the spatial
dependence (4.13b) is sublinear. It can be shown through
an analytic procedure® that, to an excellent approxima-
tion, the dependence in the coherent limit is logarithmic,
specifically, that the right-hand side of (4.13b) tends to
(1/7)In(cM), where ¢ =7.1243 for large M.

The results of this model indicate two striking conse-
quences of coherence in the STM: a slower decay length
with the gap separation and a sublinear dependence of
the resistance with the number of sites. Both these effects
can change significantly the long-range character of the
current relative to predictions of incoherent descriptions.

C. Small systems with arbitrary coherence

We now consider small models of the STM junction
consisting of a single state T for the tip, a single state S
for the substrate, and a small number of states represent-
ing the adsorbed molecule. We exclude the singular case
a=0, but consider otherwise arbitrary degree of coher-
ence. The evaluation procedure consists of calculating
the coherent memory functions from the Hamiltonian of
the system, using a simple prescription for obtaining from
them memory functions in the presence of the bath, and
then calculating the propagators from the memory func-
tions. The details of the procedure are described else-
where. *>*! Here we report only the results. We consider
three illustrative small systems: (i) a two-state system
representing only the tip and substrate, (ii) a three-state
system in which an adsorbed molecule between the tip
and substrate is represented by a single state, and (iii) a
four-state system in which the adsorbed molecule is
represented by a dimer, i.e., by two states.

1. Two-site system: No adsorbed molecule

The propagator integral in (3.9) is fg’dt[l'ITT(t)
—p()] = fsodt[nss(t) — Mgp()] = (Fgp + Frg) ™',
where the rates F are given®?> from the
Laplace transformed memory functions W,,(g) via
F,,=lim,_ W, (). For the sake of simplicity, we will
consider only resonant systems in this section, i.e., take
unperturbed energies to be equal. In terms of the Hamil-
tonian matrix element Vg, between the tip and the sub-
strate and the bath incoherence parameter or dephasing
rate a, the effective resistance in (3.9) is given by
R g=a/2V2;. The analogy between this result and the
Fermi golden rule makes clear the well-known fact that
1/a plays the role of an effective density of states. The
familiar result!> that the current is proportional to the
tip-substrate rate follows directly from the above expres-
sion for the propagator integral.

2. Three-site system: A single-state adsorbed molecule

The state representing the adsorbed molecule is labeled
by M. The propagator integrals are
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f0+wdt[HTT(t)—HTS(t)]
Fuys +2Fr

= , (4.14a)
3(I"STF'MS +FSTFMT+FMTFMS)
STt — T (0)]
2F, s+ F
MS MY (4.14b)

3(FsrFys+ FsrFyr+FyrFys)

We see from (4.14) explicitly the obvious fact that, even if
the direct rate Fg connecting the electrodes is negligible,
there will be a current if F),¢ and Fy, are nonzero. The
M state could generally represent an adsorbate on the
substrate, an atom at the tip apex, or a water molecule
between the tip and the substrate. Such situations have
been modeled by other authors®®3 in the study of long-
distance electron transfer in STM imaging of adsorbates.

To illustrate the usefulness of our theoretical descrip-
tion with emphasis on coherence, we display a result that
appears unexpected but is a consequence of the interplay
of coherence and transfer. From the counterpart of
(4.11) applicable to our present three-state system we can
calculate the rates in (4.14) by following an analytic
prescription based on projection techniques.’ The rates
are given by

2{ VS4T+ V.%M V72"M+V§T[a2_( V§M+ V%'M)]}

For= ,
st a[ V24 Vi + Vi, +a?]
(4.15a)
F :2{V§M+V§TV72‘M+V.%M[az_(VgT"'_V’Iz"M)]}
Ms a[Vip+ Vi, + V2, +a?] ’
(4.15b)
F :2{V;“M+VSZMVS2T+V%M[CZ2_(V§T+VSZM)]}
Mr a[ Vi + Vi + Vi, +a?]
(4.15¢)

In order to stress the essentials, we now assume that the
direct tip-substrate interaction matrix element vanishes.
We substitute the resulting form of (4.15) and (4.14),
define the quantity x = (V. / Vg, ), which measures the
mismatch of the tip-molecule and substrate-molecule in-
teractions, and denote the constant factor in (3.9) involv-
ing the chemical potential and electronic charge by const.
We then find the effective resistance to be
Vsm

VSM a

R s=const

VSM

4.16)

Equation (4.16) is a remarkable result. It predicts the
occurrence of a minimum in the resistance. This
minimum occurs at a value of thel interaction mismatch x
given by
2

4.17)
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Figure 2, in which we plot the STM current [as the re-
ciprocal of (4.16) in arbitrary units] as a function of 1/x
for different values of the bath parameter «, makes this
quite clear.

As we move the STM tip, the change of its distance
from the molecule will be reflected in changes of x.
Equations (4.16) and Fig. 2 show that there exits a tip-
molecule distance for which the current is a maximum
and that this distance is a function of the bath parameter.
In the fully coherent case, i.e., when =0, the minimum
occurs at the symmetrical configuration, i.e., for
Vise=Vsy- This is a coherence effect arising from
quantum-mechanical interference. The symmetrical
configuration corresponds to constructive interference.
The source of the resistance minimum we predict is pre-
cisely the same as that of the Bloch theorem in solid-state
physics,*® which states that a fully periodic lattice does
not scatter a current-carrying Bloch state. Departures of
one of the lattice constants from the value characteristic
of a fully periodic lattice in either direction introduce
resistance to electron motion.

The second term within the square brackets in (4.16)
controls the entire effective resistance in the coherent
limit =0, while the first term dominates in the opposite
incoherent limit of large . As the mismatch ratio x in-
creases, equivalently as the distance of the tip from the
adsorbate-substrate increases, the incoherent term de-
creases monotonically and corresponds to the expected
variation of the STM current with tip movement. How-
ever, the coherent term is nonmonotonic: it goes through
a minimum and, for tip distances smaller than the
characteristic value, it increases as the tip distance de-

10" O/ 3=0.01
10°
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FIG. 2. Quantum interference effects in the STM current
showing a nonmonotonic dependence on the tip distance and
the occurrence of a maximum in the current. The STM current
(in arbitrary units) for a resonant linear three-site system as
given by (4.16) is plotted as a function of 1/x =V, /Vqy, for
various degrees of coherence. The abscissa represents the asym-
metry of the V’s arising from moving the tip, x =1 represents
the symmetrical configuration, and large values of the abscissa
represent large distances of the tip from the molecule-substrate
system.
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creases. The negative sign in the coherent term apparent
in (4.16) signals this interference effect. Figure 3(a) makes
clear this expected behavior of the incoherent term and
the notable behavior of the coherent term. Viewed from
a different perspective, the incoherent term in (4.16) may
be called the symmetric term since, in the case
Vs = Vsag, it determines the entire resistance. As Fig.
3(b) shows, this incoherent or symmetric term increases
monotonically with the dephasing rate «, whereas the
coherent or asymmetric term decreases, with the conse-
quence that, except in the symmetrical configuration
x =1, where it increases with «a, the effective resistance
exhibits a minimum with respect to the degree of coher-
ence. We note in passing that Egs. (4.15) and (4.16) ap-
pear to be singular in the coherent limit @ =0. This is not
a practical limitation, but is related to the well-known
fact that all Fermi golden rule expressions also break
down whenever the energy levels involved are infinitely
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FIG. 3. Interplay of the coherent or asymmetric term

(dashed line) and the incoherent or symmetric term (dash-dotted
line) in (4.16), which combine to produce the total effective
resistance (solid line) with its minimum. (a) The dependence of
the effective resistance (in arbitrary units) on the configurational
variable x =V /Vey for a/Vg,=1. (b) The dependence on
the dephasing rate for Vyp / Ve =1/V3.
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sharp since the density of states is then pathological. In a
similar manner, (4.15) and (4.16) also need modification in
the coherent limit a=0. Because infinitely sharp levels
do not exist in a realistic system, we do not show the
modification here. It should be remembered in this con-
text that the reciprocal of a measures the density of
states.

Despite its simplicity, the resonant three-site system we
have analyzed in this section has relevance to experi-
ments that have already been conducted. One of them in-
volves imaging of Pt adatoms on a Pt surface with a Pt/Ir
tip.#’ Another is the contact resistance experiment,?!
where a sudden increase of the current occurs at short
tip-substrate separations. Our prediction is also relevant
to the proposal®® that pressure-induced resonant tunnel-
ing through a molecular orbital could be a possible ex-
planation for conduction through thick adsorbed mole-
cules. An extension of the present analysis wherein we
relax the resonance condition and address some of these
issues will appear elsewhere.

3. Four-site system: An adsorbed dimer molecule

Let us now examine the case of an adsorbate with more
than one localized orbital between tip and substrate.
Such models are caricatures of systems such as CO on
pPt, ¥ liquid crystals with an aromatic unit and an alkyl
chain,’ dimers of Xe,*® or Sb (Ref. 49) atoms. We label
the molecular states M; and M, and, as assumed in Secs.
IV C1 and IV C2, take the direct transfer interaction be-
tween the tip and the substrate to be negligible. Three
different ways of arranging the dimer with respect to the
substrate are studied (Fig. 4): a linear four-site system in
which the tip and the substrate are each connected to a
single molecular state, a four-site ring in which both
molecular states are connected on the tip and the sub-
strate and the molecular states are also interconnected,
and the latter system with no interconnections between
the two molecular states. We denote these systems re-
spectively by the terms linear, ring, and polygon. As stat-
ed above, all sites are taken to be resonant for simplicity.

The intermediate stages of calculation are already quite
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FIG. 4. Resonant four-site models: (a) linear and (b) ring.
The third model considered in the text (Sec. IV C), viz., the po-
lygon, is obtained by removing the interaction matrix element
between M| and M, in the ring.
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FIG. 5. Dependence of the STM current (in arbitrary units)
for the resonant four-site system, vs the configurational variable,
at different values of the degree of coherence: ring (solid line)
and linear (dashed line). The inset shows the presence of a pla-
teau in the coherent regime (a/V =0.01) for the linear tetramer
(dashed line), as opposed to the ring (solid line).

involved for this system and will not be shown here. The
results are displayed in Fig. 5, where the current is shown
as a function of the tip-molecule interaciion (representa-
tive of the tip distance) for several values of the coher-
ence parameter. The solid line refers to the ring and the
dotted line to the linear model. In this scale, the polygon
curve coincides with the ring curve.

The qualitative features of the ring are similar to those
of the resonant three-site system in Fig. 2, as a conse-
quence of the fact that the bonding eigenstate in the
molecule-substrate trimer assists the tunneling. On the
other hand, the linear four-site system exhibits a plateau
in the current under coherent conditions (a /¥, =0.01).
The plateau marks a transition region between coherent
and incoherent tunneling, characterized respectively by
the sharp resonance peak and the monotonic increase in
the current [inset in Fig. 5(b)]. As the tip approaches the
sample, the plateau appears when a/Vp,~1 and it
bends upward just before reaching the symmetrical
configuration. The plateau indicates a region with negli-
gible apparent barrier height and, according to Ref. 22,
would be the outcome of a propagation channel connect-
ing the two reservoirs. In terms of our model, the reason
lies in the balance between different contributions arising
from interference. A detailed analysis of this model will
be presented elsewhere.

V. STM IMAGES
FOR SIMPLE ILLUSTRATIVE MODELS

The focus of this section, and of the following paper in
this series,*! is the construction of explicit images as pre-
dicted by our theory. Detailed images in realistic situa-
tions will be given in Ref. 41. Here we study simple two-
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dimensional models to investigate separately the factors
that determine lateral resolution and nontopographical
features.

The model for the tip we consider consists of a single
site, the substrate consists of ten sites over a length of 20
A, and the boundary conditions are taken to be periodic
in the direction of the extension of the substrate. A
tight-binding Hamiltonian with matrix elements

H E

mm~ Hm

(5.1
H,,=U,,exp(—«R,,, ) for m¥*n

is adopted to describe the interactions between the vari-
ous states. The inverse half-decay length k is taken to be
the same for all state pairs, viz., V'2¢, where ¢=0.1837
a.u.=5 eV and R, measures the relevant distance: be-
tween the tip and the adsorbate molecule or between the
molecule and a part of the substrate. The spatial depen-
dence of the matrix element is consistent with the decay
observed experimentally of the tunneling current. The
interaction matrix element V' =H,, ., between substrate
states scales the interactions, as well as the effective resis-
tance R % defined in Sec. IV. The tip is assumed to be
made of the same material as the substrate, so that
H;,/V =exp[ —k(R,,, —d)], where d is the substrate lat-
tice distance and E;=E;=0. The nature of the adsor-
bate is implemented by assigning the values for E,,/V
and the preexponential factors U, /V and Uy /V. The
choice of the dephasing rate a/V =0.5 makes the STM
current 1073 arbitrary units when the tip is about 5 A
from the surface. We take this value as the set point
current for the calculation of the images. The value
a/V =0.5 would correspond to a regime with mixed
coherence, i.e., a situation that is not described adequate-
ly either by perturbative or by coherent theories. The
temperature of the system is taken as kz6/V =0.025.
The origin of the laboratory frame is taken at the center
of the substrate, x is the scanning coordinate, and z
denotes the separation between the tip atom and the line
of atoms forming the substrate. The positions of the
atoms in the actual configuration have been superim-
posed to emphasize nontopographical effects in the im-
ages.

In terms of the above model, we have studied (i) the
effect of variations in the strength of the interaction be-
tween the adsorbate and the electrodes, (ii) the sensitivity
of the STM current to the chemical heterogeneity of the
adsorbate, (iii) the lateral resolution in molecular adsor-
bates and the discrimination of different orientations of
the adsorbate, (iv) the effect of the energy mismatch be-
tween the molecular state and the Fermi level of the elec-
trodes, and (v) the effect of bath interactions. Our results
concerning (i) and (i), which we have reported earlier, *
suggest that chemical heterogeneity manifests itself in
nontopographical features. This result appears to agree
qualitatively with observed images of n-alkyl-p-
cyanobiphenyl molecules adsorbed on graphite® and
MoSe,,”! where n-unit aliphatic chains appear to be
depressed with respect to the aromatic ring. In addition,
the lateral size at the base of the protrusion in our result
appears to be between 6 and 10 A, in agreement with ex-
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perimental evidence and ab initio calculations. *3

We describe (iii)—(v) in the following. For our study of
(iii), we consider a homodimer adsorbed on the substrate.
Figure 6(a) shows the constant-current profile of the di-
mer lying flat on the substrate (M| and M, are the two
localized orbitals on the molecule). It does not reveal the
individual units of the homodimer. Both the symmetry
and the lateral dimension are similar to those calculated
for a single adatom [cf. with the solid line in Fig. 7(a)].

With our parametrization, a resolution of 2 A in the
adsorbate cannot be achieved because of interference
effects between the sites of the dimer. The amount of in-
terference varies for different bonding situations. In-
teractions between the dimer atoms produces construc-
tive interference in between the sites. This results in a
peak at the center of the profile as shown by the solid line
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0
x(A)

FIG. 6. Sensitivity of the STM image to the molecular orien-
tation and lateral resolution, for a resonant homodimer: (a) flat,
(b) tilted 30°, and (c) tilted 90° around M, at (—1,2) A. The
substrate plus molecule configuration (shown by circles) is su-
perimposed on the image by matching the substrate with the

Ugs (solid line) and O
The dimer

baseline. The parameters are U, MM, =
(dashed line). USMl =Usu,= UTM1 = UTM2 =Ugg.
bond length is 2 A. The value of a/Vis 0.5.
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in Fig. 6(a). The noninteracting dimer, represented by
the dashed line, does not involve such interference: the
image reflects the actual topography of the homodimer.
The difference in height at the center of the dimer be-
tween the two cases is of the order of 0.3 A. This is po-
tentially within the vertical resolution of the scanning
tunneling mlcroscope (~0.1 A). In Figs. 6(b) and 6(c)
the homodimer is rotated around M, [at (—1,2) A] by
an angle of 30° and 90° with respect to the surface, respec-
tively. The only manifestation of the actual orientation
of the dimer is the difference in the magnitude of the cor-
rugations. The conductance in the proximity of M, ap-
pears to be enhanced for both the interacting and the
noninteracting dimers. Even though the difference in
corrugation is within the resolution of the instrument, it

FIG. 7. Dependence of the STM image on the energy
mismatch between adsorbate and electrodes for the adsorbate M
placed at (0,2) A @ Non-negative-energy mismatch:
E\/V =0 (solid line), 1 (dashed line), 5 (dot-dashed line), and
10 (short-dashed line). (b) Negative-energy mismatch
E\)/V =—10 (solid line), —8.5 (dashed line), —7.5 (dot-dashed
line), and —5 (short-dashed line). The parameters are
Ugpy = Upp = Ugs. The value of a/V is 0.5. The topographical
profile in the resonant case is apparent by superimposing the ac-
tual configuration (circles) to the base line in (a). All the other
cases do not exhibit topographical corrugation.
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appears unlikely that the presence of a bond can be in-
ferred from the image when the dimer is tilted.

Figure 7 depicts the result of (iv), i.e., our study of the
effects of energy mismatch. An adatom with on-site ener-
gy mismatch with respect to the on-site energy of tip and
substrate is placed at (0,2) A. The calculated symmetrical
rates F,, are adjusted by multiplicative thermal occupa-
tion factors to ensure detailed balance. The images in
Fig. 7 do not follow the actual topography, except for the
case of the adatom in resonance E,,=0. Furthermore,
for strong negative-energy mismatch, i.e., when the ada-
tom energy is below the Fermi level of the electrodes, the
adatom appears as a negative feature (hole), or with a
central depressed protrusion. As the magnitude of the
energy mismatch gets smaller, the feature turns positive
and it converges with continuity to the resonant case.
For positive energy mismatch, the feature is always posi-
tive and, as expected, the corrugation decreases as the
magnitude of the energy mismatch increases. For ex-
tremely large energy mismatches, either positive or nega-
tive, the adsorbate becomes transparent. The nature of
the nontopographical positive corrugation correlates with
the explanation given in the context of the images of Xe
on Ni.*® The latter exhibit a protrusion 1.53 A high
compared to 2.7 A expected from a hard-sphere model.
Holes have been observed experimentally in STM images
of O atoms at adsorption sites on Al(111),%? Ni(100),°
and Si(111) 7X 7 reconstructed surface.’* In particular
at 300 K O on Ni(100) appears as a hole 0.3 A in depth
and 4 A in width. For O in Al(111), a central protrusion
in the hole at the adsorption site as the tip scans at closer
distances has been observed®® (cf. with the curve for
E,;/V =—8.5in Fig. 7). Furthermore, the model exhib-
its a weak spatial dependence of the corrugation nearby
the adatom, as the set point current is decreased, in quali-

0
x(A)

FIG. 8. Dependence of the corrugation in the STM image on
the dt:,phasing rate a/V for the resonant adsorbate M placed at
(0,2) A: a/V =1 (solid line), 0.5 (dashed line), 0.05 (dot-dashed
line), and 0.01 (short-dashed line). The base line of each profile
has been aligned to the same zero line to emphasize that the
corrugation (peak-to-base line height) increases as the dephasing

rate decreases. The oscillations in the tails are symptomatic
both of increasing coherence and finite size of the system.
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tative agreement with the predictions of Kopatzki and
co-workers for O on Al(111).1?

Finally, to study (v), the dephasing rate a/V has been
varied, keeping the temperature constant. The trend ex-
hibited in Fig. 8 is that the corrugation increases with the
quantum coherence. This is consistent with the deduc-
tions we have made in the context of the chain models
discussed in Sec. IV.

VI. DISCUSSION

The theoretical framework for the interpretation of
STM images presented in this paper has been aimed at a
description of images of adsorbates but has wider applica-
bility within STM. Its focus is on a description of STM
that accounts for arbitrary magnitude of dephasing reser-
voir interactions. The latter determine the degree of
coherence in electron transfer responsible for quantum
interference effects. Our method consists of applying
procedures borrowed from quantum statistical mechanics
to transfer processes occurring in the STM junction con-
sidered as a system of three groups of states, the sub-
strate, the adsorbate, and the tip, in contact with a
thermal reservoir. Our point of departure is (3.2) and our
formal results are (2.1)-(2.5). They include expressions
for the effective resistance of the STM junction and for
the STM current, both time resolved and steady state.
We have analyzed those results in simple contexts explic-
itly in Secs. IV and V. The analysis has addressed
system-reservoir partitioning, a crossover from linear to
sublinear character of the dependence of the effective
resistance of the STM junction .as a function of coher-
ence, counterintuitive interference effects, and the con-
struction of simple images. The images we have calculat-
ed have shown effects of sensitivity of the STM current to
the chemical heterogeneity of the adsorbate, raised issues
concerning the lateral resolution in molecular adsorbates,
and the discrimination of different orientations of the ad-
sorbate, and predicted holes and bumps in images which
arise from energy mismatch effects.

Simple consequences of our theory have been shown to
have relevance to a number of reported experiments.
These include observations on adatoms, such as Xe on
Ni(110) or O on Al(111), and on organic molecules such
as CO, benzene, or n-CB. We have shown how nontopo-
graphical features could arise from chemical heterogenei-
ty and how interference effects could prevent resolution
of adsorbates. We have also predicted a maximum in the
STM current. This maximum occurs during the varia-
tion of either the tip distance or the bath interaction, e.g.,
through temperature changes. We have given a simple
explanation of this maximum in terms of quantum in-
terference. Serious modification in the proper interpreta-
tion of observed images may be necessary as a result of
this effect.

A detailed comparison between our theory and existing
formalisms is under way and will be reported elsewhere.
However, a few comments concerning a relation of our
results to the transfer Hamiltonian theory'> might be
helpful here. By considering incoherent motion in a STM
junction consisting of just the tip and substrate, Eq. (2.5)
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is easily shown to correspond to the simple expression
Fgr+Frg
1/G)+(1/GQ)

I=62¢TS( (6-1)
for the current, where Frg is the rate of transition from
the substrate to the tip and Fg, the rate of transition
from the tip to the substrate. Adopting the lowest-order
weak-coupling approximation®® to calculate the transi-

tion rate, we can rewrite the rate Fg; appearing in Eq.
(6.1) as

_ 21
G

Fgr S S|V, *(E,—E,)8Ez—E,) . (6.2

o T

A similar expression holds for Fg. By inserting the sum
of these expressions into (6.1), we recover the expression
for the transfer Hamiltonian current in the low-voltage
limit.1® It is also possible to develop a suggestive analogy
between the propagator integrals in (3.6) and the effective
resistance from the Landauer theory of current.>®

Among the assumptions made in our theory are the
vanishing of the reservoir rates, which allow a description
in terms of junction parameters alone, and the averaging
approximation used in Sec. IV to reduce multistate ex-
pressions into effective single-state counterparts. A more
severe limitation of our analysis is that imposed by the as-
sumption that linear response is adequate in treating the
current. The high electric fields that arise as a result of
small tip-substrate distances that occur in STM experi-
ments could modify the very nature of the wave functions
in the gap. Despite the fact that this appears to be a limi-
tation of essentially all existing theories of STM, we hope
to address it in future work. It is worthwhile to mention
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here that linear response is operative in our formalism
only in that no modification of the wave functions by the
electric fields is accounted for. Our treatment goes
beyond the Ohmic regime, as Secs. II and IV show clear-
ly.

Among the advantages of our approach are the ease of
description of quantum interference, the potential to treat
temperature effects and bath interactions, and the ability,
at least in principle, to go beyond perturbative treat-
ments. Although we have reported the theory as focus-
ing attention on adsorbate images, it is equally applicable
to STM systems with no adsorbates. We have been care-
ful to develop the theory in close contact with observa-
tions. The verifiable predictions we have made, e.g., the
STM current maximum, the illustrative examples we
have treated in Sec. VI, and the realistic images we have
presented in the following paper in this series, furnish ex-
amples of this close contact. A more thorough coherence
analysis by extending the single-a description, an elucida-
tion of temperature effects, and a discussion of several
specific experiments already existing in the literature are
among ongoing work that we hope to report in the near
future.
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