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One-dimensional inversion is applied to neutron specular reAection for a model-independent deter-
mination of the scattering-length density profile. The Marchenko equation for complex potentials is
solved directly, as well as via the Neumann series and the Pade approximant. As part of the input infor-
mation of the inverse problem for complex potentials, a formula is derived for the reAection coefficient at
negative incident momenta.

I. INTRODUCTION

Cold and ultracold neutrons behave like electromag-
netic waves, and their scattering is described by neutron
optics. ' Such neutrons are used to investigate the struc-
ture of surfaces and interfaces of samples in the nanome-
ter range.

If the samples are planar we have to do with specular
reAection and transmission. This is essentially quantal
scattering by a one-dimensional potential barrier
representing the scattering-length density profile of the
sample. The determination of this potential from the
scattering information then is the one-dimensional in-
verse scattering problem. Usually one has recourse to a
simulation, i.e., one chooses a model for the potential
whose parameters are adjusted via a fit to the data. How-
ever, for an unambiguous, model-independent answer one
should solve the inverse scattering problem in its true
mathematical sense. We mention in parentheses that in
x-ray and electron scattering this is often called the direct
method, by which is meant that the solution of the in-
verse scattering problem is sought directly, not indirectly
by simulation. As neutron (and x-ray) reflection becomes
a more widely used technique to probe the profile of sur-
faces and thin films, the need for inverse scattering calcu-
lations will increase. This point has been made and
developed in Refs. 4 and 7—14, where various types of in-
version schemes have also been proposed.

The general mathematical formalism for solving the
one-dimensional inverse scattering probiem was
developed long ago ' it is based on the Marchenko in-
tegral equation. However, practical applications have
been made only recently. They have mostly been con-
cerned with special classes of solvable potentials, which
are associated with degenerate kernels of the Marchenko
equation. Such potentials have been used, e.g. , in the nu-
clear inverse scattering problem at fixed angular momen-
tum, ' ' or for optical wave guides and ionospheric-
structure investigations. A particular version of the

solvable-potentials method has been discussed in Refs. 24
and 25. The Marchenko equation with nondegenerate
kernels has been solved for real potentials up to the first
few terms in the Neumann series in an application to
Auids, and more recently in an essentially exact,
modified form in Refs. 27 and 28.

The present paper is devoted to a general solution of
the Marchenko equation for both real and complex po-
tentials. We consider only potentials which support no
bound states, as in the case in most applications. The
Marchenko equation is solved directly, and also by the
Neumann series and the Pade approximant. Schematic
examples are given for steplike profiles, i.e., for samples
mounted on an infinitely thick substrate, as well as for
complex potentials (absorptive materials).

II. THE MARCHENKO EQUATION
AND ITS SOLUTION

Consider a potential V(x) with V(x) =0 for x (0 and
(in general) V(x)~V, for x~oc, which yields a left
reAection coefficient R (q) as a solution of the direct
scattering problem at incident momentum q. The poten-
tial can in turn be obtained from the reAection coefFicient
as the solution of the inverse scattering problem. This is
done in the following manner ' First, one calculates
the Fourier transform B (x) of the reAection coefficient
R (q), B(x)=0 for x (0 and

B(x)= f dq e 't R (q) for x &0 .1

2 7T

This quantity serves as input in the Marchenko integral
equation

K(x,y)+B(x +y)+1 f dz B(z+y)E(x,z)=0

with x &y . (2)

The strength parameter A, has been introduced here in or-
der to facilitate the construction of the Neumann series;
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Ko(x,y) = B(x —+y),
K„(x,y) = —f dz K„ i(x,z)8 (z +y)

X

(4)

for n=1, . . . , M .

The condition for the convergence of the Neumann series
1S

II& II' —= f f"
I &(y +» I'dy dz & I .

If this condition is not satisfied, we may consider (iii) the
(N, N) Pade approximant, which has the form

K (Pade)(

N

A, "C„(x,y)
n=0

N
1+ g A,"D„(x,y)

n=1

one eventually sets A, = l. From the solutions of Eq. (2)
one obtains the potential as V(x) =0 for x & 0 and

2dK(x x —0) f 0
dx

The integral equation (2) is a Fredholm equation in the
variables y, z for fixed values of x. It can be solved (i)
directly, or (ii) by making use of a finite Neumann series
which is given by the first M + 1 terms of the expansion
of the solution K (x,y) in the parameter A, :

M
K' '"'(x,y)= g A,"K„(x,y),

n=0

scattering has appeared in the literature. ' In the
present work we shall not discuss this point, but regard
the phase as given.

As to the reflection coefficient for negative values of q,
it is, for real potentials, given simply by the complex con-
jugate of the reAection coefficient for positive values, '

R ( —q)=R" (q) . (9)

However, for complex potentials this. no longer holds. In
order to obtain an analogous relation for this case, we
consider the Jost solutions' '

[e'i'"+R (p)e '~"]/T (p) for x & 0
f+(p, x)= '

e'~ for x~~ (10)

qR ( q) T+ (q)+—qR+ (q) T ( —q) =0 .

In addition, the Wronskian between the functions' '
(12)

f (
—q, x ) = T (q)f+ (q, x) R(q)f —(q, x) (13)

and

e '~ for x~ —ao,f (q, x)=
[e ' +R+(q)e' "]/T+(q) for x )0,

where p ='1/ p —V, is the wave number in the semi-
infinite substrate, and similarly for q. The quantity
R+(q) is the right reffection coefficient, and T+(q) are
the left and right transmission coefficients, respectively.
Comparing the Wronskians between these two functions
in the regions x (0 and x )0 with p = —q, we find

For any fixed pair of variables (x,y) the coefficients C„
and D„are determined from the terms K„=K„(x,y) by
the equations

and f+ ( —q, x ) of Eq. (10) yields the relation

qR ( —q)R (q)+qT (q) T ( —q) =q, (14)

X KN+n —rnDm KN+n
m=1

g K„D =C„,
m=0

where Co =Eo, Do = 1, and n =1, . . . , X. All three
methods will be applied in the following.

III. THE INPUT
OF THE MARCHENKO EQUATION

For the solution of the inverse scattering problem the
complex refiection coefficient R (q) must be known as a
complex function of both positive and negative values of
q [cf. Eq. (1)]. However, usually only the refiectivity
r (q)=lR (q) is measured, and this is done for mo-
menta q )0. The reQection phase and the input for nega-
tive values of q must therefore be obtained from addition-
al information.

The phase problem has plagued structure research by
x-ray, electron, or neutron scattering for decades. '

In simulations, where the parameters of a preconceived
model for the scattering profile are fitted to the data, the
reQection phase is of course obtained as a result of the fit.
However, recently some work on a model-independent
determination of the reAection phase in one-dimensional

which replaces the law of conservation of current when
the potential is complex. Combining Eqs. (12) and (14),
we find, instead of Eq. (9},

R+(q)
R ( —q)=

R (q}R+(q)—T (q)T+(q)
(15)

We see that a knowledge of all coefficients R + (q) and
T+ (q) for q )0 is required in order to determine the left
reffection coefficient R (q) for q & 0. The right transmis-
sion coefficient T+(q) can be replaced with the left
coefficient T (q) when use is made of

T+(q)=+T (q),

which follows from a comparison of the Wronskians be-
tween functions (10) and (ll) in the regions x &0 and
x )0 with p =q.

IV. NUMERICAL APPLICATIONS

In this exploratory work we give numerical solutions of
the inverse scattering problem for known potentials,
proceeding from simple schematic models to examples
which describe actual physical situations. The direct
solution of the Marchenko equation has been obtained by
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the method of Galerkin ' using B-spline polynomials.
The use of such piecewise polynomials to expand the ker-
nel reduces the integral equation (2) to a linear equation
for the expansion coefficients. This solution of the Mar-
chenko equation is stable, and in all cases considered the
potential obtained by direct solution of the Marchenko
equation was found to coincide with the original poten-
tial. In the following we shall call this potential the Mar-
chenko solution, in contrast to the approximate poten-
tials obtained by the Neumann-series and Pade-
approximant methods.

In general, however, solving the Marchenko equation
directly is time consuming and requires a large computer
memory. Therefore, two alternative approximate
methods have also been investigated, the solution via a
finite Neumann series and the method of Pade approxi-
mants. To facilitate further the efficiency of the calcula-
tion, the reAection coefficient as well as its Fourier trans-
form were interpolated by the collocation method using
Hermite cubic splines.

We note here that the reAection coefficient can be
determined experimentally only up to a maximum value

q, . In the absence of any knowledge of R (q) for
I q I

)q, the integration in the Fourier transform (1) is
usually truncated at the cutoff momentum q, . The ensu-
ing integral B (q„'x )

1B(q„'x)= J dq e '~ R (q) for x )0
2&

contains oscillations of period ~/q„and the Gibbs
phenomenon ' is expected to show up at sharp edges.

z (b —a ) sinh (bx)
2c 2c

Re[(b —2ic) sinh [(b+ic)x j]
(b +4c )

(21)

Figure 1 illustrates this case for a = —0.2 nm ' and
b=0.4 nm '. The Marchenko solution obtained from
the reliection coefftcient (19) coincides with the original
potential. The potential corresponding to the first Neu-
mann term, 2dB—(2x)/dx, is also shown, together with
the potentials provided by the first five, nine, and 15 Neu-
mann terms (M =4, 8, and 14). It is seen that the Neu-
mann series does not provide a satisfactory result, even
when 15 terms are included. However, in the Pade-
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A. A solvable Bargmann-type potential

We begin with a solvable potential of Bargmann type,
which has a form which is similar to that of the exponen-
tial profiles occurring in microemulsions and in polymer
segregation at the air/sample interface. This potential is
associated with a rational reAection coefficient, and has
the form V(x) =0 for x (0 and

2(b —a )aV(x) = for x &0 . (18)
[b sinh(ax)+a cosh(ax)]

The corresponding reAection coefficient and its Fourier
transform are, respectively,
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q +ibq (b a)/2— — (19)
FIG. 1. Reconstruction of a Bargmann-type potential. (a) Po-

tential (18) with a = —0.2 nm ' and b =0.4 nm ' (heavy solid
curve) together with the Marchenko solution (not distinguish-
able from the original potential) and potentials corresponding to
the Neumann series with M =0 (dashed curve) and M=4, 8,
and 14 (thin solid curves, from left to right). {b) Potential (18)
(heavy solid curve) together with the potentials corresponding
to the (2,2), (4,4), and (7,7) Pade approximants (thin solid
curves); only the (2,2) potential di6'ers from the original one; the
others coincide with the latter. (c) The input function B(2x)
corresponding to expression (20).

(20)

The norm (5) entering in the condition for the conver-
gence of the Neumann series is given by

-bx/2B(x)= e ~ sin(cx) with c="t/b 2a /2 . —
2c
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B. Step potential

For a pure step potential of height V, extending from
x =0 to the right, the reAection coefticient is the Fresnel
coeScient

z(q)= q

q +q
(22)

This corresponds to scattering by an infinitely thick slab.
The function B(x) calculated with the help of Eq. (1) is

approximant method one does recover the original poten-
tial for N~4. The convergence of the Neumann series
can be checked with the help of condition (5). Using ex-
pression (21) in this condition, one finds that the Neu-
mann ceases to converge for x &2.8 nm. This is indeed
the case, as is illustrated by Fig. 1(a).

B(x)=0 for x &0 and

B(x)=——Jz(QVx) for x)0, (23)

where J2 is the Bessel function of order 2. The case of
the step potential is illustrated in Fig. 2 for
V, =25 X 10 nm . Again the Marchenko solution
coincides with the original potential. Note that the input
function B (2x) oscillates, but leads to a straight-line solu-
tion for the potential V(x).

The potentials corresponding to the different Neumann
series are equal only to the beginning part of it; the po-
tentials obtained in the Fade-approximant method repro-
duce the original potential out to larger distances than
the Neumann series, but they also fail eventually. The
analogous case with a cutoff q, =0.8 nm ' is shown in
Fig. 3. The oscillations of period m/q, =3.93 nm are a
consequence of the cutoff, and the Gibbs phenomenon is
clearly visible at the edge.
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A homogeneous film on an infinitely thick substrate is
represented by a square potential barrier in front of a step
function. Surface-roughness effects may be simulated by
a rounding off of the edges of the potential, while absorp-
tion will introduce an imaginary part. The input function
R (q) for q &0 has been obtained by solving the direct
problem for q (0. The solution of the inverse scattering
problem is illustrated in Fig. 4 for a potential of complex
height (50—i0.5) X 10 nm, width 50 nm, and surface
thickness 0.88 nm. The height of the substrate potential
is V, =25X10 nm, and the cutoff parameter for the
reAection coefFicient is taken to be q, =8 nm '. The
Marchenko solution again coincides with the original po-
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FICx. 2. Reconstruction of a step potential. (a) The original
potential with V, =25X10 nm (step function, heavy hor-
izontal line), together with the Marchenko solution (identical
with the former) and the solutions corresponding to the Neu-
mann series with M=O (dashed curve) and M =4, 6, 8, and 12
(thin solid curves, from left to right). (b) The original potential
(heavy horizontal line) and the potentials corresponding to the
(2,2), (3,3), (4,4), and (6,6) Pade approximants (thin solid curves,
from left to right). (c) The input function B(2x).
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FIG. 3. The effect of a cutoff q, =0.8 nm ' for the example
of Fig. 2. (a) The Marchenko solution (thin curve). (b) The
difference AB(2x) =B(2x) —B(q„2x ).
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tential; the approximate results using the Neumann series
with 19 terms (M=18) and the (9,9) Pade approximant
are also displayed.

The effect of lowering the cutoff to q, =1 nm ' is
shown in Fig. 5. It is seen that cutoff effects begin to be-
come visible as small oscillations of the potential with
period m/q, =3.14 nm.

5

I

C3 . /

a)

I s s s I s s s I s s s I «s I

0 20 40 60 80
x I:nml

I
s s s

I
s s s I s s s ~s s s

s s s
I

~ s s
I

s I s f s s s 1 s s s

D. Two double layers on a substrate

Finally, in Fig. 6 we present an example modeled on a
realistic case, two double layers of iron and silver on an
infinitely thick glass substrate. The potential height for
iron is V„,=4m. (806.6—i0.06) X 10 nm, and for
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FIG. 5. The efFect of a cutofF q, =1 nm ' on the Marchenko
solution for the example of Fig. 4.
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silver V~ =4~(348 2 i.1.—032) X 10 nm . The poten-
tial height for glass is V I„,=4~440.0X 10 nm

Two values of the cutoff q, are considered. For a short
cutoff, q, = 1 nm ', the Marchenko solution and the po-
tential obtained with the help of a (9,9) Pade approximant
are practically identical, and contain the expected oscilla-
tions of period ~/q, =3.14 nm. These are clearly seen in
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FIG. 4. Reconstruction of a complex potential with difFuse
edges representing a homogeneous film on an infinitely thick
substrate with surface and interface roughness. The complex
barrier height is (50—i0.5)X10 nm, the width is 50 nm,
and the surface and interface thickness is 0.88 nm. The poten-
tial representing the substrate has the height V, =25X10
nm . (a) and (b) are the real and imaginary parts of the origi-
nal potential (heavy solid curve) together with the Marchenko
solution (identical with the former), and potentials correspond-
ing to the Neumann series with M =0 (dashed curve) and 18,
and the (9,9) Pade approximant (thin solid curves); note the
difFerence in scale for the real and imaginary parts; in the imagi-
nary part only the original and the Pade approximant are
shown, since the Neumann-series method yields no meaningful
results. (c) The complex input function B(2x).
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FIG. 6. Reconstruction of an iron-silver double-layer struc-
ture on a glass substrate. (a) The real part of the original poten-
tial (heavy curve) and its reproduction by the Marchenko solu-
tion with the cutofF q, =1 nm ' (thin curve). The reconstruc-
tion via a (9,9) Pade approximant with the same cutofF coincides
with the Marchenko solution. (b) The real part of the original
potential and its reconstruction via a (9,9) Pade approximant
with the cutofF q, =6 nm . (c) The imaginary part of the origi-
nal potential and its reproduction by the Marchenko solution
with a cutofF q, = 1 nm
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the real part [cf. Fig. 6(a)] but less so in the imaginary
part [cf. Fig. 6(c)]. After averaging over these oscillations
the Marchenko solution is seen to reproduce the original
potential.

For a long cutoff q, =6 nm ', a sufticiently accurate
Marchenko solution requires a great numerical effort.
Therefore, we have restricted ourselves to employing the
Pade-approximant method. It is found that the potential
corresponding to the (9,9) Pade approximant reproduces
the original potential to good accuracy [cf. Fig. 6(b)].

V. SUMMARY

Vfe have given examples of the implementation of gen-
eral inverse scattering theory for a model-independent

analysis of neutron specular refiection experiments. Vari-
ous scattering-length density profiles of physical interest
have been reconstructed exactly by solving the Marchen-
ko integral equation, which is the central equation of the
one-dimensional inverse scattering problem. Approxi-
mate procedures of solutions have also been considered,
and the effect of data limitation, such as, e.g. , a cutoff in
the momentum transfer, has been discussed. The applica-
tion of such inversion methods appears to be feasible in
principle. The main dif5culty which remains to be solved
in a practical manner is the phase problem, i.e., the deter-
mination of the reAection phase from experimental infor-
mation. Increased efforts have been made to solve this
important problem in the recent literature. "'
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