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Application of a polarizable point-ion shell model to a two-dimensional periodic structure:
The MO (001) surface
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A two-dimensional polarizable point-ion shell model developed from the original model of Dienes
et al. was constructed, using the e6'ective plane-wise summation technique for evaluation of two-
dimensional Madelung potentials, and then applied to the NiO (001) surface in which a two-dimensional
translation operation is possible, in order to assess the validity of the shell model constructed. Displace-
ments of ions around an imperfection such as a surface plane are obtained by solving the equilibrium
equations which contain displacements as unknowns, as in the original model. The two-dimensional
shell model treats a crystal which contains a small number of displacements because of the two-
dimensional periodicity which is invariably preserved even after a relaxation- takes place. The experi-
mental results relevant to the NiO (100);urface obtained in low-energy electron-difFraction and electron
energy-loss fine-structure measurements, which are indicative of a reduction of ionic spacings normal to
the (001) planes very near to the free surface by 1.9—3.8% of the bulk lattice constant, were interpreted
in terms of the calculations with the two-dimensional polarizable point-ion shell model, using the param-
eters determined in the bulk, although there were some slight deviations from the experiments. The sur-
face eftects upon the parameters were investigated and the relaxation in the surface structure was found
to be very sensitive to the electronic polarizability of the 0 ion at the top layer. A comparison be-
tween the theoretical predictions and the experiments indicated some increment to the polarizability of
the O ion on the surface plane from the bulk value.

I. INTRODUCTION

The polarizable point-ion shell model constructed by
Dienes et a/. ' is one of the strongest and the most reli-
able means of calculating energy changes induced by an
imperfection which breaks the three-dimensional periodi-
city in an ionic crystal. This model is essentially based
upon the following framework. When an imperfection is
formed in a perfect ionic crystal, the electrical Geld from
this imperfection results in displacements of outer shells,
in particular ions around the imperfection, so as to mini-
mize the energy of the crystal; that is, a relaxation takes
place. A determination of displacements enables a calcu-
lation of the relaxation energy. This model uses a spheri-
cal crystal region in which the displacements are calcu-
lated by matrix techniques, while the displacements out-
side the sphere are evaluated by the approximate method
of Mott and Littleton. These treatments are rational-
ized because the three-dimensional periodicity is broken.
In fact, previous energy calculations on polarons and
point defects prove the legitimacy of the shell model
used. '

We applied this shell model to the lattice-energy calcu-
lations of crystals containing ordered arrays of crystallo-
graphic shear planes in which three-dimensional periodi-
cities are preserved even after relaxations take place. '

In such calculations, spherical crystal regions were also
used rather than using the three-dimensional periodicities
because a theoretical treatment in a periodic structure
was not yet established. The situation in the two-
dimensional structure is similar, as shown in energy cal-

culations on grain boundaries in TiOz (Ref. 10).
The primary aim in this paper is, therefore, to con-

struct a theoretical method developed from a polarizable
point-ion shell model, which is applicable in periodic
structures. The illustrative example treated here is the
(001) surface of NiO, which crystallizes with rock-salt
structure because of the following reasons: (i) the
NiO(001) surface structure has a two-dimensional period-
icity; (ii) a two-dimensional periodic structure is expected
to be treated theoretically much more easily than a
three-dimensional one; (iii) some experimental results on
the NiO(001) surface are available;"' (iv) the effective
plane-wise summation technique developed by Parry now
enables us to calculate two-dimensional Madelung poten-
tials; ' ' (v) the ionicity of NiO is so high, ' i.e.,f =0.887, that a polarizable point-ion shell model can be
applied; and (vi) the parameters required in energy calcu-
lations of NiO have already been obtained. '

As for NiO(001) surface, Yikegaki et al. ' carried out
the electron energy-loss fine-structure (EELFS) measure-
ments which yield nearest neighbor distances of -2.00
A, slightly shorter than the spacing of the Ni +-0 pair
normal to the (001) plane in the bulk, ' i.e.,
4. 1684/2-=2. 08 A. Before Yikegaki et al. , Welton-Cook
and Prutton observed, " using the low-energy electron-
diffraction (LEED) method, that the real NiO(001) free
surface is slightly contracted (of = 1.9% of the bulk lat-
tice constant, i.e., =0.04 A) toward the inside. Both ex-
periments are indicative of a reduction of ionic spacings
normal to the (001) surface by 1.9—3. 8%%uo of the bulk
value. These results are very important in the assessment
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of the validity of the theoretical method to be construct-
ed in this paper.

The construction of the theoretical method developed
from the shell model, which is applicable in periodic
structures, is of great importance in investigations of
physical and chemical properties of ionic crystals. There
is much previous literature' on theoretical studies of
surfaces of rock-salt-structured ionic crystals. '

Sawada and Nakamura have even succeeded in estimat-
ing temperature dependences of ionic displacements in
sodium halide crystals, applying the Einstein model to
the Verway model. Though the equilibrium ionic posi-
tions calculated here are static ones, it is of interest to
compare the results obtained in this paper with theirs,
calculated by a theoretical method quite different from
ours. The theoretical knowledge obtained by computer
simulations of two-dimensional grain boundaries in NiO
by Duffy and Tasker ' is also of much help in the
present work.

The parametrization of numerical values employed in
the present calculations was made in the bulk, as will be
described in Sec. III. Though the two-dimensional
theoretical treatment is simpler than the three-
dimensional one, a crystal surface presents some
difficulties in the parameters required in calculations.
Tasker argued that serious question should be given to
the validity of applying the numerical parameters deter-
mined in the bulk to a crystal surface where the environ-
ment is very different to the bulk. One of the most im-
portant differences between a surface and the bulk must
be the polarizabilities of ions. Tasker suggests that
anions are more polarizable at the surface than in the
bulk, whereas cations show negligible differences in po-
larizability. In this paper, calculations using bulk numer-
ical parameters will be carried out as the first trial and,
then, surface effects on the parameters will be considered
in discussion.

b) l

Bp

a X

charge q;e, e being the electronic charge, which will be
described below; r; is the spacing between ions i and j;
2; and B; are the Born-Mayer constants of the repulsive
interaction; C; represents the van der Waals constant be-
tween the particular ion pair, X is the number of ions per
formula unit, eD is the Debye temperature (317.4 K)
(Ref. 30); and kz is Boltzmann's constant. In Eq. (1), g,
represents the summation of ions per unit cell and g &;
indicates the summation over all ions in a crystal except
the ith ion.

As illustrated in Fig. 1, a two-dimensional periodic
structure is characterized by primitive translation vectors
a=aoi, b=aoj, and c ~ (a Xb), but ~c~ = ~, where i and j
are the unit vectors along x and y axes on (001) planes;
consequently, c~~z axis, and ao is the lattice constant,
4.1684 A (Ref. 16). A two-dimensional unit cell contains
two Ni + ions and two 0 ions at the 1th layer (I is from
1 to ao ), where the (001) free surface is the first layer (i.e.,
l is 1). Because of the two-dimensional symmetry, these
two Ni + ions are equivalent to one another, and the
same relation holds also for the O ions.

The site potential V, is formulated by the effective
plane-wise summation technique in the following form
(Parry's potential)

II. LATTICE ENERGIES IN RIGID TWO-DIMENSIONAL
PERIODIC STRUCTURES

The NiO crystal is considered as a stack of planes,
parallel to the (001) plane on which the two-dimensional
translation operation is possible. Lattice energies in rigid
and unpolarized two-dimensional periodic structures be-
come rather easy to simulate theoretically because two-
dimensional structures are exploited to simplify the cal-
culation by the use of the effective plane-wise summation
technique established by Parry. ' ' Based upon a fully
ionic model, ' the lattice energy per NiO formula unit,
El, has the form of the summation of Madelung energy
(EM is the long-range Coulombic energy), the short-range
repulsive energy (Eit ), the van der Waals energy (Evdw )

and the zero-point energy (Eo ) in the following way:

C;.
EI =

—,
' g q;eV, + g A,J exp( B; r; )——

E JWl 1J

9%k~ GD+

where V; is the site potential of the ith ion with the
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FIG. 1. The unit cell of the NiO(001) surface in rigid and un-

polarized NiO. The primitive translation vectors a and b are on
the (001) surface with the lattice constant ao=4. 1684 A, and
another vector c is normal to the (001) surface plane, except
that ~c~ = ~. Each of the (001) planes parallel to the free sur-
face is denoted as the 1th layer, where the free surface is the first
layer. The layer spacing between the Ith and (3+1)th layers is
denoted as ai /2.
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V, = gqjeM;
J

ku, k
e "erfc +gu;2'

TABLE I. The parameters of NiO employed in the calcula-
tions: Born-Mayer constants of the repulsive interaction, A and
8; van der Waals constants C; free ion polarizabilities o. ; elec-
tronic polarizabilities a'; and shell parameters Q. These param-
eters are quoted from Ref. 5, which determined these parame-
ters in the bulk.

—ku, I+e "erfc —gu;
2g

Ion pair

N'2+ O2-
O2 O2

3 (eV)

550.96
22 764.3

8(A )

2.815
6.711

C (eVA')

13.16
23.52

erfc(rIR; )

R,, v'~ '

Ion
Qi2+
Q2

a (A)
0.36
3.88

o." (A )

0.68
1.98

Qle)
6.49
1.71

elim-
o k

&k-p,
k

e 'erfc +gu .
IJ

potential cannot be applicable. The NiO(001) surface,
however, consists of a stack of neutral charged planes,
and Madelung potentials are to be calculated by this
method.

—ku, k+e er fc 'oui.
2g

III. (001) SURFACE STRUCTURE
OF UNPOI. PRIZED AND RIGID NiO

e
~ —2u; erf(r)u, )

—2
rrrl

In this expression, R,J
= R;J = N+r;~~=

~ ,na+~nb
+r;, ~, where r,j denotes the vector between ions i and j in

the unit cell at the origin, and N is the two-dimensional
lattice vector from the unit cell at the origin to the nth
unit cell, where n~ and n~ are integers. R;j is then the
vector between the ith ion in the unit cell at the origin
and the jth ion in the nth unit cell. The vector r; con-
sists of two components: p,. in planes parallel to the sur-
face plane (i.e. , lz axis), and u, perpendicular to the sur-
face (i.e., ~~z axis ), u; being u,, ~. 5 is the unit area of the
unit cell facing the surface, k is the two-dimensional
reciprocal-lattice vector in planes parallel to the surface,
and k represents ~k~. In Eq. (2), the summations, gk and

gN include k=O and N=O terms, while g indicates the
summation over all ions in the crystal. However, 2r)!v'n
is subtracted to remove the self-interaction term of the
ith ion (i.e., j=i) included in the reciprocal summation,
where g is the Gaussian width parameter that may be
chosen to maximize the convergence of the summation
(i.e., the convergence parameter).

This plane-wise summation method is, however, sub-
ject to the condition that the layer cell has a nonzero z
component of dipole moments. ' ' "' In certain crystal
directions such as the (111) direction in NiO, the planes
are charged; for example, they may consist of either just
anions or cations. Such orientations are associated with
infinite surface energies, and the surfaces cannot gen-
erally exist without restructuring, in which case Parry s

As described in Sec. I, the theoretical parameters re-
quired in energy calculations on NiO were already ob-
tained, and the appropriateness of these parameters was
also justified. ' They are collected in Table I, but the
Born-Mayer constant 2 of the Ni +-0 pair is modified
slightly from the previous value, 556.43 eV, to 5S0.96 eV,
which yields the theoretical lattice constant in the bulk
equal to the experimental value ao=4. 1684 A, because
the ionic spacings near the surface, with which the lattice
constant participates directly, are to be the criteria in the
assessment of the two-dimensional shell model which will
be constructed in this paper. This change, however, re-
sults in a slight decrease of less than 0.1% of the lattice
energy per unit cell in the bulk.

Near the surface, one expects that spacings between
layers parallel to the surface differ from the bulk value
even in rigid and unpolarized NiQ. Denote the spacing

a /2 (A)a, /2 (A)

1.98
2.35
2.40
2.45
2.50

3.9535/2
3.9034/2
3.8953/2
3.8871/2
3.8789/2

3.8929/2
3.8895/2
3.8887/2
3.8878/2
3.8869/2

3.8863/2
3.8861/2
3.8861/2
3.8857/2
3.8857/2

3.9016/2
3.9030/2
3.9033/2
3.9031/2
3.9029/2

TABLE II. The combination of layer spacings near the free
(001) surface plane {a,/2, a, /2, a3/2, a4/2I for several values of
the electronic polarizability of the 0 ion at the top layer,
{o.Q)g To investigate the surface eAect on the parameters,
{QQ )q is varied from 2.35 to 2.50 A, and ( uo )z = 1 .98 A (I.e.,

the bulk polarizability).

{ao)q (A ) a, /2 (A)
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TABLE III. The monopole field along the z axis, e„acting
on each ion at each value of (ao)z. The monopole field on Ni(I)
has the negative value of O{l) and vice versa, where Ni(l) and
O(l) are Ni + and 0 ions at the Ith layer. The results at

0 3
(ao)& =1.98 A represent the monopole fields calculated by the
use of the bulk parameters. The x and y components of the
monopole field on every ion are zero at any magnitude for
(~o)&.

e, (eV/A) e, (eV/A) e, (eV/A) e, (eV/A) e, (eV/A)
{aQ)q 1.98 (A ) 2.35 (A ) 2.40 {A ) 2.45 (A ) 2.50 (A )

(1 =6). Ions inside the seventh layer have the bulk crys-
tal monopole fields, i.e., e=o. One expects, then, that
such monopole fields would induce dipole moments only
along the z axis in layers near the free surface. This pre-
diction will be rationalized theoretically in Sec. IV. Mast
of the theoretical studies on rock-salt structures are based
upon ionic displacements perpendicular to the free sur-
face, as well.

IV. TWO-DIMENSIONAL POLARIZABLK
POINT-ION SHELL MODEL

0{1) —0.6871
Ni{2) 0.0583
O(3) —0.0063
Ni(4) —0.016 1

O(5) 0.1819
Ni(6) —0.0030

—0.7247
0.0243

—0.0029
—0.0174

0.1808
—0.0030

—0.7310
0.0188

—0.0022
—0.0177

0.1806
—0.0030

—0.7374
0.0133

—0.0016
—0.0179

0.1807
—0.0030

—0.7439
0.0077

—0.0008
—0.0177

0.1809
—0.0030

The fundamental principle of a two-dimensional polar-
izable point-ion shell model is similar to the one con-
structed by Dienes et al. ,

' except for several points. A
brief description of the framework of the two-
dimensional shell model will be given in this section, be-
cause full details as to the ariginal model were published
elsewhere. ' The total energy of an ionic crystal con-
taining a free surface, Ez-, is given by

between the Ith and (I + 1)th layers as a&/2, as illustrated
in Fig. 1; then the optimum condition for the total lattice
energy at a&/2=a0/2=4. 1684/2 A (I ~ 4) is
dEI /Ba, =dEL /Ba2 =0 when a3/2 is treated as a vari-
able parameter, while the lattice constant on (001) planes
is Q0=4. 1684 A. This condition determines magnitudes
for a, /2 and az/2, and then the lattice energy EI is cal-
culated by Eq. (1) at each value for a3/2. By changing
the value for ai/2, the combination of layer spacings
ta i /2=3. 9573/2 A, az/2=3. 8950/2 A,
a3/2=3. 9045/2 A, and a&/2=4. 1684/2 A (l ~ 4) j
yields the minimum lattice energy. Though this com-
bination would indeed be one of the candidates for the
rigid and unpolarized surface structure, the discontinuity
between a3/2 and a4/2 requires another iteration. By
treating a3/2 and a4/2 as independent variable parame-
ters with a& /2 =4. 1684/2 A (I ~ 5) then the similar treat-
ment leads to the combination I a, /2 =3.9535/2 A,
az/2=3. 8929/2 A, a3/2=3. 8863/2 A, a4/2=3. 9016/2
A, and a&/2=4. 1684/2 A (I ~ 5) j, as tabulated in Table
II. Between a4 /2 and a~ /2, there is still a discontinuity.
Further iterations are theoretically possible but impracti-
cal.

The resultant monopole field acting on each ion in the
perfect NiO crystal (bulk) is zero because monopole fields
from all other ions counteract each other. In the case of
the (001) surface, however, effective monopole fields act
on ions in layers near the surface because the point sym-
metry is lower than that of the bulk. The monopole field
acting on the ith ion e; is given by way of the site poten-
tial V, :

e, = —gradV, = gq, e( —gradM;J) .
J

Because of the two-dimensional symmetry, x and y com-
ponents of the monopole field acting on every ion are
zero, while the z component on Ni(l) has the negative
value of that on O(l), and vice versa, where Ni(l) and
O(l) are Ni + and O ions at the 1th layer. Table III ta-
bulates the monopole fields in a stack of up to six planes

ET EL +ERelax (4)

where ER,&„represents the relaxation energy which con-
sists of the changes in Madelung, repulsive, and van der
Waals energies, i.e., AE~, hE~, and EEvd~, and the po-
larization energy E consisting of three components, i.e.,
the interaction between the dipole moment and the
monopole field (E, ), the dipole-dipole interaction energy
(E 2), and the dipole self-energy (E 3), which includes
free ion polarizabilities a in Table I (Refs. 1 and 4).

After a relaxation has taken place, the vector between
the ith ion in the unit cell at the origin and the jth ion in
the nth unit cell changes from R; to the effective vector
R,'" which is given by

Pi
R,' =R;+

I

=n a+n b+p; +u; +
)

PJ.

Q,

(5)

where p, and Q; are the dipole moment and the shell pa-
rameter of the ith ion. The shell parameter is the product
of the number of polarizable electrons and the electronic
charge. The two-dimensional translation operation yields
the same magnitude for the dipole moment on the jth ion
in every unit cell. In this scheme, the total energy E~ is a
function of the dipole moments. The equilibrium dipole
moments are obtained by minimizing the total energy
with respect to the components of individual dipole mo-
ments as follows:

BE~ =0, l =x,y, or z,
~Pa

(6)

where p, &
is the l component of the ith dipole moment. A

stack of up to ten planes from the free surface comprises
the block whose energy in the unit cell at the origin is cal-
culated. It should then be emphasized that the two-
dimensional translation operation reduces the number of
unknowns to 3X20, i.e., p,„, p,~, and p,, (i =1—20).
Equation (6) leads to the following expression:



10 960 E. IGUCHI AND H. NAKATSUGAWA

g A;"p;k+ g g A J"p,k=C,', k =x,y o«, i and j=1-20,
k jWi k

2 lk
42 (e,. )k(e; )/C; q;q e I,+
Q,

'
Q

2

(e;J )k(e; )/II; 4; . exp{ ;JR—R}+X X
jWi N Q

2

(eJ )k(eJ )/B,, A,J exp( B—JR,J )

Q;Q,

g lk

n0-

g /k

jWi N

3(e~/. )k(e/J )/ 5k—
/ 42 (e,J )k(e J )/C J q, q/e I,"

(7)

I;, =—5k, (1—'5/, ) g e "k/ e "erfc +rju;,Ik ik p, ku,

k&0

—ku, k—e "erfc —gu;
2g

ik p, ku, k —k, k+—5k, 5/, g e 'k e "erfc +flu; +.e 'erfc —i)u,' 'k~o 2q

+ g(e;, )k(e; )/. 2
N

erfc(rlR; ) + 2i) + —e
R; R,

q,-e (e;J )/B,J A,.J exp( B, R,—)1+ +gg
JAi N Q/

R; (p; ) +n, ao (p,. ) +n~ao u;

lj lj lj ij

6(e; )/C;

Q;R;

where k/ is the l component of the two-dimensional reciprocal-lattice vector k, (p; ), and (p,. ) are x and y components
of p; on the (001) planes, and g ~;gN indicates the summations over all ions in the crystal except the ith ion in every
unit cell because the two-dimensional periodicity does not change the ionic spacing between the ith ion in the unit cell
at the origin and that in the nth cell even if the relaxation takes place. The last terms in A;" and A ", i.e.,

&,q;q e I.,J"IQ, and g &;q;qJe IJ"IQ,QJ, and e,/q;elQ; . in C come from the minimum condition of the Madelung
energy, i.e., BE /BIJ, ;/ =Bg;q, eV; /Bp;/ =0..

In a two-dimensional periodic structure, Eq. (7) becomes rather simple in comparison with the equilibrium equations
in Refs. 1 and 4 because every coeKcient 3;, 2 or C, disappears unless k =l =z. This is due to the fact that the
summations, including (e,"),(e,"),or (e,") (e; ) become zero. The two-dimensional symmetry and monopole fields in
Table III result in C,'=C~=O but C,'WO. Then both x and y components of every dipole moment are zero, i.e.,
p, =p,. =0, as predicted before. The number of unknowns, consequently, reduces moreover to 20.

Every term in A,", , 2,",and C,' is a necessary prerequisite to the calculations of dipole moments, i.e., p,-, . All of them
converge rapidly except QN[3(e, )k(e; )/

—5k/]/R;J in A'J, which is calculated by the Fourier transformation tech-
nique, using Ewald's method, as shown in Eq. (8):

3(e J )k(ei/. )/ 5k/

N R jj

5kz )( 1 5/z ) kk k/ /&'P;J k&;J k k&; k
e " e 'erfc +i)u;, +e "erfc —i)u, .

5 k&0 2g

~~kz~lz ik p, ku, Q —ku, . - k 4g —[(k J/4q )+g u,"]

175k,5/, 4q q2„2 77( 1 5/„5/,)—ikp. . ku. . Q —ku"+ —e ' — g (5k, k/+5/, kk )e " e 'erfc +rju, —e 'erf"c —rju,"S v'~ S k~o
' '

2g " 2g

N

3(e;, )k(e;, )/ 5k/
3R;

erfc(qR;, )+ 2v] 1

vr R,"
3(4+&ir ) —q'/t, ', 4

7l
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Then, the z component of each dipole moment can be
solved from Eq. (7) by the matrix technique.

V. RESULTS AND DISCUSSION

A. (001) surface structure

Though Welton-Cook and Prutton concluded, " in
1980, that an extension of the calculation of the surface
ionic configurations based on their shell model to the
NiO(001) surface was impossible, mainly due to the ab-
sence of suitable data, such a calculation is now possible
if the two-dimensional polarizable point-ion shell model
is employed. In addition, the numerical parameters for
NiO required in their shell model are now available.

The simulation of the (001) surface structure of rigid
and unpolarized NiO yields the combination of layer
spacings, I a i /2 =3.9535/2 A, a 2/2 =3.8929/2 A,
a3/2=3. 8863/2 A, a4/2=3. 9016/2 A, and
aI/2=4. 1684/2 A (l ~5) j, which contains the discon-
tinuity between a4/2 and a 5/2. A higher degree of accu-
racy using the method described above requires more
iterations which, however, become dificult in practice.
Alternatively, we have employed another approach. In
the two-dimensional unit cell defined in this paper (see
Fig. 1), three-dimensional pseudounit cells with the prim-
itive translation vectors a, b, and c' =a,k, which are in a
form similar to the unit cell in the bulk, are assumed to
be piled up normal to the free surface, k being the unit
vector along the z axis. The mean lattice constant along
the z axis, a„ is evaluated to be 3.8837 A by the condition
of BEI /Ba, =0 in the stack of up to 40 planes from the
free surface. Then the repeat of the treatment described
in Sec. III yields the combination of Ia, /2=3. 9534/2 A,
a2/2= 3.8927/2 A., a

&
/2= 3.8845/2 A, and al /2

=3.8837/2 A (40~ l ~4) j with a good continuity from
a3/2 to a4/2. These results indicate that surface struc-

tures cannot be as simple as expected. It is very
significant, however, that quite difFerent theoretical treat-
ments yield nearly the same magnitudes for a&/2 and
a2/2, respectively, the differences being negligibly small.
Thus a, /2 and az/2 obtained in this way can be used as
reliable parameters in a check of the validity of the two-
dimensional polarizable point-ion shell model.

After the relaxation has taken place, the displacement
of the ith ion, p,. /Q;, is obtained by solving Eq. (7) with
the numerical parameters in Table I, the monopole fields
in TaMe III, and the combination of layer spacings.
Table IV summarizes values of the ionic displacements
along the z axis, d, . Ions inside the eighth layer do not
relax. The nearest-neighbor spacings normal to the free
surface are evaluated from the displacements and sum-
marized in Table V, in which the spacing between Ni +

in the 1th layer and O in the (I +1)th layer and that be-
tween 0 in the 1th layer and Ni + in the (I +1)th layer
are denoted as D(Ni-0) and D(O-Ni).

These results contain several important features. Our
calculations result in a rumpling of the surface layer; that
is, anions at the top layer move outwards along the z axis
relative to cations. Such a phenomenon is common in the
results obtained by the previous theoretical studies, '

despite the use of models different from ours. The
behavior of ions on the fifth layer is a little abnormal be-
cause of the discontinuity in the layer spacings from a~/2
to a5/2. The different forces acting on the two species of
ions cause the surface rumpling mainly due to the
different magnitudes of the induced polarizations of these
ions. ' In the shell model employed here, the induced di-
pole moments are undoubtedly important, but the mono-
pole field acting on each ion is one of the factors which
determines the magnitudes of dipole moments. In the
theoretical model proposed by Sawada et al. , the
monopole field acting on the anion sublayer on the free
surface induces moments of anions outwards which dis-

2.45
Q(e)

(A )

d, (A)
(A )

d, (A)
(A )

d, (A)
2.40

Q(e)
2.50

Q(e)

TABLE IV. Shell parameters Q, and ionic displacements along the z axis, d„ for various values of
0 3

(ao)z. The results for (ao)z =ao = 1.98 A represent the shell parameters and displacements calculated
by the use of the bulk parameters.

1.98 (A ) 2.35 (A )

(ao)z Q(e) d, (A) Q(e) d, (A)

0(1)
Ni(2)
0(3)
Ni(4)
O(5)
Ni(6)
0(7)

1.71
6.48
1.71
6.48
1.71
6.48
1.71

0.1965
0.0015
0.0021

—0.0005
—0.0564
—0.0005
—0.0002

1.86
6.54
1.70
6.54
1.71
6.48
1.71

0.1965
0.0031
0.0024

—0.0004
—0.0557
—0.0005
—0.0002

1.88
6.54
1.70
6.54
1.71
6.48
1;71

0.1969
0.0034
0.0024

—0.0004
—0.0557
—0.0005
—0.0002

1.90
6.54
1.70
6.54
1.71
6.48
1.71

0.1974
0.0036
0.0025

—0.0004
—0.0557
—0.0005
—0.0002

1.92
6.54
1.70
6.54
1.71
6.48
1.71

0.1979
0.0039
0.0024

—0.0004
—0.0558
—0.0005
—0.0002

Ni(1) 6.48 —0.0193 6.41
0(2) 1.71 0.0023 1.70
Ni(3) 6.48 —0.0002 6.55
O(4) 1.71 —0.0004 1.70
Ni(5) 6.48 0.0052 6.51
0(6) 1.71 0.0011 1.71
Ni(7) 6.48 0.0000 6.48

—0.0211
—0.0132
—0.0004
—0.0006

0.0051
0.0011
0.0000

6.41
1.70
6.55
1.70
6.51
1.71
6.48

—0.0214
—0.0156
—0.0004
—0.0007

0.0051
0.0011
0.0000

6.41
1.70
6.55
1.70
6.51
1.71
6.48

—0.0216
—0.0179
—0.0004
—0.0008

0.0051
0.0011
0.0000

6.41
1.70
6.55
1.70
6.51
1.71
6.48

—0.0219
—0.0203
—0.0005
—0.0008

0.0051
0.0011
0.0000
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place the anions outwards, while a coupling between the
charges of cations and the induced moments of the sur-
face anions yields an inward displacement of cation sub-
layer at the free surface. In the shell model employed
here, however, the displacements of both the anion and
cation sublayers take place at the same time, by a mecha-
nism similar to that for the displacement of the anion
sublayer in their model. In addition, as shown in Eq. (7),
the z components of Coulombic and repulsive interac-
tions are also important factors which determine dipole
moments, though Sawada and Nakamura suggest that
both Coulombic and repulsive interactions do not con-
tribute to the surface rumpling in their model. It is very
interesting that, in spite of the difference in the models
employed, the results obtained contain the common
features that the displacement of anions is outward rela-
tive to cations, resulting in a rumpled structure, and a
mean surface plane is pulled inwards.

B. Comparison between experiments and calculated results

Most previous theories treat only the top layer, but the
shell model constructed here simulates ionic
configurations inside the surface plane, as indicated in
Table IV. Every theoretical study predicts rumpled (001)
surfaces in rock-salt structures. ' In spite of this fact,
the main structural conclusion obtained by Welton-Cook
and Pruton" is that the real NiO(001) free surface (i.e.,
the first layer) is slightly contracted (of =1.9% of the
bulk lattice constant, i.e., —0.04 A) toward the inside
and is not rumpled on a scale detectable by LEED
analysis. Though the discrepancy between their experi-
ments and the theoretical predictions for rumpled sur-
faces puzzles us very much, Table V shows that the mean
nearest-neighbor distance in the top layer, i.e., D„be-

0

tween the top and second layers, reduces to 2.063 A from
the bulk value 2.084 A, by —0.021 A (i.e., —1%).

The experimental principle of the EELFS measure-
ments' ' implies that the mean magnitude of the spac-
ings D(O-Ni) between the first and second layers and that
between the second and third layers dominates the exper-
imental nearest-neighbor distance. The corresponding
value calculated is (2. 172+ 1.948)/2=2. 060 A, which is
a little longer than the EELFS result, ' but decreases by—0.024 A from the bulk value.

It should be emphasized that the layer spacings near
the free (001) surface in Table V, which are comparable
to the results of LEED and EELFS, are calculated on the
basis of a&/2 and a2/2 in Table II. The experiments
relevant to the NiO(001) surface are, therefore, interpret-
able in terms of theoretical values obtained by the two-
dimensional polarizable point-ion shell model with the
bulk parameters. The reduction of ionic spacings near
the surface calculated here is, however, somewhat smaller
than that in the experiments. This fact indicates the im-
portance of the surface inhuence upon numerical parame-
ters which are to be used in calculations, as described in
Sec. I.
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C. Surface effect on parameters

This section describes a trial to investigate the effect of
different surface values for the model parameters. The
most remarkable difference between the surface and the
bulk must as suggested in Sec. I, be the polarizability of
0 ions on the surface, which is expected to increase
from the bulk value. Electronic polarizabilities are in-
volved in van der Waals constants, while the shell pa-
rameters are determined by the method developed from
the theory of Dick and Overhauser by Shanker and
Gupta, using electronic polarizabilities. A change in a
polarizability, therefore, varies magnitudes of van der
Waals constants and shell parameters. Furthermore, our
previous calculations ' indicate that relaxations in crys-
tals are very sensitive to magnitudes of shell parameters
used.

According to Tasker's suggestion, the electronic po-
larizability of the 0 ion on the top layer, which is ab-
breviated as (ao)s, is treated as a variable parameter, and
then the van der Waals constants of the Ni +-0 and
0 -0 pairs including this 0 ion have correspond-
ing values which involve the bulk polarizabilities except
for (ao)s. A combination of layer spacings in rigid and
unpolarized NiO is obtained in the same way as before.
Table III summarizes the combination of layer spacings
Ia, /2, az/2, a3/2, and a~/2I at each magnitude for
(ao)s in the range of 2.35 —2.50 A along with the result
obtained by the bulk value, i.e., (ao)& =ao= 1.98 A . In
every combination, aI /2=4. 1684/2 A when I 5.

The electronic polarizability of a cation is described
with the Madelung potential of the cation in Ruffa's
theory. In the surface structure, however, Madelung
potentials of cations deviate from the bulk value and vary
as a function of the distance of a cation from the surface.
The electronic polarizability of each cation is determined
by RuÃa's theory, while that of each anion except (ao)s
is estimated under the assumption that the simple addi-
tive rule in the bulk holds at each (001) plane even near
the free surface, i.e., aN;+no=2. 66 A . At the top layer,
however, this rule does not hold. These polarizabilities
yield recalculated van der Waals constants of particular
ion pairs and shell parameters of ions. Using the
modified parameters C;. and Q, ionic displacements are
evaluated by the two-dimensional shell model at each
combination of layer spacings. In Table IV, shell param-
eters Q and ionic displacements along the z axis d, at
each (ao)s are tabulated along with the results obtained
by the use of the bulk parameters. The corresponding
nearest-neighbor distances are also summarized in Table
V.

Figure 2 plots the mean value of the spacings D(O-Ni)
and D(Ni-O) between the first and second layers against
(ao )s. This mean spacing is denoted as D, in Fig. 2. As
(ao)s increases, D, decreases linearly and the best agree-
ment with the LEED result" seems to be obtained at
(ao)s=-2. 43 A . Another mean value of D(O-Ni) be-
tween the first and second layers and that between the
second and third layers, which is abbreviated as Dz, is
also plotted in Fig. 2. As (ao)s increases, D~ also de-
creases, but the extrapolation to the EELFS result

2.036

2.044

2.032

2.040

2.028

2.036

2.40 2.45
(~o), (A )

2.50

FIG. 2. The variation of the mean nearest-neighbor spacings
D& and D2, with the electronic polarizability of the 0 ion at
the top layer (o.o)g in the range 2.35—2.50 A . D, is the mean
spacing of D(Ni-0) and D(O-Ni) between the first and second
layers, and D2 is the mean value of D(O-Ni) between the first
and second layers and that between the second and third layers.

(-2.00 A) (Ref. 12) yields (ao)~ —=2. 93 A, which is ex-
tremely large in values compared with the bulk polariza-
bility ao= 1.98 A . This fact suggests a possibility that
D(Ni-0) between the first and second layers and also that
between the second and third layers may contribute to
the EELFS result to some extent. In fact, the mean value
of D(O-Ni) and D(Ni-0) between the first and second lay-
ers and those between the second and third layers is in
the range of 1.98—2.00 A, even if (ao)s varies from 1.98
to 2.50 A .

D. Energies of the Nio(001) surface

Though the energy per unit cell in the rigid and unpo-
larized surface structure is impossible to evaluate because
a unit cell contains an infinite number of ions, the energy
difference between the surface structure and the perfect
crystal (i.e., bulk) can be calculated. Table VI tabulates
the energy-difference, denoted as Ed, for various values of
(iso )s.

Determination of dipole moments by Eq. (7) yields the
calculation of the relaxation energy Ez,&„, which is the
sum of AEM, AEz, AEvdw p1 p2, nd Ep3 as de-
scribed in Sec. IV. These calculated values are also sum-
marized in Table VI. The summation of Ed and ER,&,„
corresponds to the surface energy E& (Ref. 25). When
(ao)+=1.98 A (i.e., the bulk polarizability), Ed is large,
but the magnitude of the relaxation energy ~ER,i,„~ is
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TABLE VI. The lattice-energy difference between the surface
structure and the bulk, Ed, the relaxation energies ER,&„, which
consist of EEM, hE&, AEvd~, E», E», and Ep3 and the surface
energy Es, which is the sum of Ed and ERe»x at each (0'o)s.

0
The results at (ao)s =Q.o=1.98 A represent the energies calcu-
lated by the use of the bulk parameters. All measurements are

2
in units of 10 eV/A .

tion about these results suggests that the value of (ao)z
must be larger than the bulk polarizability. For further
detailed discussions, however, more experiments relevant
to the NiO(001) structure are required.

VI. CQNCLUSIQNS

E

AE„
~Evdw

E

ERelax

1.98

6.707

2.35

4.230

2.40

3.841

2.45

3.450

2.50

3.034

19.660
—12.404

1.895
—14.860
—0.805

6.507

20.051
—13.079

2.378
—16.817
—1.234

7.623

20.189
—13.146

2.455
—17.159
—1.310

7.818

20.345
—13.300

2.535
—17.518
—1.390

8.024

20.509
—13.451

2.617
—17.887
—1.474

8.236

6.700 2.688 2.150 1.607

—0.007 —1.007 —1.1S3 —1.301 —1.449

In conclusion, a two-dimensional polarizable point-ion
shell model was developed based upon the original model
of Dienes et al. ' This model was successfully applied to
the NiO(001) surface structure, and the general features
obtained by EELFS and LEED experiments"' were in-
terpretable in terms of the results calculated with this
shell model, though there are some deviations from the
experimental results. Such deviations are probably due
to the use of bulk parameters employed at the surface in
the calculations. The relaxation in the surface structure
is found to be very sensitive to the magnitude of the elec-
tronic polarizability of the 0 ion on the top layer,
which is expected to be larger than the bulk value 1.98
A.

small. With increasing (ao)s, Ed decreases, ~ER,&,„~ in-
creases, and, consequently, the surface energy decreases.
These quantities are very sensitive to the electronic polar-
izability of the 0 ion on the top layer. This fact im-
plies that an increment in (ao)s surely enhances the re-
laxation in the surface structure considerably. A specula-
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