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Surface stress and surface elasticity of low-index fcc surfaces have been studied using e6'ective-medium

theory potentials. In addition to total-energy calculations giving stress components and elastic data for
the surface as a whole, the use of artificial atoms with modified size allows us to probe the stress and
elasticity of individual layers. This method of arti6cial atoms provides a direct way to study the contri-
bution of atomic size to segregation in alloys as well as the driving force of reconstructions driven by
surface stress. As an example, we give a qualitative explanation of the face-dependent segregation of Pt-
Ni alloys. We also compare results of these atomic-scale calculations with continuum elasticity.

I. INTRODUCTION

Fundamental thermodynamic considerations as well as
the existence of surface-stress-driven reconstructions,
such as the Au(111) herringbone reconstruction, ' have
motivated several studies of surface stress, both by ab ini-
tio methods " and by semiempirical potentials. '

Surface elasticity, though also related to this topic, has
been mainly seen from the viewpoint of surface phonons,
which provide an experimental means to study some as-
pects of surface elasticity. ' ' Surface stress and elasti-
city also play an important role in segregation' ' and in
the formation of surface alloys, if the alloy components
have different atomic size. Nevertheless, many thermo-
dynamic models of segregation have used a very
simplified picture of a surface in this respect.

The aim of this paper is to present a coherent study of
these phenomena, which may provide the basis for dis-
cussion of many problems regarding stress and elasticity
in segregation and reconstruction. As a basis of our cal-
culations, we will use efrective-medium theory (EMT) po-
tentials, which not only give a good description of the
surface properties studied here but also provide the op-
portunity to create artificial atoms of the same kind, but
different size for the study of size effects. Numerical data
will be given for palladium, which we may consider a typ-
ical fcc metal since its position in the Periodic Table is
surrounded by most of those fcc metals common in sur-
face science.

We will give a short introduction to effective-medium
theory and to the form of the EMT potentials used in this
article in Sec. II. We will then discuss the stress and elas-
tic properties of a surface, i.e., the Grst and the second
derivative of surface energy with respect to lateral strain,
in Sec. III. We might call these properties total surface
properties, since they are defined for the surface as a
whole, without any distinction between different layers.
Section IV will be devoted to extracting stress and strain
contributions of different layers by the method of

artificial atoms and Sec. V to an application of these data
for segregation calculations in the Pt-Ni system.

II. EFFECTIVE-MEDIUM THEORY

As the basics of EMT have been described in several
articles, we will only give a short introduction here.
EMT is a method for total-energy calculations of solids
based on density-functional theory and deriving much of
its data from self-consistent calculations for the atomic
species of interest immersed in a homogeneous electron
gas. Due to the screening properties of the electron gas
in a metal, a homogeneous electron gas of a certain densi-
ty n can be considered a good approximation for the ac-
tual environment of an atom in a metal and we name the
respective energy of an atom cohesive energy E,(n ). E,
becomes a minimum at the equilibrium lattice constant;
we denote the corresponding values as Eo and no.

We further define the neutral sphere size s(n ) as the
radius of a sphere where the electronic charge (of the
atom and the homogeneous electron gas) and the core
charge cancel. Whereas the bulk of a pure fcc metal can
be closely approximated by neutral atomic spheres, for
distorted geometries, surfaces, impurity atoms, etc., the
atomic-sphere correction EAs is introduced. It can be
shown that EAs can be approximated by pair potential
terms.

A further correction term to the total energy is the
one-electron correction E&,&. Whereas E, and EAs al-
ready implicitly include the main energy contributions
coming from the formation of electronic bonds, E&,&

corrects for changes of the shape of the electronic state
density. E&,&

becomes most important for low-
coordination systems ' and for transition metals where
the partly filled d band plays an important role. The
one-electron term also has some inhuence on the elastic
shear constant c44, but this effect can be compensated for
by adjusting the pairwise potentials in EAs to yield
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Parameter

TABLE I. Effective-medium parameters for Pd.

Value Unit

Ep
fl p

Sp

'92

Vp

K

binding energy (E, at equilibrium lattice constant)
electronic density at equilibrium lattice constant
neutral sphere radius at equilibrium lattice constant
curvature of E, (s), Eq. (2.1)
decay constant, Eq. (2.3)
preexponential, atomic-sphere correction Eq. (2.4)
decay constant, atomic-sphere correction Eq. (2.4)

—3.90
0.006 88
2.87
2.1S5
1.818
2.773
3.107

eV
Bohr radii
Bohr radii
Bohr radii
Bohr radii
eV
Bohr radii

correct c44 (see below). Since Pd has a nearly full d band
and the lowest coordination number examined in our
study is seven (fcc 110 surface atom), we neglect the one-
electron term apart from the adjustment of the pair po-
tential.

In the implementation used for the current work E, for
an atom i is calculated as

tional form is also used in other potentials, e.g. , "glue, "
Finnis-Sinclair, ' or embedded-atom potentials.

Although all element parameters could be, in principle,
derived by ab initio calculations, we only use g2 and n0
determined from these calculations. The other parame-
ters are found from experimental values, i.e., the binding
energy (Eo), the lattice constant (giving so), the bulk
modulus (giving A, ), and the elastic constant c44 (giving
v). This approach has the advantage of higher accuracy,
since the reference system or effective medium is forced
to comply with the actual fcc crystal in many respects.
EMT parameters for Pd are given in Table I.

In Eqs. (2.3) and (2.4) it has been assumed for simplici-
ty that only nearest neighbors are counted. It has been
noted previously that with the given functional form of
the potential the anisotropy ratio of elastic constants

/ (l) —/ (i) r( g(~)(g (I) s (~)
) )c 0 J 0 (2.1)

where E0 and s0 are the cohesive energy and the neutral
sphere size for the fcc bulk at equilibrium lattice con-
stant, A. is a parameter determining the curvature of the
E, (rT ) function, and f is the function 7

(2.2)f (x) =(1+x)exp( —x) .

The neutral sphere size for the atom i under considera-
tion 2C 44

C11 C12
(2.6)

s"=so"— .
,

ln
~, ~ g no'exp[ —i)zj'(r, —pro")]

1 1

n2' n( ) equals 2 if only nearest-neighbor interactions are includ-
ed. This is equivalent to the relation c» =c,2+c44. 21

This constraint is lifted if the interaction with further-
neighbor shells is included. In this case the two constants
12 in (2.3) and (2.4) have to be replaced by slightly larger
values taking the inAuence of further neighbors into ac-
count.

For Pd, experimental values of the elastic anisotropy
A, ] are between 2.46 and 2.57; the eA'ective-medium re-
sult A,&=2.53 (smooth cutoff' between third and fourth
nearest neighbors) is in excellent agreement with experi-
ment. Together with the determination of the EMT pa-
rameters from bulk modulus (c»+2c,2)/3 and c~4 (see
above), this ensures agreement of all three independent
bulk elastic constants between experiment and EMT.

For computation of surface properties, the derivatives
of surface energy have been calculated from energies of
slabs with diA'erent thickness —11 and 19 layers for the
more close-packed surfaces, 15 and 25 layers for the (110)
surface —at diferent lateral strains in the order of l%%ug.

This ensures that systematic errors due to finite slab
thickness and nonlinear elasticity are negligible.

(2.3)

depends on the electronic density n provided by its neigh-
bors j [the sum in Eq. (2.3)]. The decay constant i)z for a
given atomic species is derived from ab initio calculations
of the neutral sphere size as a function of density in the
homogeneous electron gas, r; is the interatomic distance,
and P=(16'/3)' /+2 is a dimensionless geometric pa-
rameter (the ratio between nearest-neighbor distance and
neutral sphere size in an fcc lattice).

A good approximation for the atomic-sphere correc-
tion is given by

—12 exp[ —~"(s ' —so' )]

(2.4)

with the parameters Vo (positive) and ~ for each atomic
species. Using these approximations the total energy III. SURFACE STRESS AND SURFACE ELASTICITY

Z~s = —
—,
' g Vo' —

(,) g n 'eoxp[ ~'~'(r, /P —s(')J' )]—1

i n0 j (wi)

Ei.t = X F-"+E~s=E.+F-As (2.5)
A. Surface stress

is a sum of density- or s-dependent terms for each atom
[E, and the second exponential in Eq. (2.4)] and a pair
potential [the first exponential in Eq. (2.4)]. Such a func-

In this section we will consider stress and elasticity of
the surface as a whole, i.e, the first and second derivatives
of the surface energy with respect to strain E &. We will
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first define the surface stress tensor, which is given
s4, 35, 36

Using summation over repeated indices and assuming
infinitesimally small strain, we may write

1 B(~) ) B)
aC~p E,~p

(3.1) 2 =HI (1+E ),
XL, =X(1+E ),

(3.2)

(3.3)

where y is the surface energy, 3 is the surface area, and
5 p denotes the Kronecker delta function. Here it is im-
portant to note that the surface energy y must be de6ned
as energy per actual (strained) surface area A. For a
liquid, a change of surface area necessarily implies mov-
ing additional atoms to the surface, keeping the atomic
density (per area) and structure of the surface and hence
the surface energy y unchanged. Therefore, By/Bs &=0
and the surface stress tensor g p of a liquid can be re-
placed by a scalar g, which is equal to the surface energy
y and also called surface tension. For a solid surface, the
surface area A can be increased either by creating a new
surface (increasing the number of surface atoms, e.g.,
cleavage or plastic deformation with atoms moving to the
surface) or by elastically straining the solid as a whole
(keeping the number of surface atoms constant). The first
possibility is the same as in a liquid and rejected by the
term y, whereas both right-hand terms must be con-
sidered in the second case.

To make this case of a strained surface a bit more
clear, let us assume that the surface energy per atom
remains unaffected by strain. Since we assume in this
case that the number of atoms at the surface remains con-
stant, this also means that the energy of the whole surface
A y does not change with strain and the surface stress g
vanishes. In this case, the surface energy per area de-
creases proportionally to A ' and the two right-hand
terms in Eq. (3.1) cancel.

There is also a more straightforward way to calculate
surface stress based on the Lagrangian area AL, i.e., the
area of a surface in the unstrained state. We also define a
Lagrangian surface energy yI, i.e., the energy per surface
area in the unstrained state.

and hence

B( W ) ) B)
&ap= 2 L BEap Bsap

(3.4)

Since the Lagrangian surface energy yL does not refer
to a 6xed area in space but rather to a 6xed amount of
surface atoms (unit area in the unstrained state), Eq. (3.4)
immediately shows us that the surface stress vanishes if
the surface energy per atom does not change with strain.
If g p is nonzero, the surface atoms will try to achieve a
state of lower energy by exerting a force onto the bulk
below.

Unfortunately, it is not always clearly stated which of
the two definitions of surface energy y or yl is used.
Whereas the former may seem more natural from the
thermodynamic point of view, yL is more helpful in
atomic-scale considerations and therefore used in Ref. 9.

Since we are dealing with free surfaces (in the sense of
elasticity theory), where the components of stress perpen-
dicular to the surface vanish, surface strain can be fully
characterized by the in-plane components, which are
denoted by greek suKxes. Therefore, the surface stress
tensor g & has two normal components g» and g22 (tak-
ing the x3 axis perpendicular to the surface) and one
face-shear component g&2. As the tensor must obey the
symmetry of the surface, the face shear component van-
ishes for the three low-index fcc surfaces if one axis (here
xi ) is chosen along a close-packed direction in the sur-
face and the remaining two components are equal for the
(111)as well as the (100) surface.

Table II gives numerical results for the surface stress

TABLE II. Surface stress g & (in eV/atom), cohesive and atomic-sphere energy contributions to g &,
and surface relaxation hd»/db„&k (in percent) for the low-index surfaces of Pd. For the (110) surface,
the components g» and g» (for strains s ~ along [110]and [001],respectively) are different. Ab initio
results from Ref. 9 and experimental values of surface relaxation are given for comparison.

Surface
strain direction

(100)
[110]

(110)
[001]

g & EMT, relaxed, total
g & EMT, relaxed, E,
g & EMT, relaxed, EAs
kd ]2 /dbu]k ~ EMT (%)

g & EMT, unrelaxed, total
g aP relaxed g aP unrelaxed ~

gaP relexed gag unrelexed ~

g & ab initio, unrelaxed
Ad»/dbu~~, ab initio (%)
hd»/db„&k, experimental (%)

+0.46
+0.78
—0.32
—1.8
+0.71
—0.25
—0.24

0.0+0.3'
+1 3+1 3

+0.54
+0.60
—0.06
—2.9
+ 1.05
—0.51
—0.47
+ 1.05
—0.8

+2.5+2.5
+3.1+1.5'

+0.70
+0.93
—0.23

—7.3
+ 1.55
—0.85
—0.84

—6+2'
—5. 1+1.5

+0.38
+0.33
+0.05

+0.56
—0.18
—1.18

'Reference 57.
Reference 58.

'Reference 59.

Reference 60.
'Reference 61.
Reference 62.
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g & of Pd calculated with effective-medium potentials.
We have included data on both unrelaxed and relaxed
surfaces to facilitate comparison with the ab initio result
calculated for an unrelaxed surface. All values of g &
are positive, indicating tensile stress. It is obvious that
surface stress increases with the openness of the surface,
i.e., from (111)to (110). This is the same trend as for sur-
face relaxation. In the efFective-medium theory both g &
and relaxation have the same driving force, i.e., the ten-
dency of an atom to increase its surrounding electronic
density towards the optimum (higher) value, which it
reaches in the bulk. The atoms in the more open surfaces
are further from the optimum density, where the E,(n)
function has higher slope and therefore can gain more en-
ergy by inward relaxation or by lateral contraction. '

This effect is counteracted by the mutual repulsion of the
atoms described by the atomic-sphere energy EAs.

Unfortunately, we cannot easily test the accuracy of
our data since there are no experimental results on sur-
face stress of well-defined surfaces and only very few
ab initio data to compare with. Furthermore, ab initio
calculations of surface stress are rather sensitive to com-
putational details and therefore not always accurate. '"
The exact agreement of the stress values for Pd(100) cal-
culated by EMT and an ab initio method (Table II) is cer-
tainly more a coincidence than typical for the accuracy of
either EMT or ab initio calculations. We have also exam-
ined surface stress for other metals and found that EMT
generally tends to underestimate surface stress compared
to ab initio calculations. For most metals investigated
(Pd, Ag, Pt, and Au; ab initio data from Refs. 6 and 9) the
deviation lies between a few percent and 40%, whereas a
more severe underestimation of both surface stress and
inward relaxation of the (110) surface is found for the 3d
metals Cu and Ni (the ab initio surface stress data are
from Ref. 37).

Although it is possible to calculate surface stress for
unrelaxed surfaces using Eq. (3.1) or (3.4) (and we have
done so for comparison with ab initio data), this is a
merely hypothetical number and it can be far from the
respective value of a real (relaxed) surface. In the
efFective-medium picture this is easily understandable
since the driving force for stress is partly accommodated
by relaxation and therefore surface stress is reduced by
relaxation. For a more formal view of this problem, let
us denote relaxation as p, which may be just one number
(first layer relaxation) or include multilayer relaxations
(then think of p as a vector of difFerent relaxation values
and replace the derivative with the gradient symbol in the
following equations). The surface energy then becomes a
function of relaxation and strain y(p, e p) and the relaxed
state is given by

grangian coordinates for simplicity. The surface stress
for the relaxed surface is a sum of two terms

ByI (e p)

~~~p p=p~& 13']

By (p, p)

&P p fixed

ByL, (p E p) &p(e p)
7

c &fixed Qg p

(3.6)

where the first term is the surface stress with fixed
relaxation coordinates p and the second is first order in

(p —p„i,„,z). Thus, if one starts a computation of surface
stress with the relaxed configuration, it is not necessary
to relax the surface after applying strains, as the second
term vanishes. If also the starting con6guration is unre-
laxed, however, the second term introduces a sizeable
di6'erence between relaxed and unrelaxed data, which is
evident in Table II.

As most ab initio values of surface stress published in
the literature have been calculated for unrelaxed surfaces,
it may be interesting whether one can calculate the true,
i.e., the relaxed value, from continuum elastic theory.
Assuming that only the first layer is relaxed and behaves
like a bulk layer otherwise, the result is

g~R g~Rrelaxed unrelaxed

ByI
BG&P relaxed

=& a~3 ~~ l2 ~

Bc~P unrelaxed

(3.7)

B. Surface elasticity

Similar to the first derivative of surface energy with
respect to strain, i.e., surface stress, we can define the
second derivative as

where c kI are the bulk elastic constants in the surface
coordinate system (denoted by the prime), hd&2 denotes
the change of the first interlayer distance due to relaxa-
tion, and the surface is assumed to be perpendicular to
x 3 Table II shows that this is a good approximation for
the close-packed (111)and (100) surfaces, but completely
fails for the [001] stress component of the (110) surface.
This is not astonishing since a single (110) monolayer has
no nearest neighbors along [001]; it therefore cannot be
considered a layer on its own with regard to elasticity.
These conclusions regarding the validity of Eq. (3.7) are
confirmed by comparison with ab initio calculations of
surface stress difFerences for unrelaxed and relaxed
Ag(100) (Ref. 37) and Pb(110).

By(p, e p) =0,
Qp s fixed

(3.5)
a'

cs 3L
(3.&)

defining the relaxation p(e p) as a function of strain.
Therefore, the deviation of unrelaxed surface energy from
the true (relaxed) value is of second order in p, i.e., rather
small.

For the calculation of surface stress we will use La-

and we note that this quantity describes the difFerence in
elastic behavior between a truncated continuum (in the
sense of continuum elasticity theory) and the solid con-
taining a real surface. From the viewpoint of bulk elasti-
city, it must be required that the components a.

3 of bulk
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stress perpendicular to the surface vanish at the surface,
which means that only three independent strain com-
ponents E & (E», E,2, and E22) can be specified. The other
strain components, including the expansion perpendicu-
lar to the surface c,33 are functions of these. This also
means that the interlayer distances freely expand or con-
tract according to the in-plane strains and therefore sur-
face elasticity must be calculated for a surface that is al-
lowed to relax.

Numerical values for surface elasticity of Pd can be
found in Table III (we did not include data related to face
shear c,z since those have little practical significance for
our purpose). The easiest way to interpret these data is
by comparing them to bulk elasticity, if both values are
expressed as energy per atom, i.e., multiplied with the
atomic surface or atomic volume, respectively. It should
be noted, however, that the second derivatives of elastic
energy in the bulk

BE
Capa'p'

BE~pclE~~p ~ =0
(3.9)

TABLE III. Surface elasticity C'p p for the low-index sur-
faces of Pd [Eq. (3.8)] and the corresponding bulk values C",

& &
for zero strain perpendicular to the surface direction [Eq. {3.9)].
Furthermore, the biaxial modulus defined in Eqs. (3.10) and
(3.11) is given. All values are in eV/atom, i.e., referred to the
atomic surfaces or volumes for surface and bulk elasticity, re-
spectively. For symmetry reasons, C»» =C»» for the (111)
and (100) surfaces.

Pd(111) C'p p
Pd(111) C p p

—0.3
21

C»22

+ 1.2
10

C»22

+0.9
31

are not the bulk elastic constants but calculated by solv-

ing for the three dependent strain components (E13, E23,

and E33) and inserting them into the stress/strain ratios
given by the bulk elastic constants [note that we use capi-
tal C in Eq. (3.9},whereas we denote the bulk elastic con-
stants with lowercase c].

Table III clearly shows that the more close-packed sur-
faces have nearly zero surface elasticity compared to the
bulk, which means that the stress/strain ratio of the sur-
face is almost the same as for a truncated elastic continu-
um. The (110}surface is significantly weaker than a cor-
responding bulk layer, especially upon strain in x2, i.e.,
the [001] direction. Obviously this is a consequence of
the trough-and-ridge structure of this surface, which
reduces its resistance to strains perpendicular to the
close-packed rows.

In Table III we also give the biaxial modulus, which we
define as

TABLE IV. Relative changes of surface and bulk interlayer
distance with in-plane strain for the low-index surfaces of Pd.
For the (110) surface, the values for strains c.» and c» (along
[110]and [001], respectively) are different. First- and second-
layer relaxations of the unstrained surfaces (in percent) are also
given.

Surface
strain direction

(111) (100) (110)
[110] [001]

a lnd „/a~.p
Bind /Bs p
Bc /Bc, p=Blnd „,„/Bc p

—0.57
—0.46
—0.47

—0.86
—0.74
—0.75

—0.97
—0.12
—0.42

—1.00
—0.23
—0.59

d ~2 /dbugc

~d 23 /dbulk

—1.8
+0.15

—2.9
+0.21

—7.3
+ 1.10

b 1 BE
2 B =E Cr =0» 22 7 3

C 1111 + 1122 + 2222 /b b b (3.10)

i.e., the second-order increase of energy upon simultane-
ous corn. pression along x& and xz, and the respective
value for the surface

1YS
2 E( ) =CP2=E, O'3 =0

C 1111/ +C 1122 +C2222 /2 (3.11)

Being a sum of surface elastic constants, Y also indicates
hardly any change of elastic constants at the more close-
packed surfaces with respect to the bulk.

Another interesting question concerns the change of
relaxation with strain. As mentioned previously, the con-
dition of a free surface implies that c33 cannot be freely
specified but depends on the three independent strain
components. It is clear that, due to transverse contrac-
tion, the derivative of interlayer distance or of c33 with
respect to in-plane strain c.» or c22 is negative. Table IV
further shows that the interlayer spacing of the top two
monolayers reacts much more sensitively to lateral strain
than in the bulk, whereas the distance between second
and third layer changes less than the bulk interlayer dis-
tance.

Unfortunately, there are no experimental or ab initio
data on surface elasticity to compare with our results.
Thus we cannot determine the accuracy of our calcula-
tions, but we note that good agreement of EMT results
and both bulk and surface phonon data determined ex-
perimentally has been found. ' ' This fact and the
good agreement of the anisotropy of bulk elastic con-
stants and other data mentioned previously indicate that
EMT potentials are a good choice for the calculation of
surface elasticity.

Pd(100) C'p p
Pd(100) C p p

Pd(110) C'p p
Pd(110) C p p

—2.3
16

—5.7
22

+2.0
0

—3.6
8

—5.9
10

—0.3
16

—9.4
24

IV. STRESS AND STRAIN FOR INDIVIDUAL LAYERS:
THE METHOD OF ARTIFICIAL ATOMS

Whereas the derivatives of surface energy described in
the preceding section can be only defined for a surface as
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a whole, there are many applications were data on stress
and elasticity are needed for individual layers. A
straightforward approach to this problem would be
defining stress and elasticity as first and second deriva-
tives of the energies of individual layers. It is clear that
this cannot be done by ab initio total-energy methods,
where the energy cannot be partitioned between different
atoms. In the effective-medium approach, only the
cohesive energy E, can be unambiguously attributed to
individual atoms, whereas the atomic-sphere term EAs
stems from an overlap of electron density tails between
two or more atoms. A conceptually consistent way of
partitioning EAS is attributing the contribution due to
density tails of the other atoms reaching into the neutral
sphere of a given atom to this atom. We have tried this
approach, but the results were very different from the re-
sults obtained with artificial atoms described below. As
the method of artificial atoms yields more direct answers
to our questions, we will use this method and not try to
find some indirect solution based on partitioning total en-
ergy between different layers.

In contrast to ab initio methods, where the properties
of atoms are in principle completely determined by ordi-
nal number, atomic mass, and a few elementary con-
stants, EMT allows us to tailor atoms with specific prop-
erties. For our purposes, we create artificial atoms with
different size but otherwise unchanged properties, i.e., we
multiply all parameters with the dimension of a length
(so) with a size factor S, and inverse lengths (A, ,a., g2)
with S '. The energies EQ and VQ remain unchanged.
The surface energy, the surface stress, and the bulk and
surface elastic constants per atom (not per volume or per
area) remain unchanged if the lattice constant of the
artificial crystal is changed according to S.

If there is more than one kind of atom in a system, we
also have to specify the electron density n0 for the atoms.
In principle we are free to chose whether we want to
scale n0 with S or keep it constant; this does not
change the properties of the pure artificial element dis-
cussed above and depends on the question of interest. As
our aim is mainly in the study of reconstructions (where
the surface atoms are of the same kind as the bulk) and in
segregation involving elements in the same column of the
periodic system, we will keep the number of electrons per
atom fixed, i.e., scale n0.

Having created artificial atoms of different size, we
may now compose an entire layer of atoms with a
different size and calculate the total energy of such a slab.
In the bulk of an unstrained crystal, any change of atom-
ic size will cause stress energy and the energy will be
lowest if the relative atomic size S of the layer equals 1.
If a layer is under tensile stress, as surface layers usually
are, larger atoms will be favored energetically, leading to
a negative slope of E(S) at S= 1 and a minimum of ener-
gy at S) 1. Furthermore, we can judge elasticity of a lay-
er from the curvature of the E (S) curves.

The results of these calculations for Pd are shown in
Fig. 1 and Table V. For the more close-packed (111)and
(100) surfaces, only the first layer is significantly di8'erent
from the bulk, with sizable tensile stress, and a slightly
lower curvature (elasticity) than a bulk layer. The curves

0.08

0.06—

C4

O.O2—
5

0-

-0.02
0.96

0.08

0.98 1 1.02 1.04
relative atomic size S

1.06

0.06—

0.02—

0-

-0.02 ——
0.96

0.08

0.98 1 1.02 1.04
relative atomic size S

1.06

0.06—

0.04—

C4

0.02—

0-

-0.02
0.96 098 1 1.02 1.04 1.06

TABLE V. Most favored atomic size the first three layers
[minima of E(S) in Fig. 1], compared to the respective value
calculated from surface stress and surface elasticity assuming
that only the first layer is di6'erent from the bulk. Furthermore,
the second derivative of energy with respect to the size of
artificial atoms in a single bulk layer is compared to the biaxial
modulus (3.10). Energy and biaxial modulus are in eV/atom.

Surface (100) (110)

S(E;„),layer 1

S(E . )

S(E;„),layer 3

1.014
1.001
1.000

1.029
1.002
1.000

1.029
1.008
1.001

S(E;„),Eqs. (4.1) and (4.2) 1.015 1.037 1.037

—'d E/dS, bulk layer
yb

32
31

20
16

26
24

relative atomic size S

FIG. 1. Total energy as a function of atomic size for a crystal
with a given layer made of artificial atoms with relative size S,
but otherwise unchanged properties of Pd (full line). All other
layers are assumed to consist of normal Pd (relative size S=1).
All lines are parabolic fits through the calculated data (open and
filled circles are for surface and bulk layers, respectively).
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EL T(c ll1 1 c 1111 )(all all )
b s (0) 2

+(C1122 C1122)(all all )(s22 s22 )
b s (O) (0)

+T( C 2222 C2222 ) e22 s22 (4.1)

Using this equation and the fact that g Il= dEL IBc. &
we may calculate the strain offsets c.'

& from surface stress
g & and then get the isotropic strain c' ' of minimum en-
ergy. We then assume that the most favored size for
atoms in the surface layer exactly compensates for this
isotropic strain, i.e.,

1
lIllll ) (011+a,

(4.2)

Table V shows that this approach, i.e., calculating the
most favored atomic size for the topmost layer from sur-
face stress and elasticity, overestimates the difference be-
tween first layer and the bulk. This is mainly due to the
fact that surface stress located in deeper layers adds to to-
tal stress and hence to the difference of most favored size
calculated therefrom. This argument alone cannot ex-
plain the discrepancy for the (100) surface, however,
where deeper layers contribute only little to surface
stress. For further insight to this problem, Table V also
shows F (3.10) and ,'d E/dS for a sing—le layer of
artificial atoms of size S in the bulk. Whereas these two
quantities should be identical if monoatomic bulk layers
could be described by continuum mechanics, Table V
tells us that the deviation is largest for the (100) orienta-
tion. We conclude that the deviation from continuum
elasticity for a single atomic layer adds to the difference
between most favored atomic size calculated from macro-

for the second layers are only slightly shifted to the right,
indicating a small tensile stress and bulk elastic behavior.
On the more open (110) surface, tensile stress is
significant in the first two layers and the first layer is
elastically much weaker (lower curvature) compared to
the bulk.

With the artificial-atom approach, we have now seen
how surface stress and elasticity is distributed between
the different layers, but we have not determined well-
defined elastic constants as we did for the surface as a
whole. There is no possibility to discriminate between
different strain directions —but there are a few quantities
that we can compare between the macroscopic or ther-
modynamic quantities in Sec. III and the layerwise
artificial-atom results.

One of the most interesting results to compare is the
atomic size S(E; ) of the surface layer where the energy
becomes a minimum and which we will call the most
favored size for that layer. This quantity can be also cal-
culated frora surface stress and elasticity if we assume
that only the first layer is different from the bulk and that
its elastic energy E is described by continuum mechanics
with a strain offset c'& due to surface stress. Taking all
elastic constants as quantities per atom (i.e., multiplied
with the atomic volume or surface), we may write the
stresslstrain ratios of the first monolayer as C —C' and
therefore the elastic energy of the first layer becomes

scopic data and the layer-by-layer artificial atom ap-
proach.

V. APPI.ICATIVN TO SURFACE SKGRKGATIGN

There are several quantities determining the difference
between surface and bulk compositions in substitutional
alloys, i.e., surface segregation. If we only want to deter-
mine which of the two constituents A and 8 of an alloy
segregates or if we consider thermodynamic equilibrium
at sufticiently low temperatures, where we need not con-
sider entropy, we may restrict ourselves to the energetics
of segregation. The main contributions to segregation en-
ergy in substitutional alloys are, in this case, (i) the
difference of surface energies of the two elements, (ii)
mixing energy (roughly speaking the difference in energy
between two A Bbond-s and A-A plus B Bbond-s), and
(iii) the size effect, i.e., energetic contributions due to
different size. Whereas the first two quantities are well
understood, we will concentrate on the size effect here.
To simplify our reasoning, in the following we will often
mention the energy changes caused by size effect only,
even though other effects must be taken into account.

In thermodynamic theories of surface segregation, sur-
face stress is often neglected. For equal element concen-
trations in the bulk and at the surface, the only difference
of elastic energy then comes from the difference in elasti-
city, i.e., the surface is assumed to be weaker than the
bulk and its resistance to incorporating larger or smaller
atoms hence lower. This means that substitutional im-
purity (minority) atoms, whether they are larger or small-
er than the majority atoms, will always tend to segregate
to the surface to reduce the strain energy caused. by the
impurity. This effect may be counteracted by surface en-
ergy differences, mixing energies, and entropy. Devia-
tions from this symmetry with respect to atomic size
difference come from nonlinear elasticity, but they do not
change the situation qualitatively. ' '

Whereas this simple approach does not predict any size
effect in a substitutional disordered alloy of two atomic
species with different size and =50%%uo concentration, the
situation changes qualitatively if we include the tensile
stress usually present at surfaces. It is clear that tensile
surface stress will favor larger atoms at the surface, a fact
directly reflected by the most favored atomic size
S(E;„)described in Sec. IV.

For a more quantitative treatment, let us consider a
kind of mean-field approach, i.e., assume that the atomic
sizes of all atoms within a layer are equal, neglecting
strain fields of individual atoms. This is a good approxi-
mation for a disordered system and concentrations
around 50%. We may then directly employ our study of
individual layers composed of artificial atoms and take
the results in Fig. 1 as the size effect of segregation ener-
gy.

As Fig. 1 shows, the total energy of a system can be re-
duced by moving larger atoms to the surface, assuming
that the elastic energy in the bulk does not change. This
assumption is valid around 50%%uo bulk concentration; for
other bulk concentrations bulk strain will be caused by
moving missized atoms into the bulk.

Considering that we are dealing with elastic energies,
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+segr VNi 7Pt+ Esize eff (5.1)

where the surface energies yN; and ypt have to be taken
as quantities per atom. We define E„„,s=E(0.945)

E(1.055—) for a given layer as the difference between
the energy E(S) of the layer made of smaller atoms
( —5.5%) and larger (+5.5%) atoms.

For the (110) surface, where both the first and the
second monolayer contribute substantially to the size
effect, we must know the actual concentration profile to
determine the size effect in both monolayers. This can be
done by introducing the effect of chemical order to the
energetics, but for simplicity we take the result of such
calculations here, which yield a strongly oscillating segre-
gation profile, i.e., alternating layers of Pt and Ni enrich-
ment. " ' ' We therefore assume that any Ni enrichment
in the first monolayer is accompanied by Pt enrichment

the energies associated with the surface tension are quite
substantial (Table VI): If we assume Pd atoms with a size
difference of 11% (+5.5% with respect to the bulk) we
get for the (111)surface a size effect energy of 0.09 eV per
atom. For the (100) surface the value is even larger due
to the higher surface stress, but it is lower for the (110)
surface because the surface layer is elastically much
weaker and because the surface stress is distributed be-
tween two layers.

As Pd is situated between Pt and Ni in the Periodic
Table and as the size mismatch between Pt and Ni is
11%, we can directly employ these data on the study of
the size effect in segregation in the Pt-Ni system. The
normal Pd atoms stand for the average bulk concentra-
tion of 50% Pt and Ni and the size difference of +5.5% is
the difference between these and pure Pt or Ni, respec-
tively.

With the assumptions described above, we may write
the segregation energy for the substitution of a Ni atom
by a Pt atom as a sum of surface energy and size effect
contributions

of the same amount in the second layer and therefore the
total size effect contribution can be calculated as

+size eff +size eff 1 +sizeeff2 (5.2)

Results of these calculations can be found in Table VI.
Since the difference of surface energies between Pt and Ni
is small, we see that the size effect plays an important role
in this system. For the (111) surface, one would predict
Ni segregation from the difference of surface energies, but
the size effect favors the larger Pt atoms due to tensile
surface stress. This leads to weak Pt segregation in our
calculation, but we should note that any increase of the
surface Pt concentration will also increase the tensile sur-
face stress due to the higher surface stress of Pt compared
to Ni or Pd (Ref. 9) and thereby enhance the effect. Pt
segregation on Pt Ni, (111) surfaces is confirmed ex-
perimentally.

For the (100) surface we find Ni segregation since the
size effect is not large enough to reverse the surface ener-

gy difference. This value cannot be directly compared to
experiment, however, since Pt„Ni, , (100) surfaces are
known to reconstruct at Pt concentrations above a few
percent. ' ' Since these experiments show that the
tendency to reconstruct increases with the amount of sur-
face Pt and the reconstructions lower the surface energy,
Pt segregation will be favored by the reconstructions.
Unfortunately, reconstruction energetics are not well
known, but on the order of magnitude of 0.05 eV per Pt
atom. We therefore cannot decide about the resulting
energetics and predict whether Pt or Ni segregates. Ex-
perimentally, Pt segregation is found on all
Pt„Ni, „(100)surfaces studied so far.

On the (110) surface the resulting size effect is smallest
due to the elastic weakness of the first monolayer and the
counteracting effect of the second; therefore strong Ni
segregation should be expected. This result as well as the
Pt enrichment in the second monolayer mentioned earlier
have been confirmed experimentally.

TABLE VI. Surface energies and their differences for Pt and Ni low-index faces from self-consistent
calculations, and size effect energy in the first two monolayers E(0.945)—E(1.055) for Pd atoms with

5.5%%uo size differences, according to the size mismatch of Pt and Ni on ( =50%) PtNi alloy. Size effect
energies calculated from interpolation between Pt and Ni (Ref. 52) are also included. The segregation
energy AE„g, favors Pt segregation if positive, otherwise Ni segregation. All values are in eV/atom
and all surfaces are assumed to be unreconstructed for the calculations.

(100)

(110)

Theory
VNi

0.86'
0.88"'
0.90"

0.99'
1.06'

1.47'

XPt

0.95'
0.98b

0.91'

1.18'
1.21'

1.65'

3 Ni 7Pt

—0.07
(average)

—0.17
(average)

~Esize eff 1

0.09

0.15g

0.11
0.13g

0.07
0.09g

~Esize eff 2

0.05
0.06g

~Esegr

+0.02

—0.06

—0.16

Experiment
segregating

element

Pt

pth

Ni

'Reference 41.
"Reference 63.
'Ferromagnetic.
Reference 37.

'Reference 6.
Reference 9.
gReference 52.
"Reconstructs.
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We do not claim quantitative exactness of the segrega-
tion energies calculated here; both surface energies and
the approximation of the size effect by artificial big and
small Pd atoms are not suKciently accurate. Neverthe-
less, the trend of different segregating components —Pt
on the more close-packed and Ni on the more open
surface —has been well described by the balance between
surface energy differences and size effect. This confirms
the inhuence of the size effect caused by surface stress for
the face-dependent segregation of Pt-Ni alloys, which has
been proposed earlier. ' We also note that the size
effect energies from Ref. 52, which have been obtained by
interpolation between tight-binding results for Pt and Ni,
are in reasonable agreement with our calculations
presented here, in spite of the totally different approach
(Table VI).

VI. CONCLUSIONS

We have used effective-medium potentials to study sur-
face stress, surface elasticity, and related phenomena for
low-index surfaces of fcc metals and given data for Pd.
In agreement with other studies, we have found tensile
surface stress increasing with the openness of the surface.
In the efFective-medium theory, surface stress can be ex-
plained by the tendency of atoms to move towards their
optimum electronic density.

The second derivatives of surface energy with respect
to strain, which describe surface elasticity, were also
studied. It was found that the more closely packed sur-
faces have essentially the same elasticity as a truncated
continuum, whereas the (110) surface is significantly
weaker, especially for strain along [001].

For attributing surface stress and elasticity to individu-
al atomic layers, we have introduced the method of
artificial atoms. Using artificial atoms with different size,
but otherwise the same properties as the normal material,
we can probe stress and elasticity of individual layers.
For the (111) and (100) surfaces, the second monolayer
can be regarded as bulklike except for its slight tensile
stress, whereas significant stress was found in the second
monolayer of a (110) surface. On all surfaces, significant
difFerences between surface and bulk elasticity (with re-
gard to compression or expansion) are found in the first
monolayer only.

We have also compared several data calculated by
efFective-medium theory with continuum elasticity theory

applied to individual atomic layers. It was generally
found that continuum elasticity is a good approximation
for the close-packed (ill) oriented layers, whereas it is
less accurate for (100) and completely fails for (110) layers
strained along [001]. One remarkable exception is the
dependence of interlayer distance between the first and
second surface layers on lateral compressive or tensile
strain. This quantity, i) lnd, z/Be &, is significantly larger
than the respective bulk given by elasticity theory even
for close-packed surfaces.

The results of the method of artificial atoms can be
directly used to study the size effect in surface segrega-
tion. We have shown that the face-dependent segregation
of Pt-Ni alloys is due to the size effect energy, which is
caused by surface stress and the surface elasticity. For
the more closely-packed surfaces (111) and (100), tensile
surface stress significantly favors the larger Pt atoms in
the first monolayer, whereas the effect of surface stress is
weak on the (110) surface, where stress is distributed be-
tween the first and the second monolayer and the size
effect in the first monolayer is reduced by surface elastici-
ty.

A problem similar to surface segregation is the forma-
tion of surface alloys, which has become a well-
established phenomenon in recent years. Again we might
expect that surface stress and surface elasticity play an
important role since they will usually favor atoms larger
than the substrate atoms to be incorporated. Indeed, re-
cent studies have shown the formation of surface alloys in
such cases with even very large size difference, such as
Pb/Cu (Refs. 54 and 55) and Na/Al, whereas surface
alloys with atoms smaller than the bulk material are rare.
We therefore conclude that the stress and size effects
should be always kept in mind when dealing with chemi-
cally heterogeneous surfaces.
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