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Charging efFects and increasing transparency in double-barrier structures
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We present a dynamical analysis of charge accumulation eKects during tunneling in a double-
barrier structure using a self-consistent treatment of the electron-electron interaction. Resonance
peaks seen in typical transmission coefII.cient spectra for noninteracting electrons appear shifted to
higher energies depending on the magnitude of the charge density in the well, as well as on the
spatial dependence of the wave function describing the resonances. The total charge in the well
exhibits a well-defined Coulomb staircase for the case of sharp resonances, and only a smoothly
increasing behavior for more open systems.

The observation of periodic conductance oscillations in
systems where electrons are confined in narrow channels
or small quantum dots and partially isolated by poten-
tial barriers has stimulated the work of many authors.
Important experimental and theoretical efForts have been
made to understand the properties and explore the po-
tential applications of such systems. The physical di-
mensions of these structures have reached levels such
that their capacitance C can be as small as 10 F.
One then has a situation where the Coulomb charg-
ing energy e j2C ( 1 meV) is larger than the av-
erage single-electron energy level spacing Ae ( 0.1
meV), and for sufficiently low temperatures one has
Le ) k~T. Under these conditions, it has been shown
that the interplay between Coulomb interaction and en-

ergy quantization plays a decisive role in the explanation
of many observations. Spectroscopic studies of individ-
ual microstructures via electron transport, and single-
electron capacitance, have been carried out with great
success. Possible applications have also been suggested,
through the development of "electron-turnstile, " or
"electron pump" devices, where the potential barriers
are manipulated to allow the passage of single electrons
at a desired rate.

Different aspects of this problem have been studied
theoretically using various techniques. Iz a seminal
paper, Meir et al. used an equation of motion for the
Green's function, to study the temperature dependence
of the conduction peaks. Their work is based on an An-
derson impurity model with the site coupled weakly to
ideal noninteracting leads, the electronic interaction de-
scribed by a Hubbard term, and the use of a generalized
Landauer-type formula.

More recently, Palacios et aI,. have studied the con-
ductance of such systems in a magnetic field using a
Keldysh framework. Nonlinear transport properties of
quantum dots have been studied by Weinmann et al.
using a master equation approach for the time evolution
of the occupation probabilities of many electron states.
Also, Pfannkuche and Ulloa have explored the tunnel-
ing selection rules introduced by electronic correlations.

These approaches rely on the solution of an interact-
ing system with hard/closed walls, which is then opened
to the leads via small overlap matrix elements included
within perturbation theory. Here, the coupling to the
leads is typically considered fixed, rather than obtained
after the self-consistent readjustment of the system to
the additional charge and potentials. These approxima-
tions, although believed to be correct for long-lived and
isolated resonances (in the so-called Coulomb blockade
regime), are expected to break down for the case of more
transparent walls or large bias voltages.

In this paper, we propose an intuitive dynamical ap-
proach to study charging effects on resonant tunneling in
a double barrier structure, using a self consistently -de-
termined potential to take into account electron-electron
interactions in the well. We treat an open system and cor-
respondingly study the transmission coeKcient as a func-
tion of energy for the interacting system, using a tight-
binding representation. In this fashion, both the coupling
to the leads and the interaction effects are treated on a
more equivalent footing, as the charge trapped within
the well readjusts the efFective potential and this in turn
affects the transparency of the system. In particular,
we find. that the transmission coeKcient exhibits reso-
nances similar to the noninteracting single-electron case.
As one would expect intuitively, these resonances are
shifted upwards in energy but with a shift not given by
a simple constant, as the classical charging model would
predict. ' In fact, the shift is closely related to the spatial
extent and corresponding charge distribution of the spe-
cific resonant wave function. We further find that this
shift slowly decreases for large resonance (or electron)
numbers, as one would expect for a free-flowing Fermi
quasiparticle, as the total accumulated charge continues
to increase but only slowly for higher Fermi energies.

We should mention that a somewhat similar framework
has been developed by Presilla et al. to study the time
evolution of the charge stored in a three-dimensional po-
tential well and its effect on the transmitted and reflected
fluxes. Also, Orellana et al. have studied possible
bistability in the presence of a magnetic field, and Zhang
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et al. have studied the apparent plasmon-coupling sig-
nature seen in resonant-tunneling experiments. The
method we present here is qualitatively similar to some of
these, and is conceptually and numerically simpler than
the Keldysh-derived calculations.

In what follows, we describe our formalism and present
a few characteristic results. We consider the problem
of transmission of an electron incident with energy E
on a region such as a quantum dot or a double-barrier
structure, where electron-electron interactions are im-
portant. The leads are assumed to be well described
by a quasiparticle Fermi gas, as the high level density
there yields a much more effective screening than in the
well. is i4 [Notice that this approximation should be ap-
propriate for the lateral transport experiments in quan-
tum dots. However, tunneling via two-dimensional
(2D) accumulation layers in double-barrier heterostruc-
tures would give rise to other interesting effects, as dis-
cussed recently. ] This central region is limited by left
and right potential barriers of height Pp and Pl„respec-
tively [see inset Fig. 1(b)].

Using a tight-binding approximation with lattice sites
separated a distance a, we can expand the wave func-
tion of the system as 4(x) = P, c,P;(x), where P;(x)
is a local orbital centered on site i, c; is the probability
amplitude for finding the electron on this site, and the
sum is taken over all lattice sites. Substituting in the
Hamiltonian, we obtain an equation for the coefBcients
c;, given by

bias is then the Fermi energy in the leads/reservoirs).
This results in all levels below E to be occupied in equi-
librium. In this approach, charging effects within the in-
teraction region represent an additional potential at each
site which inhibits further electron passage. This yields
the expected Coulomb blockade effects whenever charge
accumulates in the well and readjusts the energy level
structure. On the other hand, in the region outside the
barriers, the non-interacting-electron tight-binding dis-
persion relation remains valid. , E = Eo —2tcoska, so
that one can relate the incident energy with the propa-
gation wave number outside the well k.

For convenience, we measure all energies in units of
t = 1 meV, and lengths in terms of a = 200 A. , in such
a way that I = 10 corresponds to a typical experimental
"device" in GaAs nanostructures ( 0.2 pm). We then
get Ae 0.1 meV, for the average energy level spacing,
similar to the values discussed in experiments. Equation
(1) is solved for fixed Pp, Pl„and L values, with the
iiiteraction term v, given by (2), and incorporating the
information on energy level occupation via Eq. (3). For
convenience of computation, we assume particles incident
from the right at x = Ia, being transmitted to the left at
x = 0. The transmission amplitude to is fixed to unity, so
that we calculate the incident amplitude ip [see inset Fig.
l(b)]. In this case, the transmission coefficient T is given
by T = 1/~ip~ and the following expression is obtained
from the boundary conditions,

E c; = Eo c; —t c; i —t c;+i + v; c, ,

~e'*"~ —1~'

~~I.+i —cL,+2e
(4)

where Eo is the on-site energy, t is the hopping integral,
and the last term represents the Coulomb interaction.
(We have made the usual tight-binding nearest-neighbor
approximations. A continuum differential equation is
also tractable, although it makes the numerical computa-
tion somewhat more involved. ) We assume here that v,
is given by a site-Hubbard expression in the interacting
region between the barriers, so that

v; =Up, , 1&i&L —1, (2)

vL, = Pl. , and vp ——Pp, and the distance between bar-
riers is La (with L an integer). Here U is a parameter
measuring the strength of the local interaction (and in
experiments depends on the structural confinement, and
potential gate screening effects, according to the specific
system implementation). The electronic density at each
site i is given by

~'(E) = lc'(E') I' g(E') «'
0

where g(E) E i~z is the density of states in 1D. It
is important to emphasize that the interaction term is
a function of the incident energy E and has to be eval-
uated at each step of the calculation. Notice that for
transport in the linear regime, the incident energy is the
excess kinetic energy of the electrons &om the reservoir,
measured with respect to the local mell potential, which is
typically controlled in experiments via gates (and at zero

where the c, coeKcients are then normalized to unit
transmission.

The solution of Eq. (1) is carried out starting from
initial values co = to = 1, and c q

——toe'", and after
back substitution we obtain the remaining coefBcients c,.
for each value of the energy. The transmission coe%-
cient T is then calculated from Eq. (4), as well as the
c; coeflicients (normalized to unit incidence), such that
~c,(E)

~

= T(E)~c;(E)
~

. The sharp E dependence of T
and the integrand in (3) requires the use of adaptive inte-
gration techniques, but it is easily handled recursively.

We should make some comments on the approxima-
tions. First, notice that Eqs. (1) to (3) can be generalized
to include higher-order terms in the interaction, resulting
in an "extended Hubbard model" with exchange and cor-
relation terms (similar to a set of Kohn-Sham equations
in the local density approxiination). Our main purpose
here is to show that the approach is workable and yields
sensible results. The possible inclusion of those terms
and specific geometries would allow direct comparison
with experiments.

Moreover, notice that an implicit assumption in our
treatment is that one can allow the system to reach
a steady-state configuration (since we iterate to self-
consistency). This approximation gives the proper in-
tuitive results and is believed to be correct, as long as
one is not interested in time-dependent effects (where
out-of-equilibrium transient configurations would be im-
portant), or where coherent coupling between the well
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states and the leads is relevant (which would be the case
at extremely low temperatures, where a Kondo-like res-
onance appears at the Fermi level). 2

Figure 1(a) shows the eff'ect of a small interaction con-
stant (U = 0.5) on the transmission coefficient as a
function of incident energy, for a case where the barrier
heights are sufficiently large (Pp

——Pl. = 5) so that the
resonances are well isolated (especially those at low ener-
gies). It is clear that the resonances are shifted to higher
energies and have larger widths than in the noninter-
acting case. The shift is accompanied (or produced) by
the accumulation of charge in the well, as shown in Fig.
1(b). In fact, the total electron density in the well shown
there, p(E) = P . pz (E), increases in a nearly stepwise
fashion in multiples of the elementary charge, whenever a
new resonant state passes below the incident energy, and
remains nearly constant until the next resonance. This
picture of sequential charging of the well, as the local
potential drops with respect to the external reservoir, is
of course in agreement with the classical ideas of dot or
well charging used to explain the Coulomb blockade. '

It is also clear that for the last few resonances, which
are not as sharply defined (near E = 2), the total charge
increases by less than one electron at a time, and also
exhibits a gradual increase with energy in that range (no
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The gradual change of the charge is characteristic of

the case when the resonances are not sharp. A more ex-
treme example of this is shown in Fig. 2(a), where for
Po

——Pl, = 1 one finds strongly overlapping resonances
even for the noninteracting case. The charge density in
this case is only vaguely reminiscent of the steplike struc-
ture, and is well below the expected value of 6 after the
first six resonances shown in that figure.

In Fig. 2(b), we show a case where the length of the in-
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FIG. 1. (a) Transmission coefficient as a function of energy
for the case L = 10& Pp = PL, = 5& showing the efFects of
interaction with U = 0.5 (solid line). The noninteracting
case U = 0 is also shown (dashed line). (b) Total charge
density accumulated in the well as a function of energy. Inset:
schematic representation of the model and notation.
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FIG. 2. (a) Interaction eff'ects on the transmission coeffi-
cient for L = 10, Pp ——Pl, = 1, and U = 0.5, and corre-
sponding charge density, as a function of energy. (b) L = 30,
Pp = PI. = 2, and U = 5/3. Solid curves include interactions;
dashed curves do not. (c) Resonance peak shifts versus the
peak number for the case in (b). The dashed line (o) denotes
the "ideal" shift, Up; dotted line has slope U/L. The solid
line (~ ) shows actual calculated shifts.
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teraction region is larger, so that the resonances are quite
sharp and close in energy (L = 30, Po ——Pz, = 2). For
this case, we have also used a larger value of the effective
interaction constant, U = 5/3, and the resonance shifts
are proportionally larger, for the most part. Here, the
computation time increases significantly, as the pertur-
bation given by the interaction is larger and finer sweeps
of the energy have to be used to obtain reliable and well-
converged results. This figure shows eight shifted peaks
for E & 1, in the same region where ten resonances exist
for the noninteracting system. The larger shifts are of
course produced by a larger value of U, although the de-
tails are related to the charge profiles: One would antici-
pate that as the first resonant quasibound state is below
the incident energy, the charge would accumulate with an
envelope function which approximately follows a squared-
sine profile. [This follows if one considers that the lowest
trapped state in a quantum well has only nodes at the
ends of the well. The finite lifetime associated with the
resonance width changes the wave function profile only
slightly, especially for high barriers or sharp resonances.
One can verify that this is indeed the case by inspection
of the resulting c; coefBcients obtained in our solutions
(not shown). ] However, as more charge accumulates in
the well, the charge is distributed more homogeneously
and the peak shifts become proportional to the charge
number.

One can analyze in more detail the different resonance
shifts. One would expect that each shift is approximately
equal to Up, where p = L P,. p; is the value of the
average charge density at the energy of tIre shifted reso
nance. This assumes that the charge is distributed homo-
geneously in the well, which would in turn result in the
bottom of the well being shifted upwards equally at every
site/position. As we see in Fig. 2(c), this is not what one
obtains [the peak shifts shown are for the case in Fig.
2(b)]. The difFerence between the calculated shift (solid
line and symbols) and the expected value given above
(Up) is first small for small total charge values, but it in-
creases for larger energy or charge values. Notice, more-
over, that the calculated shift is at first higher than the
estimated average value. This is due to the piling up of
the charge in the central portion of the well, as discussed
above. The larger value of the Coulomb "charging" en-
ergy is then a direct consequence of the microscopic de-
tails of the electronic wave function. Possible evidence of
this behavior is seen in the capacitance measurements of
Ashoori et at. , where the first few "charging peaks" are
spaced a bit more than subsequent ones. (The identifi-
cation of resonance peaks with the magnetocapacitance

features in experiments should be valid for narrow res-
onances, as they would evolve into the "addition spec-
trum" of the true eigenstates of a closed system. )

We have also noticed in all the cases studied that the
shift is always much smaller than multiples of U/L [shown
as dotted line in Fig. 2(c)], as the classical model pre-
dicts for U )) Ae. In fact, it is evident in Fig. 2(c) that
there is an overall decrease of the calculated resonance
shift for higher resonances (or higher energy). This is a
more subtle consequence of the shape of the wave func-
tions producing the shifts in the calculation. As the en-
ergy of incidence increases and the resonances begin to
overlap more and more, the charge in the well no longer
increases in a steplike fashion, as shown above. This is
due, in the language of wave functions, to the fact that as
the barriers are effectively more transparent at that en-
ergy, the fractional weight of the wave function trapped
in the well is smaller. Correspondingly, the change in
the local potential decreases relatively to the incident
energy and so do the shifts. Notice that although we use
a constant value of the on-site repulsion energy U, the
self-consistent calculation of the resonant structure effec-
tively reduces the importance of the interaction, via the
decreasing wave function weights. This approach, there-
fore, describes an efFectively decreasing interaction for
states closer to the top of the barrier, as one would expect
on physical grounds: For sufIiciently transparent barriers
(or high energies here), the transport through this region
would become ideal (and yield the proper Ohmic limit
when dissipation is included ).

In conclusion, we have studied the problem of charg-
ing in a double-barrier structure. The repulsive inter-
action arising from the charge accumulation shifts the
resonance structures in the transmission coefBcient de-
pending on the microscopic details of the resonant wave
function. The shifts decrease for increasing transparency
of the barriers. Our approach is intuitive, computa-
tionally simple, and yields the expected limiting results.
We are currently in the process of studying the effects
of barrier asymmetry (found to be important in many
experiments), ' and finite bias. We will report these
results elsewhere.
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