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The bound states of plasmons, of phonons, and of coupled plasmon-phonon modes at neutral donors
in bulk semiconductors and in semiconductor quantum-well systems are studied here. The binding is
caused by the virtual excitation and deexcitation of the donor between its ground and first excited elec-
tronic states by the collective excitation which gives rise to an efFective attraction between the collective
excitation and the donor. The interaction of coupled plasmon-phonon excitations, which are important
in compound semiconductor systems, with electrons and also the interaction of plasmons with electrons
have been derived in the long-wavelength limit of the random-phase approximation. These interactions
are used to derive expressions for the binding energies of these collective excitations to neutral donors.
In the case of plasmons in bulk systems we find a strong dependence of the binding energy on carrier
density. In quantum-well systems, the dependence of the binding energy of the coupled plasmon-phonon
modes on the well width is found to be particularly rich. The present results are in generally good ac-
cord with available experimental data for quantum-well systems.

I. INTRODUCTION

The plasmon collective excitations of semiconductor
quantum-well systems have attracted considerable atten-
tion. In recent Raman scattering experiments Gammon,
Shannabrook, and Musser' have suggested that they have
observed an unusual density-dependent state in
GaAs/Al„Ga, „As quantum-well systems. Using a
macroscopic phenomenological approach they have sug-
gested that these states involve plasmons bound to neu-
tral donors and coupled to the longitudinal-optical (Lo)
phonons of this system. Nevertheless, neither a full
quantum-mechanical formu1ation of this problem nor
quantitative calculations have been done in order to iden-
tify these states microscopically.

We address this problem in both bulk and quantum-
well systems. We propose that the physical mechanism
giving rise to these bound states is similar to that involv-
ing bound states of LO phonons at neutral donors in bulk
semiconductors. Such states have been observed for a
number of donors, ' and have been studied theoretical-
ly. ' ' The physical mechanism involved is that the LO-
phonon interacts with the shallow bound electron of the
neutral donor and causes transitions between its ground
state and its first excited state. Virtual excitation and
deexcitation of these states gives rise to an attraction of
the phonon to the donor and can give a dynamically
bound phonon state there.

In the present work we give a full quantum-mechanical
formulation of the bound states involving plasmons and
coupled plasmon —LO-phonon modes in bulk and in
quantum-well systems. The interactions between
plasmons and carriers is less well understood than that of
LO phonons with carriers. Here we obtain this interac-
tion as well as that between coupled plasmon-phonon

modes and carriers from the long-wavelength limit of the
random-phase approximation. Genera1 results for the
binding of these collective excitations at neutral donors
are developed, and detailed results are given for both the
bulk and quantum-well cases.

Among the interesting results that we obtain are that
the binding energy of plasmons to donors in bulk systems
has a strong dependence on carrier density, and that the
binding energy of the coupled modes in quantum-well
systems has a rich structure as a function of well width.
The results for the overall magnitude of the binding, for
their well width dependence, and for their carrier density
dependence are in good overall agreement with the exper-
imental results of Gammon, Shanabrook, and Musser. '

This allows us to confirm that the states observed by
these authors are indeed states of plasmon-phonon cou-
pled modes which are bound dynamically at the neutral
donors.

This paper is organized as follows. In Sec. II, we treat
the binding of plasmons and coupled phonon-plasmon
modes to neutral donors in the bulk. The corresponding
results for quantum wells are derived in Sec. III. Finally,
detailed results for quantum-well systems are given and
are compared to experiment in Sec. IV.

II. THE BULK CASK

In this section, we will generalize the method of Ref. 4
to derive expressions for the binding energies of several
collective excitations to neutral donors in the bulk. We
begin with the derivation of the binding energy for a
plasmon at a neutral donor. This derivation will serve as
the basis of our generalization to the quantum-we11 case.
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A. P1asmons ~ ~ ~ ~ I + Q).........e

The interaction between bulk pl asmons and free elec-
trons is represented by a Hamil tonian of the form

H;„,= g yp)(q )a~a~ (b +b +
)

K, q

(2.1)

~ . - + &Mf~
—Q( + &Vie)

+ ~~ + ~— — - ~ + SAR/e

where a ~ ' ' and b z ' ' are the creation (annihilation)
operators for the electrons and plasmons, q and K are
three-dimensional wave vectors, and y~~(q ) is the
electron-p 1asmon coupling which we wi 11 derive below

Because we are interested in the interaction between
bulk plasmons and bound electrons, we convert Eq. (2. 1 )

to the basis of the bound electron wave functions denoted
by sand r[V, (r)=(r~s)=(ra, +~0)j:

H;„, = g y„~(q )g„(q)a,+a, (b +b +
)

s, t, q

where g„(q ) = fd r +,*(r )exp 'q'4', (r).
In the context of phonons, given an interaction of the

form Eq. (2.2), Monecke et al. have shown that a bound
state can be formed, and they have derived an expression
for the binding energy by using second-order degenerate
Wigner-Bril louin perturbation theory and solving a set of
coupled integral equations. The binding energy for a
p lasmon is

FIG. 1 . Feynman diagrams representing (a) Eq. (2.4) and (b)
Eq. (2.8). The dotted line is the bare Coulomb interaction, the
ellipse is the electron polarization, the shaded circle is the
electron-plasmon coupling, and the dashed line is the plasmon
propagator. The filled square is the electron —LO-phonon cou-
pling, the filled circle the electron-coupled mode (lower branch)
coupling, the jaggedly shaded circle the electron-coupled mode
(upper branch) coupling, the squiggly line the phonon propaga-
tor, the long dashed line the lower branch coupled mode propa-
gator, and the jagged line the upper branch coupled mode prop-
agator.

y, ( q ) =Qv ( q )A'a)p, /2, (2.5)

v (q) 263I i

1 —~(q, co)v(q)
=v(q)+ ~y, (q)~P& g( 2 2

)

where m. ( q, co ) is the polarization operator,
co~~

=V 4irne /( m, eo ), n is the electron number density,
and m, is the effective mass of the electron . Here, we wi 11

neglect the dispersion of the p lasmon frequency
co

&

=co &( q ). Solving Eq. (2.4) for y i( q ), we find

d K
E„—( irido, ) ( 2ir )

(2.3)

where E„ is the energy difference between the s and t
bound electron states, and co

&
is the plasmon frequency.

Even though Eq. (2.3) has been derived in the context of
plasmons, it is quite general and can apply to other exci-
tations like phonons or coupled plasmon-phonon modes.
To evaluate this expression for the p lasmon case we must
derive the electron-plasmon coupling.

The approach we employ to calculate y &( q ) is based on
the methods of Lundqvist '"' and DuBois . %'e write the
screened electron interaction as calculated in the long-
wavelength limit of the random-phase approximation as
the sum of the bare Coulomb interaction and a p 1asmon-
mediated interaction, and then solve this equation for the
one unknown, the electron-plasmon coupling strength.
Our equation is illustrated in Fig. 1 (a), where the term in
the numerator on the left-hand side of the equation (and
the first term on the right-hand side of the equation) is
the bare Coulomb interaction, v ( q )=4ire /( Eoq ) where
E'p is the 1ow-frequency dielectric constant . The term in
the denominator in Fig. 1 (a) is the dielectric function, and
the second term on the right-hand side is the product of
the square of the electron-plasmon coupling and the
p lasmon propagator. We can write the equation in Fig .
1(a) as

2ESt 56 e

E', —(g~, )' 656 1 as
(2.6)

where a~ is the Bohr radius of the hydrogenic donor elec-
tron. One of the salient features of this equation is that it
has a strong dependence on the difference E„—( irido~~ ) .
By changing the electron number density, one can change
not only the magnitude of the binding energy but also the
sign. This is in contrast to the binding energy of a LO
phonon bound to a neutral donor,

2Esi 56 e @~Lo ~so)
E„—( &~Lo ) 656 1 as coLo

(2.7)

where such tuning is not as simple because the phonon
frequency is not strongly electron density dependent . In
Eq. (2.7), co, o is the LO-phonon frequency,
co fo coLo 1/ e„/eo is the transverse-optical (TO)-phonon

where we have used the long-wavelength limit of the po-
larization operator, ir( q, co ) =nq /( m co ) . Equation (2.5)
is equi val ent to the result obtained by Lundqvist by ex-
amining the structure of the density-fluctuation propaga-
tor near its poles. Note that in the long-wavelengt™ t
the electron-plasmon coupling has the same q dependence
as the Froehlich electron —LQ-phonon coupling.

Knowing y„,(q) we can now evaluate Eq. (2.3) for the
bound-state energy of a p lasmon at a neutral donor in the
bulk,
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frequency, and e is the high-frequency dielectric con-
stant. Note that the overall structure of Eqs. (2.6) and
(2.7) is similar.

u(q)]]ico ](co+—co2TQ)z

y+(q) '=+
2 — 2 2 — 22co+(co+ co )(co+ coLQ )

(2.12)

B. Coupled phonon-plasmon modes

where uph(q)=yph(q)D(co) is the phonon-mediated elec-
tron interaction, yph(q) is the Froehlich electron —LO-
phonon coupling,

2277e AQ) Lo 1 ].
]. /2

(2.9)
q

D (co ) =2coi Q/A/(co co„o) is the —phonon propagator,
y+(q~~ ) are the electron-coupled mode couplings, and co+
are the coupled mode frequencies. v (q) and ir(q, co) have
the same meanings as in Eq. (2.4). This equation can be
rewritten as

2'+ 2'y+(q)l', , + ly (q)l'
i]i(co —co+ ) fi(co co )—

[v(q)+u h(q)]~(q, co)[u(q)+u h(q)]
1 —m.(q, co)(v(q)+uph(q))

(2.10)

Equation (2.10) can now be solved to find co+ and
y+(q). The energies of the coupled modes ]]iso+ are found
from the energies at which the right-hand side diverges.
This gives

Co+ ( Co i Q +Cop] ) /2+ ~( coi Q +
Cop] ) 4Cop]COTQ /2

(2.11)

Using this result, we arrive at

In compound semiconductor systems, the plasmons
and LO phonons couple to each other, and it is the cou-
pled modes that become bound to the neutral donors. To
calculate these binding energies, we can again use Eq.
(2.3), but we must derive the coupled mode energies and
the expressions for the coupling between the electrons
and the coupled modes.

The strategy we use to calculate these quantities is
similar to the technique used above for the case of the
pure plasmon modes. We write the fully screened elec-
tron interaction (with the phonon mediated interaction
included) as the sum of the bare Coulomb interaction, the
bare phonon-mediated interaction, and the coupled-
mode-mediated interactions, and then solve the resulting
equation for the coupled mode energies and for the
electron-coupled mode coupling. This equation is illus-
trated in Fig. 1(b) and can be written

u(q)+u h(q)

1 —m(q, co) [u (q)+ v h(q) ]

2'+
v(q)+vph(q )+ ly+(q)l'

i]1(co —co+ )

2'
+ly (q)l'

A'(co —co )

Therefore the binding energies of the coupled modes at
neutral donors in the bulk are

2E l g6 e & fico@](CO+ COTQ )=+
E

&

—(Pleo+) 6~61 aiI co+(co+ co )(co+ coLQ)

(2.13)

One can see that the binding energies for the coupled
modes have much more structure than those of the pure
modes. In particular the factor co —cozo in the numera-
tor has the potential to produce kinks in the electron-
density-dependent curve since co = co ( n ) passes
through ~To.

III. THE QUANTUM-WELL CASK

We apply our methods to the quantum-well case in this
section. We consider a quantum well such as the
GaAs/Al Ga, As system in which the larger band gap
of the Al Ga& As relative to GaAs causes the electrons
to be quantized into subbands in the GaAs layer. We will
consider the binding of quantum-well collective excita-
tions via the virtual excitation and deexcitation of elec-
trons between the states commonly referred to as the 1s
and 2p, states of shallow neutral donors in quantum
wells. (z is taken to be the direction perpendicular to the
quantum well. ) This is the case of experimental interest
in Ref. 1. We treat the electrons as hydrogenic, and as-
sume that they are located in the center of the quantum
well. The 1s state is the ground state of the donor, and is
associated with the lowest-lyin subband (denoted by the
subscript 0) which has no n ~de perpendicular to the
quantum well. The 2p, state h l,s one node in the z direc-
tion, and its energy is just belo that of the first excited
subband (denoted by the subscri t 1) in the quantum well.
The association of the ls (2p, ) tate with the lowest (first
excited) subband is illustrated i Fig. 2(a).

There are two types of plasm excitations in a quantum
well. The acoustic plasmon h an electric field polarized
parallel to the quantum well nd, because there is no re-
sulting restoring force on t e plasma, its energy vanishes
as q~0. This is illustr ed in Fig. 2(b). Because the
acoustic plasmons have no lower bound for their disper-
sion, well-defined boond states are less likely to occur
with them. In addition, because their dispersion lies so
close to the particle-hole continuum, acoustic plasmons
easily decay. Therefore we will not consider them here.
A second kind of plasmon whose dispersion contains a
gap [see Fig. 2(b)] is known as the intersubband plasmon,
because it involves transitions between two subbands. Its
energy is slightly larger than the bare intersubband ener-

gy; this shift (the so-called depolarization shift) can be at-
tributed to the polarization of the electron gas during the
intersubband excitation. Because the dispersion of the in-
tersubband plasmons has a lower bound, it can give rise
to well-defined bound states. It is these plasmons with
which we will be primarily concerned. To treat the LO
phonons, we use a model of bulk GaAs phonons and
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collective excitation of interest, and yq"(qll ) is the
quantum-well electron-collective excitation coupling:

ly'"(qll)l'= I ' If'. (q, &I'ly(qll, q, )f' . (3.5)

1s

FIG. 2. (a) An illustration of the 1s and 2p, donor states and
their associations with lowest (0) and first subband (1). (b) The
dispersion of the two types of plasmons occurring in a quantum
well. The uppermost curve corresponds to the intersubband
plasmon, the plasma excitation with which we will be primarily
concerned. The shaded area is the electron-hole continuum.

Xa+a„(b +b+q), (3.1)

where
q~~

is the wave vector parallel to the quantum well,
and q is the total wave vector. Here

f „(qll)= Jd'pq'*(p) p ' „p) (3.2)

f' „(q, ) = f dz P" (z)exp ' P„(z) .

Applying the methods used above we arrive at an expres-
sion for the binding energy which is analogous to that for
the bulk case:

(3.3)

—2E „
, f ', If „qll &I'ly' (qll &I',

mn ~~exe
(3.4)

where E „ is the energy difference between the m and n
electronic states of the donor, co,„, is the energy of the

neglect the effects of phonon confinement in the quantum
well. It has been shown that this approach gives a good
account of such quantities as electron-phonon-scattering
rates in confined geometries. '

In order to derive an expression for the binding energy
of phonons, plasmons, and coupled modes to a neutral
donor in a quantum well, we follow a procedure similar
to that used for the bulk case. We will take the potential
barrier to be infinite and for the donor states we will use a
separable variational wave function 'P„(r)=P„(z)g„(p),
where n indicates the shallow donor state (e.g. , ls, 2p„
etc.). We will use gn(p)=3/2a„/&mexp[ —a„p], where

p is the two-dimensional vector parallel to the well. For
P„(z), we use the envelope function of the corresponding
subband. That is, for the donor state associated with the
lowest (first excited) subband, we use Pi, (z) =go(z)
=V'2/L cos(mz/L )[$2„(z)=g, (z) =3/2/L sin(2mz/L ].

z

Converting Eq. (2.1) to this basis, we find

y(qll, q. &f .(qll)f'. (q, )

m, n, qll'q

Since we are mainly interested in transitions between the
ground state and the first excited state, we will associate
m with the 1s state and n with the 2p, state. Because the
form factor f' „(q, ) depends only upon subband wave
functions, we will use the corresponding subband indices
(0, 1, etc.) for it.

To evaluate the expression in Eq. (3.4), several quanti-
ties must be determined. We will begin with f„2 (qll).

z

The first step in determining f„2~ (qll ) is to perform the
z

integral in Eq. (3.2) to find

4a„a2 (a„+a2 )

»&P, qll [( + )2+ 2]3/2(q )=
z

(3.6)

The calculation of u], and e2p involves the variational
z

solution of the following Hamiltonian:

$2+2H=-
2m, eo[p +(z —z;) ]

2 2 1/2 (3.7)

A. Phonons
We first consider the case of the binding of phonons

and use the expression (2.9) for the electron-phonon cou-
pling. One can then insert y „(q) into Eq. (3.5) to per-
form the integral over q, :

where z; is the location of the donor (which we take to be
the center of the well), and V„„&(z)is the confinement po-
tential:

0, z ~L/2
V

z )L /2
where I. is the width of the well. The resulting expres-
sions must be minimized numerically to determine o;„
and e2 for each value of the well width. We will leave

z

the discussions of calculating fo, (q, ) until Sec. IV.
The variational approach used here gives reasonably

good results for the donor bound wave functions and en-
ergies for well widths that are not too large. In experi-
mental situations, however, Ei,2 depends on such addi-

z

tional effects as screening and the finite potential barriers
involved. If we use the present variational approach,
which neglects these inAuences, we find that E&,2 is

z

slightly larger than the bare intersubband energy
Qoi=3m. iii /(2L m). In experiments however, the re-
sults vary. Perry et al. ' found in their resonant Raman-
scattering experiments that Ei,2 was larger than Ooi by

z

a few millielectron volts (meV). Gammon, Shanabrook,
and Musser, ' on the other hand, observed Q0, larger than
Ei,2p by the same margin. Here we are interested in

z

demonstrating the physics in this bound-state system, and
we will use the approximation Ei,pp Qo&. We now turn

to calculating the couplings between the electrons and
the various collective excitations.
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Ep
mL

1 2+ 2

1

q'„+(m /L )'
q2i, +(3n./L )

2—nq (1+e II )
—iq L 1

[q',
~

+(~/L )']

2 1

[ q~(+(3 /L) )(q~(+( /L) ] [q~~ +(3 /L) ]

(3.9)

where we have used the result

4i—e '
q, L(1+p)[1—( —1)i'e '

]

n [(q,L/m) —(p+2) ][(q,L/m. ) —p ]

(3.10)

with p=n —m = l. Equation (3.9) defines a quantity,
yg(q~~), the coupling between electrons confined to a
quantum well and bulk phonons. We use p =1 because
we are interested in transitions between donor states asso-
ciated with the lowest subband (0) and the first excited
subband (1). The remaining integral over

q~~
in Eq. (3.4)

must be done numerically, which we wiH discuss in Sec.
IV. We will find it useful to do this integral neglecting
the

q~~
dependence of the coupling. In that case,

band. The long-wavelength limit of this quantity has
been derived by Wendler and Pechstedt" using the
random-phase approximation:

~11(q(~~ ) [ 11 Pllq() ) 1lq
~~

l&01/( 2D )+o(q
~~

2 3

(3.12)

where a&& is defined above, pl&=128/(45m )Lal&,
yl&=23/(45m. )L a&&, and the subscript 11 denotes an in-

tersubband excitation. ' Those authors" have also de-
rived the quantum-well expression for the polarization in
the long-wavelength limit:

ir, I(q(( co) =2niDQO, /[(A'co) fIOI ] (3.13)

Substituting these two expressions into the correspond-
ing bulk terms of Eq. (2.4), one finds the energy of an in-
tersubband plasmon,

y h (q~~ =0)=Qa»ficoLoQOI /(4n2D )(1—e„/eo), Rco~ =0 (I+a„)' (3.14)

2—2E 1s2p, a1,a2

Ei 2, (&~co) ~& +u&p,

+pla11
X A( COLo COTo )

2''71 2D 67
(3.1 1)

and for the binding energy of the phonon to the neutral
donor one finds

where a» is the so-called depolarization shift of the inter-
subband transition energy for finite carrier densities, and
the quantum-well electron-intersubband plasmon cou-
pling

y~p( =Q V(((q~~ =0)aIIQOI/( I+all)' . (3.15)

In Eq. (3.14), we have neglected the dispersion of the in-

tersubband plasmon. Calculating the binding energy us-

ing Eq. (3.15), we find
where

80 L n2D E'P
3

27m

—
2E1sgp, a1 a2

E(,~
—(irido ) ) al, +app

'2
3 2

Ap1a11

2mn 2D %CO'„11

The expression in Eq. (3.11) is similar to the bulk expres-
sion Eq. (2.7) with the difference that the sign and magni-
tude of the phonon binding energy in a quantum well can
be controlled by changing the well width. The well width
dependence enters through a11, a„,a2~, and E1 2pZ Z

B. Plasmons

We now derive the formula for the coupling between
quantum-well electrons and intersubband plasmons em-
ploying the method used in Sec. II, where we derived the
coupling between electrons and plasmons in the bulk
from the screened electron-electron interaction. Since in-
tersubband plasmons involve electronic transitions be-
tween subbands, we will need the expression for the
screened electron-electron interaction in quantum wells
in which one electron is excited into the next higher sub-

(3.16)
Comparing this to the bulk expression, we note that we
may not be able to change the magnitude and sign of Eq.
(3.16) as readily in that case. This is because now co'f is
only weakly dependent on the electron density and E1,2

Z

and co~~& have approximately the same well width depen-
dence.

C. Coupled phonon-intersubband plasmons
In quantum wells composed of compound semiconduc-

tor materials, like the GaAs/A1 Ga1 As system of in-
terest here, the longitudinal phonons and intersubband
plasmons couple to each other. To find the energies of
these modes and their couplings to the carriers, we must
solve Eq. (2.10) using the quantum-well equivalents of
each of the terms. Doing so, we find the frequencies of
the coupled modes,
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(ro$") =[coLo+(ropqP ]/2+1/ [roLo+(coqP) ] —4Qo, (roLo+a»roTo)/R /2,
and the coupling of the coupled modes with the electrons,

(3.17)

(3.18)

The corresponding binding energies at neutral donors are
2—

2E1s2p, CX1s CX2p=+
Ef,2

—(Acof ) a), +a2~

Qp)a) ) [(~%")'—~To]
2~&2D tricot"[(coq+") —(ro ") ][(ro$") —roLo]

(3.19)

The similarities found between the quantum-well and bulk expressions for the phonon and plasmon binding energies are
also found for the coupled modes.

IV. RKSUI.TS

In this section, we summarize our results for collective excitations bound to neutral donors in quantum wells, analyze
the electron density and quantum-well-width dependence of the binding energies, and compare our results with experi-
mental data. For the quantities m„ag coLo coTo E'p and e„, we have used values characteristic of GaAs, the
quantum-well material of Ref. 1. For the fixed carrier density case, we use n20 = 1.5e11 cm

The binding energies for the collective excitations that we have considered can be written, from Eqs. (3.11), (3.16),
and (3.19),

—2Eis2p, O. &, a2

E i.2p,
—(pro )2 a), +a2p

3 2opia„
exc ~

2~n2DW~, „,
(4.1)

where

fl (coLo coTo)
for LO phonons with co,„,=coLo

Qp)a))

1 for intersubband plasmons with co,„,=co„&

[( gw)2 2 ]2

(4.2)
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FIG. 3. The binding energies of phonons [Eq. (3.11), dashed
line] and plasmons [Eq. (3.16), dot-dashed line] in quantum
wells plotted vs the well width. The solid curve is explained in
the text (Sec. IV).

I l I

1 2 3
Well Width!Bohr Radius

FIG. 4. The binding energy of the plasmonlike coupled mode
(solid line) and the phononlike couple mode (dashed line) plot-
ted vs the well width. Also included are experimental data from
Ref. 1. The diamonds represent the binding energy of the pho-
nonlike mode, and the plus signs the plasmonlike modes.
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In Fig. 3 we have plotted, as a function of well width and
at a density n 20

= l. 5 X 10" cm, Eq. (3.11), the binding
energy for LO phonons (dashed line), and Eq. (3.16), the
binding energy for intersubband plasmons in a quantum
well (dot-dashed line). For phonons, one observes that
the binding energy diverges and changes sign near
Acti Q E I pp, but that otherwise the binding energies are

Z

on the order of at most a few meV. The binding energy
for the intersubband plasmon, on the other hand, does
not change sign in Fig. 3. This is because E,pe and cop]

z
have approximately the same well width dependence.

In Fig. 4, we have plotted the binding energies for the
coupled intersubband plasmon-phonon modes. We can
understand the general trends in this case by comparison
with the case of phonons and plasmons shown in Fig. 3.
One can see that the upper (or phononlike) branch of the
coupled modes (dashed line) behaves like the intersub-
band plasmon for smaller well widths, and crosses over to
behave like the LO-phonon curve for larger well widths.
The opposite is true for the lower (or plasmonlike) branch
of the coupled mode binding energy (solid line). Also
plotted in Fig. 4 are the data' from Ref. 1. The dia-
monds correspond to the binding energies of phononlike
modes, and the plus signs to the plasmonlike modes in
the data. Note that the data are in rather good agree-
ment with the results of our calculations for the limited
values of well widths studied. Moreover, our results indi-
cate that the structure of the binding energy as a function
of the well width is much richer than the original experi-
ments indicated.

In calculating Eqs. (3.11), (3.16), and (3.19), we neglect-
ed the

qadi
dependence of the coupling between the elec-

tron and the collective excitation being considered. In
the case of the electron —LO-phonon coupling, the full

qadi

dependence is known [see Eq. (3.9)], and we have plotted
the binding energy calculated using that expression in
Fig. 3 (solid line). One can see that the O(qadi ) curve is a
good approximation to the full

qadi
dependence. We have

assumed that this will be the case for the intersubband
plasmon and the coupled intersubband plasmon and LO
phonon, where the couplings with the carrier can be
determined only to

O(qadi

), a condition imposed by the or-
der in

qadi
to which V»(qadi ) [Eq. (3.12)] is known.

We can also derive the electron-density dependence of
the binding energies. In Fig. 5, we have plotted the bind-
ing energy for the quantum-well coupled modes as a func-
tion of electron density for a given well width
I.=2.21az. The phononlike mode is the dashed curve,
and the plasmonlike mode the solid curve. The corre-
sponding data for the phononlike modes (diamonds) from
Ref. 1 are also plotted. (We have not included the data
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FIG. 5. The binding energy of the plasmonlike (solid line)
and phononlike coupled mode (dashed line) as a function of the
electron density. The experimental data of the phononlike
mode (diamonds) from Ref. 1 are also shown.

for the plasmonlike modes because they were taken at a
well width where the binding energy was zero within ex-
perimental resolution. ) There is good overall agreement
between our model and the data. The differences between
the binding energy seen in the experiment and that in the
present calculations probably result from effects like
screening, finite barriers, and nonseparable wave func-
tions.

V. CONCLUSIONS

We have obtained the binding of plasmons to neutral
donors in the bulk, and found that their binding is
strongly tunable with carrier density. We have given re-
sults for the binding of coupled plasmon-phonon modes,
which are of importance in compound semiconductor
systems, in both bulk systems and quantum wells. We
have shown that the coupling of these excitations to neu-
tral donors via the virtual excitation and deexcitation of
the donor states gives binding energies on the order of a
few meV. We argue that the binding of coupled phonon-
plasmon modes at neutral donors accounts for recent ex-
perimental data on GaAs/Al„Ga, „As quantum-well
systems.
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