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A microscopic model of the proximity effect in superconductor-insulator-superconductor (SS'IS"S)
Josephson tunnel junctions has been developed for the general case of the finite critical temperature of
the S' (S") metal, arbitrary SS' (SS")boundary transparency and the strength of the proximity effect
between S and S' (respectively S and S"). The metals are assumed to be in the dirty limit and the thick-
ness of the proximity layer is assumed to be small compared to its coherence length. The electrical prop-
erties of the SS'IS"Sjunction are calculated as a function of the strength of the proximity effect, bound-
ary transparency, critical temperature ratio, and temperature. The experimentally determined electrical
characteristics of a series of Nb/Al&, Al oxide, A12/Nb junctions with varying thickness d& of the Al&

layer were interpreted with this model. The current-voltage characteristics and the temperature depen-
dence of the critical current and sum-gap voltage could be described quantitatively well without any oth-
er correction than the non-BCS ratio 50/k&T, =1.93 of Nb. Deviations from the model for the junc-
tions with the largest d

&
are attributed to the fact that the Nb and Al are not fully in the dirty limit and

d& is not small compared to the coherence length.

I. INTRODUCTION

The fabrication technology of Josephson tunnel junc-
tions based on refractory superconductors, such as Nb
and NbN, using artificial barriers, is well developed to-
day. ' It is well known that the electrical characteristics
of these junctions display some characteristics features, of
which the proximity knee is the most pronounced, which
cannot be described in the framework of the standard
tunnel theory for SIS (supercon-ductor-insulator-
superconductor) type structures. ' In the case of Nb
technology the reason is that the dielectric barrier in such
junctions is produced by the deposition of a thin layer of
another material onto the lower electrode. For the over-
layer material mostly Al is used, but also other metals
have been investigated. ' This layer is subsequently oxi-
dized (or nitridized ) and often covered with a second
thin Al layer. As a result some residual Al layers appear
adjacent to the dielectric barrier and the tunnel structure
is Nb/A1/Al-oxide/Al/Nb. Similar structures are creat-
ed in the case of NbN junctions or in the form of Nb/Al
junctions sandwiched between NbN electrodes as in
NbN /Nb /A1/Al-oxide/Al/Nb/NbN. The NbN devices
with a sputtered MgO barrier, which often suffer
from layers with degraded superconducting properties
adjacent to the barrier, can be modeled as
NbN(I)/NbN(II)/MgO/NbN(II)/MgO(I) with T, [Nb(II)]
& T, [Nb(I)]. 'o

In all these cases the equivalent structure is SS'IS"S,
where S' and S" are thin layers of superconductors with
lower critical temperature than that of the bulk electrode
S, or normal-metal layers. The proximity effect between
the S and S' metals inAuences the properties of the junc-
tion. In some practical applications such proximity lay-
ers may be used advantageously as, for example, in parti-
cle or phonon detectors, in which the reduced gap region
adjacent to the junction barrier is used as a quasiparticle
trap, in which excess quasiparticles are collected from the
electrode. "

The properties of SS'IS"S structures have been dis-
cussed theoretically in a number of works. ' For the
calculation of the tunnel current one should solve first the
proximity effect problem of the SS' sandwich. The sim-
plest approach is the McMillan proximity effect model. '

This model assumes the presence of a supplementary po-
tential barrier of low transparency at the SS' interface
and small thicknesses of the S and S' layers compared to
the coherence lengths of these materials. In Ref. 13 a
model of the Josephson effect in SKINS junctions was
developed using this method. However, in practical tun-
nel structures the assumptions of the McMillan model
are mostly not fulfilled. The thickness of at least the S
layer is generally much larger than the coherence length
of S. Secondly, there is mostly an intimate contact be-
tween the S and S' layer.

In Refs. 14—16 a microscopic approach was developed
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that is based on the calculation of the coordinate depen-
dence of the Green's functions for arbitrary transparency
of the SS' boundary. In these papers the order parameter
was assumed to be spatially independent in S and S'.
This approach is only valid under certain conditions for
the parameters of the S and S' materials and the bound-
ary transparency (see discussion below). In Ref. 17 a
model was developed based on the quasiclassical Eilen-
berger equations, which were solved in a self-consistent
way, taking into account a spatial dependence of the or-
der parameter. However this model is valid only if the S
and S' materials are in the clean limit. Moreover, calcu-
lations of the tunnel current were not done, so that a
comparison with experimental data for tunnel junctions
is not possible yet. More recently, the proximity effect
was discussed theoretically in the clean limit in the SN
double layer' in the framework of the Gor'kov equa-
tions, as well as in SNS Josephson junction' ' in the
framework of the Bogolubov —de Gennes equations.
These theories, however, are not applicable for the rea1
tunne1 structures mentioned above.

Most Nb or NbN tunnel junctions are fabricated using
room-temperature sputter deposition, creating polycrys-
talline films, which are in the dirty limit. Therefore our
theoretical model is based on the assumption that the dir-
ty limit condition holds for the S and the S' metal. For
this case a microscopic theory was developed in Refs. 21
and 22 for SX'IN"S junctions, i.e., for proximity layers
with zero critical temperature. Recently this model was
extended to account for a finite critical temperature of
the S' layer. The aim of the present paper is (a) to gen-
eralize the results of Refs. 21 —23 to the case of finite SS'
boundary resistance (i.e., for the existence of an addition-
al potential barrier at the SS' interface); (b) to make a
comparison between the theory and experimental data for
Nb/Al/Al-oxide/Al/Nb tunnel junctions.

II. THE MODEL OF AN SS'IS"SJUNCTION

of the S' and S metals, respectively. g' is related to the
bulk coherence length g, of the S' material by
g;=g*(T, /T,*)' . The coherence length g" in the S'
layer is defined such that in the following T,* can be
treated as an independent variable. The first condition in
(1) allows one to assume that all quantities within the S'
layer are independent of x, while the second condition
makes it possible to neglect the reduction of the critical
temperature of the SS' electrode compared to that of a
bulk S metal.

The low transparency of the junction barrier allows
one to use the relations of the standard tunnel theory. '

According to this theory, the current through the junc-
tion is determined by the retarded Green's functions
FI z(E) and G& 2(E) near the tunnel barrier. Here, the in-
dices 1,2 refer to different electrodes of the junction. In
the case of a large value of the McCumber parameter,
p, »1, the voltage V across the junction is constant and
the tunne1 current density through the junction is deter-
mined by

J=ReJ (V)siny+ImJ (V)cosy+ImJ ( V),
y=2eVt+yo, (2a)

where y is the phase difference between the junction elec-
trodes and yo is an integration constant.

ReJ (V)= " f dEtanh
2e —oo

ImJ~( V) = f de tanh —tanh
2e —oo 2T

X [ImF I (E )ReFz(E+ e V)

+ReFI(s+eV)ln&'z(s) j (2b)

is the amplitude of the supercurrent,

X ImF, (a+e V)ImF2(E) (2c)
We assume that one or both electrodes of the Joseph-

son tunnel junction are formed by an SS' sandwich, while
the transparency of the insulating layer is small enough
to neglect the effect of the tunnel current on the super-
conducting state of the electrons. The SS' boundary can
have arbitrary finite transparency, but which is large
compared to the transparency of the junction barrier.
Further we assume that the dirty limit condition holds
for the S and S' materials, the critical temperature of the
S' material, T,*, is less than that of the S metal, T„and
the transverse dimensions of the junction are much less
than the Josephson penetration depth, 8'(A,J. Due to
the last condition all quantities can be assumed to depend
only on a single coordinate x normal to the interface sur-
faces of the materials.

We will consider below the most important practical
case:

l &d «g', d, »g;»l, ,

where g'=(D/2~T, )'~ and g,*=(D,/2~T, )' are the
coherence lengths, l, l, the electron mean free paths (mfp),
d, d, the thicknesses, and D,D, the diffusion coefficients

is the dissipative component of the current due to in-
terference between the Cooper pairs and the quasiparti-
cles, and

On +~ c, +eV
ImJ~( V) = f ds tanh —tanh

2e 2T 2T

X ReGI (e)ReGz(E+ e V) (2d)

is the quasiparticle current component. Here o.„ is the
normal-state conductivity per unit junction area. The
dirty limit condition makes it possible to assume that the
functions FI 2(e) and G, z(E) in Eqs. (2) are equal to their
values at the S'I, respectively IS", boundary, i.e., we ig-
nore tunneling out of the bulk of the electrodes.

As noted in Ref. 21, the problem of determining the
functions G(c, ) and F(s) entering into Eqs. (2) must be
solved in two stages. First, it is necessary to determine
the spatial dependence of the order parameter, b, (x), in
the SS' electrode. Then, by performing the analytical
continuation from the Matsubara frequencies



51 PROXIMITY EFFECT IN SUPERCONDUCTOR-INSULATOR-. . . 1075

co„=irT(2n + 1) to the complex plane by the substitution
co„= —is, and using the solution h(x), one can calculate
the functions F(e) and G(e) for a real energy e.

Below we solve the proximity effect model formulated
above. Some theoretical results obtained within this
model for the case of vanishing SS' boundary resistance
were discussed in Ref. 23.

III. PROXIMITY EFFECT IN THE SS' SANDWICH

With the assumptions given above the proximity effect
in a system of two dirty metals can be described within
the framework of the Usadel equations for the S and S'
layers (the domain x ~0 is occupied by the S metal,
—d & x & 0 by the S' metal):

@,=5,+(g;) [G, N,']', G, =

b,,ln(T/T, )+2mTQ .[(6,—C&, G, )/co] =0
N) 0

x&O,
(3a)

(3b)

N=b. +(g') [G N']', G =

b, ln(T/T, *)+2m T g I(5—NG)/co] =0
co) 0

—d~x~0,
(4a)

(4b)

0;G,'+,'=) k*G'+' r =(p, k,*)/(pP

yii~GN'=G, (@,—0 ), yii~=R~/p

and at the S' dielectric boundary:

@'(—d)=0 .

(6a)

(6b)

Here b,o( T ) is the BCS value of the order parameter of a

where 4& = coF/G, N, [F=@/(co +@ )'~ ] and b„b,, are
the modified Usadel functions and the order parameters
in the S' and S materials, respectively. co is the Matsu-
bara frequency, co„=mT( 2n +.1 ) ( n =0, 1,2, . . . ), and the
prime denotes differentiation with respect to the coordi-
nate x. The properties of these equations are discussed
extensively in Ref. 26.

Equations (3) and (4) must be supplemented with the
boundary conditions in the bulk of the electrode:

@,( ~ ) =&,( ~ ) =&0(T),

as well as at the SS' boundary:

co @(0)—b, x+d
~T, G(0)

(8)

Determining @'(0) from Eq. (8) and substituting the re-
sulting equation into the boundary conditions Eqs. (6) we
arrive at a boundary condition for the function N,

homogeneous superconductor at the temperature T. p
and p, are the normal-state resistivities of the S' and S
metal, whereas R~ is the product of the resistance of the
SS' boundary and its area. The parameters y and y»
have simple physical meanings. y is a measure of the
strength of the proximity effect between the S and S'
metals, whereas y» describes the effect of the boundary
transparency between these layers.

In the first approximation in (d/g*) one can neglect
nongradient terms in Eq. (4a) and obtain 4&= A =const,
b, =B=const, if d «g =g [AT, /(co +N )

~ ]'~. Be-
cause of the condition d &(g' this is true for frequencies
co(&Qd=mT, (g*/d) . .Then one can obtain in the next
approximation by linearizing Eq. (4a)

y coI @,(0)—b ]
g;G, @,'(0) =

I I+y~($ +b, )+2y~G, (0)[co+4,(0)b /io] J
'~

where co =co/n T„4,=@,/mT„b, =b, /n. T„and
d

Vm V g & YB YBN (10)

and a relation determining the function N

G, (0)@,(0)+yiicob,4(x)=4(0)=, —d x &0 . (11)
G, (0)+y~S

The self-consistency equation in S, Eq. (3b), converges
for frequencies m ~ mT, &&Qd. Thus the boundary condi-
tion Eq. (9) in the frequency domain co « Qd is sufficient
to solve the proximity effect problem in S, Eqs. (3), pro-

I

vided the order parameter 6 in S' is known. The latter
can be found from the self-consistency equation (4b).
Therefore, the SS' problem is described by y, y~, and
the ratio T, /T„which is implicitly contained in b..

The dependence on T, /T, can be made explicit as fol-
lows. Note that in the limit of a thin S' layer, d &&g*,
the two characteristic frequencies in Eqs. (4), Q, =mT,
and Qd, differ substantially: Q„»A, . For +~Q„ the
relation between b. and N is given by Eq. (8). However,
the sum over co in the self-consistency equation (4b) con-
verges for co& fLd, because in this limit one can neglect
gradient terms in Eq. (4a) and obtain @=A,. Thus, in or-
der to find a relation between A and B, one should deter-
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mine the function @ also at higher frequencies, co & Qd.
For that, let us use the fact that for co & 0, and 6 =const
Eq. (4a) can be linearized, giving the solution

from Eq. (9) that

g,*C&,'(0) =0 for co « Q~=rrT, /p (15)

cosh [P(x +d ) /g* ]
cosh[Pd /g*]

+co +A
sT.

(12)

C&, (x)=b,,(x)=b,o, co «Ar . (16)

Since the sum in the self-consistency equation (3b) con-
verges for frequencies co & 0, (II, (&Ar ) the functions b,
and 4, can be assumed to be spatially independent:

2y*Qd
ln

HATT

1
2vrT —g

co) 0

1

( 2+ g 2)l/2

(13a)

where y* = 1.78 is the Euler's constant, we obtain a solu-
tion for the order parameter in the S' layer, 5:

2y*Qd5=8= A ln
&T

(13b)

X,=2rrT g 1

co) 0

1

( 2+ g 2)l/2 (13c)

Substituting Eqs. (11)—(13) in Eq. (9) one obtains the
boundary condition for 4, :

ay co@,(0)
g,*G,(0)@,'(0) =

2 2 2, /2, (14a)
[ I+2ayllcoG, (0)+a y2lco

where the parameter a is given by

The solutions (8) and (12) match for 0, «co (&Qd. Sub-
stituting (12) in (4b) and taking into account that

cosh [P(x +d ) /g*]
&0 (co + A )'/ cosh[Pd/g*]

Then Eq. (13b) reduces to X,=ln(T, /T). In this limit
the parameter a in Eq. (14b) is given by

a=in(T, /T,*)/1 n(2y*fl d/AT, ")

=ln( T, /T,")/[ln(2y )+ ln( T, /T,*)+2ln(g*/d ) ]

(17)

[In(2y*)=1.27]. From this equation it is seen that a
reAects the inhuence of a finite T,* value on the proximity
effect in the SS' sandwich.

Introducing the effective parameters

(18)

the problem has been reduced to the proximity effect in
an SN sandwich with T,*=O, as was derived in Ref. 22,
but with the effective parameters y' and y~ replacing
the parameters y and yz for the real SN sandwich. It
is seen from Eqs. (17) and (18) that the thickness of the S'
layer enters the problem in the form of the parameter
y -d/g' and in a by a small logarithmic correction.
In what follows in this section we will neglect the latter
correction. Then, for small y and yz values, the num-
ber of parameters can be reduced to two: the effective
proximity parameters y' and yz. The proximity effect
is now described by the Eqs. (3), (16), and

a = [El+In( T/T,*)]/In(2y*Qd /AT,*), (14b) 4=50/[1+ ye~ p2], (19a)

and the function 4 is determined by

@,(0)
N(x) =N(0) =

I+ayll[co +4,(0)]'
(14c)

A. The limit y «1, yz «1
In order to relate the order parameter b, to @,(0) in

this limit, the solution @ in S is matched to N, in S as
follows. Cxoing over to the limit of small y, it follows

Thus the proximity effect problem in the SS' bilayer is
reduced to the set of equations (3) for the S layer, with
the boundary condition Eq. (14a), in which the parameter
a, as given by Eq. (14b), is related to N, (0) by Eqs. (13c)
and (14c). There are three parameters which enter the
problem: y, y~, and the ratio of the critical tempera-
tures T,*/T, .

The problem can be simplified in the following
limits: (1) for small values of the parameters y and
y2l. y « 1, y2l « 1; (2) for large y
values: y &)max I 1;yll ]; (3) for large y2l
values: y2l &)maxI 1;y j.

Let us discuss these limits separately.

2y *Ad, 2y*Qd
ln

&T. &T.*
(19b)

where P, as given in Eq. (12), in this limit is reduced to
the form p=(co +b,o)'/, similar to that of the SX
sandwich problem.

In the considered limit of small y, yz the functions
6, and N, are determined in the first approximation by
Eq. (16) and 4 and b, by Eq. (19). In the next approxima-
tion in y' and assuming y2l =0 we have from Eqs. (3a)
and (14a)

effp/[ 1+ eff- 2[2/p2++eff]] I/2

and P= (co +b o)'
It follows from Eqs. (14c) and (20) that

C&(0) =4&, (0)=ho(1 —C) . (21)

Equation (17) for the parameter a is approximate be-
cause rigid boundary conditions for the S layer, Eq. (16),

0&, (x)=60[1—[C/(1+ C) ]exp( —Px /g,*)], (20)

where
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were assumed in its derivation. We have calculated a ex-
actly as a function of T,*/T, in the following way. The
function @,(x) was determined numerically using two
different approaches: first, by solving the exact boundary
value problem, Eqs. (3), (9), (11),and (13), and secondly in
the framework of the "effective y

" approach by solving
the Eqs. (3), (14a), and (18), assuming T, =0. For both
methods the parameter a was calculated as the ratio of
the values of y' and y (for ys =0) which correspond to
identical solutions 4, (x) in the limit y «1. For small
values of d/g' «1 a good numerical fit for the depen-
dence of a on T,*/T, is given by

a=y' /y =in(T, /T,*)/[2.9+in(T, /T,")+21n(g'/d)]

(22)
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Equations (22) and (17) thus differ by the numerical
coefficient in the denominator, which rejects the
difference between the approximate solution (16) of Eq.
(3a) and the exact one. Figure 1 shows the dependencies
of a on T,'/T, calculated from Eq. (22) for a number of
values d/g*. We note the following points: (a) The pa-
rameter a is small for T,* &0.1T, (which is the case for
most practical materials). In the limit of very low values
of T,*/T, the parameter a =y' /y goes to 1 very slow-
ly. This implies that the finite T,* of the S' material has a
large inhuence on the proximity effect, even if T,*« T, .
(b) The dependence of a on g'/d is fairly weak. This
property of the problem allows one to neglect the depen-
dence of a on g*/d for large values of this ratio. The
main dependence on d/g' is already taken into account
by y and yz, as defined in Eq. (10). In the following we
will take as a typical value d /g =0.1.

Let us consider separately the case of finite y~ values
(finite SS' boundary resistance). The solution in the S'
layer is determined by Eq. (11). The latter relation allows
one to derive the equations of the well-known McMillan
model. ' Substituting Eq. (11) into the Greens function
G =co/(ro +4 )'~, one obtains for the S' layer

where

Z(co )co

[ 2( ) +ZZ( ) 2]1/2 (23)

rz, (~)
Z(ro) =1+

[y, (co)+Z, (ro)ro ]'i

rq, (rv)

[y, (co)+Z, (cv)ro ]'iy(co) =b, +

(24a)

(24b)

(24c)

In this limit G, and C, are equal to their bulk values
for all x )0. In the McMillan model the following
two parameters are defined: I „=fivz„D *l4d and
I,=fivF, D*/4d„where D is the SN (SS') boundary
transparency, and vz„, vz, are the Fermi velocities in the
N (or S') and S layer. Equations (23) and (24) are
equivalent to the McMillan equations with the
identifications I „=mT, /yz and I,=0, which is true for
D*« 1 and large d, . It can be shown that for thin S lay-

FIG. 1. Ratio of the effective proximity parameter y' (for an
SN sandwich with T,*=O) and the proximity parameter y (for
a sandwich with T,*NO) as a function of the critical tempera-
ture ratio of the S' and S metal, T,*/T„ for various thicknesses
of the S' layer, g ld.

ers (d, «P) the complete set of McMillan equations is
obtained.

We note that the above approximation, Eqs. (16) and
(20), of weak influence of the proximity effect on the
properties of the S layer was discussed extensively in
literature. ' ' However, as was shown above, this limit
corresponds to the case of small y values only. In many
practical cases (e.g. , Nb/Al tunnel junctions) this limit is
not satisfied. Below we solve the proximity effect model
for other values of the parameters.

N=@,(0)=ho(T), (25a)

where ho( T ) is the equilibrium BCS value of the order
parameter in the S' layer. For temperatures T~ T,* Eq.
(25a) leads to

N=N, (0)=0 . (25b)

Equations (3) with the boundary conditions Eqs. (5) and
(25b) were first solved in Ref. 26 for the SN sandwich
problem. The behavior of N, near the SS' boundary (for
0 & x g,*) is given by

4, (x)=B(T)x/g,

B(T) =2T, [1—( T/T, ) ]/[7$(3) ]'~ (26)

where g(x) is the Riemann g function, g(3) =—1.2.
Substituting Eq. (26) in the boundary condition Eq.

(14a) we have in the next approximation in y

B(T)=ay ra&, (0) lI+ay~co(2 +ay isis)] (27a)

B. The limit y »maxI l, ys (

As follows from the boundary conditions Eqs.
(9)—(11), the functions @, and N, (0) are determined by
the following relation for frequencies cv »nT, (1
+1'a )/7'
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7g(3) [@,(0)/mT] +ln(T/T, *) /ln(2y*Qd/mT, ). T*=T, 1+
ln( T, /T,')[(T, /T,*) —1]

2 7TCXQ
(30)

(27b)

For temperatures not too close to T,* one has
1n(T/T,*))){N,(0)/m. T) . Then it follows from Eqs.
(27) that

B (T) [ I+}'B'~(2+7B'~)I
'"

4, (0)= -(T,—T) . (28)jef

Here the parameters y', y2i are again given by Eq. (18),
but now with a[Eq. (28)]=[ln(T/T,*)/ln(T, /T,*)]a[Eq.
(17)], where a is explicitly temperature dependent. In the
opposite case of temperatures close to T, we obtain from
Eqs. (27)

@,(0)=n T, ln(2y*Qd/~T, *)8T B(T)
7((3 )AT, y

1/3

(29)

It follows from Eqs. (27)—(29) and (14c) that the values of
the functions 4& and C&, {0)decrease with increasing y
The temperature and y dependencies of @ and N, (0)
are different in the regions T=T,* and T & T,*. Namely,
at high temperatures N=@,(0)-(T,—T)/y' as is also
the case for the SX sandwich. At lower temperatures,
T,* T ~ T*, where T is given by

and a is given by Eq. (17), a crossover takes place to
weaker dependencies of 4& and @,(0) on T and y
N, (0)-[(T,—T)/y I'/. As a result @,(0) grows rap-
idly as temperature decreases and approaches T,* and
finally Eq. (25a) holds when T & T,'. Therefore with de-
creasing temperature in the region T= T' the crossover
takes place from proximity induced superconductivity in
the S' layer (small values N « T, ) to the superconduct-
ing state in the S' layer due to the pair-potential b,o (large
values @-T,').

C, (x)=h, (T), 0& T & T, ,

b,,'{T), 0 & T & T,*,

0, T,*&T&T, .

(31a)

{31b)

(31c)

In the next approximation the function N at T,* & T & T,
is finite and is given by Eq. (14c) with N, =b,o( T ), where
the parameter 0. should be determined self-consistently
from Eqs. (13b) and (14b), 14(c). Proceeding in this way,
we obtain the following equation for a (provided
ay ii S )& 1):

C. The limit ys »max [ 1;y

In this limit the S and S' layers are nearly decoupled
and we obtain in the first approximation

&0(T) 1a= ln(T/T, *)+(T/T, ) 2 g 2 /ln(2@*Ad/7rT, ) .
a y~ ~ a (co +b.o)

(32)

I ( T, /T,' )lii( T, /T,4
)

(33)

Let us analyze in more detail the case when T,*/T, « 1.
Evaluating the sum in Eq. (32) we find the crossover tem-
perature

temperature in the region T =T* the proximity induced
superconductivity in the S' layer, N, is increased. Such a
behavior of the function 4 is qualitatively similar for
both cases of large y and large y~ values. Below we il-
lustrate it by numerical calcnlations.

(T, /T')
eff + ~ c

ln( T, /T,*) (35}

where a is given by Eq. (17). Therefore with decreasing

where IC =[7/(3)/8]'/ =1.016 and a is given by Eq.
(17). If T )T* the second term in square brackets in Eq.
(32) is small compared to ln(T/T, *) and the parameter
a=a[Eq. (28}]as in the limit of large y . We regain Eq.
(19) but now in the limit of large yii, so that @ is reduced
to

bo(T)
eff( —2+ g2)1/23'a ~ o

In the opposite case of temperatures close to T, , i.e., for
T* & T & T*, the function 4& is again given by Eq. (34),
but with a reduced y~ in comparison with Eq. (28):

D. Arbitrary y, y~, and T,*/T,

For arbitrary temperature and values of y, yz, and
T,*/T, Eqs. (3) and (4) with boundary condition (9) were
solved numerically by a self-consistent procedure, taking
into account the spatial variation of the order parameter
b,,(x), as well as of the Usadel functions @,(x) and
G, (x). On each iteration step the self-consistency equa-
tion (4b) for b, was solved using the relations (11) and (13)
between b, @,and N, (see the Appendix).

In Fig. 2 the spatial dependencies of 6, and 6 are
presented for T, /T, =0.3, T«T, and (a) for different
values of y and yii =0 and (b) for difFerent values of yii
and y =1. It is seen that the order parameters in the S
and S' layers at the SS' interface differ even for vanishing
SS' boundary transparency (y~ =0}as must be expected
from the fact that the coupling constants in the S and S'
metals are different. In the case of y )&( I+y~ ) (large
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conductivity of S' material), the order parameter near the
SS' boundary, b,,(0), is strongly suppressed due to the
proximity e6'ect. With an increase of yz the jump in the
order parameter at the boundary increases and A, (x) be-
comes spatially independent. This is the range where the
McMillan model is applicable. In the limit y~ ~~ the S
and S' layers become decoupled and then b, =b,o(T),
b., =b,o(T).

In Figs. 3(a) and 3(b) the temperature dependencies of
b, and b.,(0) for T,*/T, =0.3 are shown. Note the cross-
over in the behavior of b, (T) at T= T,* for large y and

ys parameters. As is seen from Fig. 3(a), in the case of
zero boundary resistance (y~ =0) the order parameter in
S', 6, is almost equal to the order parameter in S near the
SS' boundary, 5,(0), and the difference between b,, and
6 becomes smaller as y increases. In the limit of large

y (curve d) the order parameters b, and b,, are equal in
accordance with Eq. (25) and behave nearly like the equi-
librium order parameter in S', ho(T). Further at large
y and decreasing temperature b, and 5, (0) grow rapidly
near the crossover temperature T' /T,' ( =0.36 for
y =100) in accordance with Eq. (30). This behavior is
seen in Fig. 3 as a positive curvature of the A(T) and
h, (T) curves.

As is seen from Fig. 3(b), an increase of y~ results in
an increase of the jump of the order parameter at the SS'
boundary [see also Fig. 2(b)]. In the limit of large y~ one
sees a crossover to the behavior described by Eq. (31):
the curve for b,, ( T, y s = 100) nearly coincides with

0.60—

ho(T) /7v 7,

x 0-4

a

— 0.1

0.6 — Q h, (x)

(a)

I—

~ 0.40

a

0.20

I—

x 0 2
a"

0.0

100———ao(O) /~T.

yB= 0
0.1; 0.5; 1; 2; 5; 10; 100

0 1 2 3 4 5 6 7 8 9 10
x/(, '

0.00
0.0

0.60—

0.2 0,4 0.6 0.8 1.0
T/T,

(b)
~.(T)/~T,

h, (x)
'1 00

~040
a

I
—0.20

a

x 0.2
--- ——a', (0)/~T.

ao(
0.00 I I I I I I

0.0 0.2 0.4 0.6 0.8 1.0
T/T,

0.0

yB
y rTl

0; 0 5; 1; 2; 5; 10; 20; 100
1

1 2 3 4 5 6 7 8 9 10
x/(, '

FIG. 2. Spatial dependence of the order parameter 6, in S
(for x &0) and 6 in S' (x (0), for an SS' sandwich with
T,*/T, =0.3, at temperature T«T,*: (a) for y& =0, y~ rang-
ing from 0.1 to 100; (b) for y =1, y~ ranging from 0 to 100.
The bulk value of the order parameter 60(0) in S is reached for
large x. That for S' is indicated by 40(0).

FIG. 3. (a) Temperature dependence of the order parameter
6, in S at the SS' interface (x=0) (dashed curves) and of 6 in
S' (solid curves), for an SS' sandwich with T, /T, =0.3, y& =0,
and y =0. 1 (a); 1 (b); 5 (c); 100 (d). In case (d) the curves for
5, and 6 merge. The crossover temperature T* for y =100
[Eq. (30)] is indicated in the corresponding curve. The BCS
curves for the S' and S layer are indicated with 60(T) and
b,o(T). (b) As (a) for y =1 and y& =0 (a); 1 (b); 10 (c); 100 (d)
[6, coincides with Ao(T}]. In case (d) the curve for 6, practi-
cally merges with 60(T). The crossover temperature T* for
ys = 100 [Eq. (33)] is indicated in the corresponding curve.
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0.6

0.5
C)

y [b, cosB, +i'E sinB, ]

[1+yii(& ' —e ')+2yii(& sinB, i—Z cosB, )]'/' '

(36c)

0.W

sin6, +y&5tan6=
cos6 i yzZ

(36d)
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SN~ h, g

&
SN

S 0. 1
I—

a
0.0
0.0001

8N
C

0.001 0.01 0.1 1

T, /T,

b,o(T) and b, (T,ye=100) is close to 50(T). As in the
case of large y a positive curvature is present in the
b, ( T) dependence at the crossover temperature
T*/T,*=0.38 (for yii = 100) in accordance with Eq.
(33).

The dependence of the order parameters b. and b, , (0)
on the ratio T,*!T„atT « T„ is shown in Fig. 4 for
y =1, y~=0. It is seen that in accordance with the
weak (logarithmic) dependence of y' on T, /T,* [see Eq.
(22)] the order parameter b, ,(0) exceeds its value for
T,*=0 (5, , indicated in the figure, corresponding to the
case of the SN sandwich) even for small values of T,*/T, .
The same effect occurs for the order parameter in the S'
region, 6, where in the S¹ase 6 =0.

IV. THE DENSITIES QF STATES

In order to calculate the normalized density of states in
the electrodes, N(c, ,x ), for arbitrary values of T,'/T, and

y, y~ it is convenient to introduce a new function 6, by
the relations 4, =co tanO„G, =cos6, and then to carry
out the substitution co = i E. Equation —(3a) is then
rewritten as

B,"(E,x )+i E sinB, (s,x )+b, , (x )cosB, (E,x ) =0 . (36a)

The boundary condition in the bulk of the S electrode,
Eq. (5), becomes

B,(E, ~ ) =arctan[iho(T)IE], (36b)

and the boundary conditions at the SS' boundary, Eqs.
(9) and (11), take, respectively, the form

FIG. 4. Dependence on the critical temperature ratio T, /T,
of an SS' sandwich with y =1, and y& =0 and at T(& T, of
the order parameter 6,(0) in S at the SS' interface (x =0); 6 in
S', the gap energy h~; and the critical current I,(0) of a symme-
trical SS'IS'S junction. In the limit T, =0 (SK sandwich) the
values 5 (0)=h, A=A =0, 6 =5, and I =I are
reached.

Here the function 6 in S' is defined analogous to 6, in S,
e=s/mT„. b, ,(x)=h, (x)/m T, and the distance is nor-
malized to g',*. The frequency-independent functions b,
and h, (x) are already known from the solution of the sta-
tionary problem.

The quasiparticle densities of states in the S and S lay-
ers are then determined by the following relations:

N, (s,x ) =ReG, =Re(cosB, ),
N{e,x)=ReG=Re{cosB) .

(37a)

(37b)

Let us first consider some limiting cases.
For small values of y and yz =0 and using the simple

solution Eq. (21) and Eqs. (37), we obtain for the densities
of states at the SS' boundary in the S layer and in the S'
layer

i E(1+—y' p, )
N, (E,x =0)=N(e) =Re

(T) (E12+y peff)2] i/2

(38)

where p, =(EO —Z )'/ . It follows from Eq. (38) that the
function N(E) has two singularities: one for E=b,o and
another for

[ 1 2 /3(y ff)4/3g 2/3] (39)

Equation (39) determines an energy gap at the SS' bound-
ary. Note that comparing Eq. (39) with the correspond-
ing one for an energy gap suppression in the presence of
Abrikosov-Gorkov type pair breaking,

—g ( 1 g2/3)3/2 (40)

one can relate the y' parameter to an effective pair-
breaking rate g. For T=0, using the relation
40(0)/m. T, =y'/n. , we have

g
—(rg )

—i 21/2( 2 )3/2 )
( eff)2 (41)

The singularity in the density of states, given by Eq. (38),
at e=b.o is rather weak: N(e)-(e —b,o)'/ and is
smeared out in the next approximation in y' .

For finite yii and y /(1+y2i) «1 the density of
states is given by Eqs. (23) and (24) with co= i E and Eq.—
(37) (McMillan model with I „=mT, /y& and I,=0). In
that case the densities of states in the S and S' layers
dier strongly. The former, N, (E)=c/(E —50), E & bo
coincides in this approximation with the BCS density of
states. The function N(E) has two singularities, one at
E=bo: N(e)-(e —bo) '/ and another at
N(E)-(s —4g ), where the energy gap b, for small I „ is
related to the equilibrium values of the order parameters
in the S and S' layers, 60 and 60, by the simple relation
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FIG. 5. Normalized density of states in S, X(' Ã(c) at T=O, of
an SS' sandwich with y = 1, yB =0, and T,*/T*/T =0 for the SN
sandwich (SN); 10 (1); 10 (2); 0.1 {3);0.2 (4); 0.3 (5); 0.5 (6);
0.8 (7); and 1 for the BCS-case (BCS).

layers at the SS' interfaces for finite yz and different y
values in the low-temperature limit, T=O. In this case
N(e) and N, (E) diff'er strongly. For small y two singu-
lanties exis in

'
t

' N(s) as was discussed above. For7

sufficient y arge y1 1 the peak at c.=ho is smeared out.
The density of states in the S layer, N, (s), at small y
values goes almost like a BCS curve. At large y the en-
ergy gap ecreased reases and a large number of states appears
at energies c & We note that as was discussed above,
in the considered limit of small SS' boundary transparen-

of states in S and S' layers is qualitatively similar to the
f th McMillan model. However, for ot er

values of the parameters our model gives results w ic
differ considerably.

It is important to note that, as is seen from comparison

0.60—
~p 1/2

0 0
(42)

For finite y~ both singularities in N(s), as well as the
one in the N, (s) are smeared out. This behavior was
studied in detail for the case of the SN sandwich in e .
22 0

For arbitrary temperatures and values of, j „y
and ~ the problem was solved numerically. The results
o ecaf th lculations for N(E) in S' in the low-temperature
1

' T=O f y =1 and y =0, are shown in Fig.
e =0,difFerent values of T,'/T, [because y~ =

N(c, )=, e,x==N, (, =0)]. It is seen that with increasing
T,'/T, ratio the energy gap increases and a sharp singu-
la

'
N(e) appears at c. (bo in accordance with Eq.

(39), unti or'1 f T,*/T =1 the BCS density of states is ob-
tained. It is important to note that this singularity leads
to the knee structure in the current-voltage characteris-
tics of a SS'IS"Sjunction (see below).

Figure 6 shows the densities of states in the S and S'
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FICx. 6. Normalized densities of states in S' (dashed curves)
and S at the SS' interface (solid curves) at T=0, for
T,*/T, =0.3, yB =5, and y =0.1; 0.5; 1; 2; and 5.

FICx. 7. Energy gap in the density of states in an SS
san wic ad h as a function of temperature. T =0.3, for (a) y

d ran-ranging rom . of 0 1 t 50 and y =0 and {b) y = 1 an yB g-B
E . 30), re-ing from 0 to 50. The crossover temperatures T [Eq. (, re-

j f =50 respectively yB =50, are indicated
th rresponding curve. The bulk energy gaps o an

are given by the dashed curves 60( T) and 60(T), respec
'

y.
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of the Figs. 5 and 6, the densities of states in S differ
qualitatively for the cases of zero and finite yz values
(vanishing and finite SS' boundary resistance). Namely,
in the latter case the density of states N(s) has a two-
peak structure for small y values.

The energy gap of the density of states in the S' region,
6, is also of interest because it is directly rejected in the
current-voltage characteristic (CVC) of a junction. We
have calculated b,g(T) for T,'/T, =0.3 and a number of
y, yz values. The results are shown in the Figs.
7(a) (ys =0, y =0, . . . , 50) and 7(b) (y =1, ys
=0, . . . , 50). It is seen that for small values of y and

ys the function b, ( T) is close to the BCS curve, Ao( T).
Large modifications take place for large values of y, yz
and a positive curvature is seen, as discussed above for
Figs. 3. This behavior is a result of the crossover at tem-
perature T* from proximity-induced superconductivity
in the S' layer above T* to the superconducting state in
S' below T, due to the pair potential b,o(T ).

The dependence of b. on the T,'/T, ratio in the low-
temperature limit, T=O, is shown in Fig. 4 for y =1
and y~ =0. It is seen that even for extremely low ratio
T,*/T, —10 the magnitude of 6 exceeds its limiting
value 6 which corresponds to T,*=0 (SN bilayer). In
the practically most interesting region, T,"/T, -0. 1 —1,
the gap b,g depends considerably on the T,*/T, ratio and
at T, = T, equals the bulk gap in S: b,s

= b,o(0).

V. CRITICAL CURRENT OF SS'IS'S JUNCTION

To calculate the critical current of an SS'IS"Sjunc-
tion it is convenient to rewrite the expression (2b) for
eV=0 in the Matsubara representation

rr Tc B(T) 1

96 T ? (46)

0.50—
— yB=

0.40—
ym

I—

0.30—

~0.20—

D

0.10—

0.0 0.2 0.4 0.6 0.8 1.0

where the temperature T* is given by Eq. (30). The
dependence (T, —T) close to T, is typical for proximity
effect junctions independent of the T,*/T, ratio. On the
other hand, as follows from Eq. (29), the temperature
dependence in the interval T,* & T & T is I,R~
-(T,—T) . At T&T,' in this large y limit I, is
determined by the Ambegaokar-Baratoff (AB) expres-
sion with b,o(T) replacing b,o(T). Therefore, an enhance-
ment of I, below T=T* takes place.

For finite ys values, ys))maxt 1;y I we have from
Eqs. (43) and (34)

&o( T)

8T,
[I—y' 4(2 —I//2)g(3)/m ]

b,o(T)
(1—1.2y' )

8T2
(44)

@i(0)Gi(0)@2(0)G2(0), (43)
C ~)o

where the indices 1, 2 refer to the di6'erent electrodes.
Let us first limit ourselves to the case yz « 1 and to a

symmetrical junction. For small values of y~ (Eqs. (21)
and (43) lead to Eq. (31) of Ref. 23, with the limiting
values (the limiting values given in Ref. 23 are numerical-
ly not correct)

I—

I—

0.5—

0.4—

0.3—

0.2

0. 1

y== 1

yB
—— 0 ~ SIS

at T=T„and 0.0
0.0 0.8 1.00.2 0.60.4

I I t l I I I I l I I I I I I I I I ) I I I I I I I I I ( I I I I I I I I I ( I I I I 3 I I I

=0.44(1 —0. 84y' ), (45)

for T« T„using, I (1/4) =3.626. The BCS relation
b, (0)/T, = 1.76 was assumed in Eqs. (44) and (45).

In the opposite case of large y values and T & T* we
have from Eq. (28)

FICx. 8. Critical current I,(T) as a function of temperature
for a symmetrical SS'IS'S junction with T,*/T, =0.3 for (a) y
ranging from 0.1 to 100 and y& =0; and (b) y =1 and y& rang-
ing from 0 to 100. The AB (dashed) curves for an SIS and S'IS'
junction, as well as the crossover temperatures T* [Eq. (30), re-
spectively Eq. (33)] for y =100, respectively ys =100, are indi-
cated.
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[60(T) /4T, ]tanh[ho( T ) /2T ], 0 & T, & T',

eI,R~
2mT, a/(2yg ), T,* & T, « T,

m T, b.o/[48T (y~ ) ], T=T, .

(47a)

(47b)

(47c)

For arbitrary values of y and T,*/T, the dependen-
cies I, ( T) were calculated numerically using the solutions
for @ and G. The results are shown in Figs. 8(a) and 8(b)
for T,*/T, =0.3 and different y and y~ values. The
positive curvature of I,(T), typical for the proximity
effect junctions, ' is seen at temperatures near T, for
finite values of the parameter y . At sufficiently large
y Eq. (46) gives the behavior I,(T)—(T, —T)z. For
both cases of large y and large y~ the critical current
I, ( T) is given by the AB theory for an S'IS' junction.

The dependencies of I,(T=O) on the ratio T,'/T, are
shown separately in Fig. 4 for y = 1 and yz =0. Analo-
gous to the behavior of 5, h„and 5 considered above,
the reduced critical current eR&I, /2mT, satura. tes very
slowly at small T, /T, ratio to its limiting value
eR&I, /2~T, corresponding to T,'=0 (SN bilayer). At
T,*~T, the magnitude of y' goes to zero in accordance
with Eq. (17) and the current I,~I,

VI. CURRENT-VOLTAGE CHARACTERISTICS

Using the solutions of the proximity effect problem for
the SS' sandwich one can calculate the tunnel current ac-
cording to Eq. (2). Here we discuss the results for the
quasiparticle component of the current, ImJ ( V), as
given by Eq. (2d).

The current-voltage curves (CVC) for a symmetrical
SS'IS'S junction for T«T, and y =1, y~=O are
shown in Fig. 7 of Ref. 23 for diFerent T,*/T, ratios.
There the crossover is shown between the cases of a
SNINS junction with T,*=0and of an ideal SIS junction
with T,*=T,. The variation of the ratio T,'/T, leads to
qualitative changes in the CVC s. In particular, with the
increase of T, /T, a knee structure develops in the region
eV =26 . The origin of this structure is the sharp singu-
larity in the density of states N ( E ) at E & b,o as shown in

Fig. 5. Namely, the quasiparticles with energy in the in-
terval 5 &a&60 give a large contribution to the tunnel
current at voltage eV=26 leading to the knee on the
CVC. The shape and the height of the knee depends on
the T,*/T, ratio, i.e., on the y' value.

In Fig. 9 of Ref. 23 the calculated CVC's of symmetri-
cal Nb/Al, Al oxide/Al/Nb junctions at T=4.2 K are
presented for yz =0 and various values of y . Both the
gap voltage eV =2b. ( T) and the knee feature on the
CVC depend strongly on the value of the y parameter.
At very large y the gap value is reduced, the knee struc-
ture disappears and a crossover to a purely resistive CVC
takes place. At small y there exist a sharp knee struc-
ture. The height of the knee is maximal for y =0.2.
With further decrease of y the gap Ag goes to the bulk
gap of the S material, 60, and the knee structure gradual-

ly disappears. It is seen from comparison of the Figs. 7
and 9 of Ref. . 23 that variation of the T,*/T, ratio for a
fixed value of y leads to qualitatively similar
modifications of the CVC as with variation of y for
fixed T, /T, ratio. This is in accordance with the con-
cept of the "effective y

"proximity effect parameter.
The modifications of the CVC of an SNINS Josephson

junction ( T,*=0) due to a finite SX boundary resistance,
i.e., finite y~ values, were discussed theoretically in Ref.
22. As was mentioned above, in most practically used
SS'IS"SJosephson junctions the inhuence of the bound-
ary resistance of the SS' (and SS") interfaces on the CVC
is relatively small. Therefore we will not discuss here the
behavior of CVC of the SS'IS"Sjunction for finite y~.

Below we will compare the results of calculations with
the experimental data of Nb/Al tunnel junctions.

VII. EXPERIMENTAL RESULTS

A. Device fabrication

We applied the model developed in the foregoing sec-
tions to describe the electrical characteristics of a series
of Nbi/Al, /Al oxide/A12/Nb&/Nb& Josephson tunnel
junctions, that were fabricated with different thicknesses
di of the base-electrode Al layer (ranging from 5 to 40
nm) and a constant thickness d2 of the counterelectrode
Al layer (nominally 3 nm). The indices 1 and 2 refer to
the base- and counterelectrode, respectively. The rnulti-
layer was deposited in a single vacuum run using dc-
magnetron sputtering on a water-cooled thermally oxi-
dized Si substrate and structured by liftofF. Thermal oxi-
dation at room temperature of the A1& layer was used to
form the barrier with a current density of about 100
A/cm . The junctions were structured with the selective
niobium anodization process (SNAP) ' to have dimen-
sions of 20X20 up to 200X200 pm . The Nb base-
electrode thickness d, &

is 300 nrn. The Nb counterelec-
trode was made in two steps. The first Nb2 layer of 30
nm is part of the multilayer. After the anodization step a
thick layer (200—500 nm) was deposited and structured
by liftoff' to form the counterelectrode and the contact
leads.

B. Parameter estimates

For comparison of the model with the measurements
we discuss the conditions of applicability. For Nb sput-
tered at low temperatures the electron mean free path
(mfp) l, is largely determined by the grain size, which in
our devices is approximately 20 nm as was seen from
TEM analysis. The coherence length g, is then es-
timated as g,*=[1,g, (0)/3]' =16 nm, where g, (0)=38
nm is the clean limit value for Nb. Thus the Nb layers
obey the condition Eq. (1), d, ))g;, but instead of the dir-
ty limit condition I, «P we have l, =g;. For thick
sputter deposited Al films we find from resistivity mea-
surements mfp's of about 100—150 nrn. Using I = 100 nm
the coherence length of Al is estimated as g; =230 nm
[with g, ,(0)= 1.6 pm], thus g~ = 86 nm, with

T, (A1)=1.3 K and T, (Nb)=9. 3 K. Thus 1 =g and the
Al is not in the dirty limit and secondly d, is not small
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compared to g* for the largest d, values. However, from
our TEM analysis it was observed that the grain struc-
ture of the A1& layer reproduces that of the underlying
Nb. If the mfp in the Al, layer is also limited by the
grain size we even find a coherence length g" as small as
38 nm. In that case l & g*, but not d, «g* for the larg-
est d, values and the thin S'-layer approximation is
violated for even smaller d, . For estimating the proximi-
ty parameters we rewrite y [Eq. (6a)] as
y=(p, D,'~ /pD'~ ) =(D/D, )'~ [N(0)/X, (0)], using

p '=e DX(0) Th. e diffusion coefficient is D= —,'v~l,
with vF the effective Fermi velocity which can be ob-
tained from the clean limit values of the coherence
lengths, using the BCS relation g(0)=Pius/m. b, (0). The
normal-state electron densities of states at the Fermi en-

ergy are obtained from Ref. 35, y /d is estimated as ap-
proximately 0.021 nm ', independent of the mfp in the
Al.

The parameter ys& [Eq. (6b)] can be written as

y sz=(21/3g')IR' /[(p~, p/~, ) D*]]. In the free-
electron model the transmission coefficient D* (related to
the reflection coefficient R ' as D = 1 —R *) for the
transmission of a quantum-mechanical particle through
the interface of two metals with different Fermi-
velocities, is given by D*=l—R*=(4Ug, vg, )/
[(v~s+vg, ) +4Uo] ~ Uo is the height of a 5-potential
barrier at the interface U(x) = Uo5(x =0). If one takes
only the mismatch in Fermi velocities into account al-
ways large D* are obtained ( ~0.85) for realistic vg
values of meta1s. Therefore in practice some additional
barrier has to be taken into account to explain the lower
transmission coefficients measured. More realistic mod-
els for D* have been discussed by Wolf and Arnold. ' In
the literature a D' value of about 0.4 is reported for
Nb/Cu interfaces, indicating that the transmission
coefficient is not only due to the mismatch in Fermi ve-
locities. Although all layers, apart from the Nb2 layer,
are deposited without vacuum break, so that there is an
intimate contact between the Nb and AI layers, it is ex-
pected that there is a potential barrier present at the
Nb/Al interfaces, decreasing the value of D*. Using the
literature value of D for the Nb/Cu interface we find for
the Nb/Al interfaces y~/d =0.010 nm ' (independent
of l). As was seen from the numerical results the
inhuence of nonzero y~ values on the electrical charac-
teristics becomes only noticeable for yz values of the or-
der of 1 or larger. The estimated yz/d value is fairly
small and the effect of the finite yz value is therefore
probably only noticeable for the largest d

&
values.

Because of the two-step fabrication process of the
counterelectrode, we have to discuss its properties sepa-
rately. The A12 layer starts to grow on the amorphous Al
oxide and has a very fine polycrystalline structure with
grain size of about 5 nm as seen from TEM pictures.
Since the 30-nm Nb2 layer starts to grow on this Al layer
it must be expected that its conductive properties are de-
graded, especially near to the A12/Nb2 interface, due to
the short mfp in the initial growth phase. Secondly, the
Nb2 layer is exposed to processing chemicals and atmo-
sphere before the thick N12 layer is deposited, so that it is

C. Measurements and discussion

The different junctions were characterized with
current-voltage, critical-current, and sum-gap versus
temperature measurements.

The sum gap, Vg=(b.gi+b~2)/e, and diff'erence gap
voltage Vd=~b, , —b,sz~/e, were determined from the
current-voltage characteristics (CVC) at low tempera-
tures (1.1 —1.6 K), where the gap energies have no tem-
perature dependence. V was determined as the intersec-
tion of the tangent on the low-current part of the sharp
current rise of the CVC with the voltage axis, whereas Vd
was identified with the peak in the subgap current, even-
tually after subtraction of an ohmic leakage current.

In Fig. 9 the experimentally determined Ag& and 6~2
are given as function of the thickness d, . The experimen-

1.50
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1.10
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0.90

8E

0.70
0 10 20 30 40 50

d, (nm)

FIG. 9. Experimentally determined gap voltages of base ( )

and counter (6) electrodes of Nb/Al„A1 oxide, Al, /Nb junc-
tions as a function of the thickness d

&
of the All-layer and con-

stant A12-layer thickness. ( ) Theoretical fit of base-
electrode data with y~)/d) =0.032 nm ', y~l=0. ( ———)

the same, with y &/d& =0.032 nm ' and y»/d& =0.025 nm

oxidized at the Nb2/Nb2 interface. Despite the fact that
this interface is sputter-cleaned before deposition of the
Nb2 layer it was found from current-voltage measure-
ments that the conductivity of this interface is much less
than that of bulk Nb. This implies that the y& value of
the Nb&/Nbz interface is probably not very small. Fur-
thermore it was found from critical current and sum-gap
versus temperature measurements that the critical tem-
perature T,'"~ of some of the junctions is slightly reduced
compared to the bulk value of Nb (T, =9.3 K). We as-
cribe this to a relative poor quality of the Nb2 layer. This
may give rise to an additional proximity layer, creating a
S"S'S-sandwich counterelectrode with T,'*(A12)
& T,'(Nb&) & T, (Nb2). These considerations all indicate
that the gap reduction in the counterelectrode is larger
than one may expect from the thickness d2 of the coun-
terelectrode Al layer. It is also expected that the coun-
terelectrode gap value varies from sample to sample due
to different aging and preparation conditions before the
Nb2 layer is deposited.
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tal data b, i(d, } were fitted for small di (where the
infiuence of a finite y~ is smallest) with the theoretical
dependence bs(y (d ), y& =0) (full curve), assuming bo
to be equal to the bulk value for Nb, 1.55 meV. We find

y, /d, =0.032 nin ', which is close to the estimated
value. The gap reduction for small d& is well described
by this curve. It is seen that the 5, value for the junc-
tion with d

&
=40 nm is considerably smaller than predict-

ed by this curve. Ascribing the (extra) gap reduction due
to a finite y~ and fitting to the b, i(40 nm} data point
gives yii, =l (y~, /di=0. 025 nm ') using the y, /d,
value from the former fit. The dashed curve gives the
Al-thickness dependence of the gap for these y, /d, and

yz&/d& values. However, now the gap values for the
smaller d, values are slightly underestimated. The exper-
imental value for ys, /d, indicates that the Nb/Al inter-
face transparency is largely determined by an additional
potential barrier. For D' we obtain the value 0.21,
which is fairly much smaller than the value found for
Nb/Cu interfaces.

The calculated y, /d, value is considered to be a good
estimate of the experimentally determined value 0.032
nm ', taking into account the uncertainties in materials
parameters. However, the experimentally determined
y~i/di value is probably slightly overestimated and con-
sequently the transmission coefficient D* somewhat un-
derestimated, because for at least the largest Al, -layer
thicknesses the model assumptions, and especially the
thin-S' layer approximation, are not strictly fulfilled
anymore. For large d

&
the order parameter in the S' lay-

er decreases when approaching the S'I interface, giving
rise to an additional gap reduction, which therefore can-
not only be ascribed to an SS' interface potential barrier.

Figure 10 shows the CVC's of a set of junctions, mea-
sured at 1.4 K with current bias. The voltage axis is nor-
malized with Az"~=1.93k~ T,'" found for Nb from tun-
neling measurements on high-quality junctions with very
thin Al layers ' and in accordance with the used values

3.0—
/

2.0—

CL

1.0 ~

0.0 1.0
V /5 2.0 3.0e o

FICz. 10. Experimental current-voltage characteristics of
Nb/All Al oxide A12/Nb junctions at 1.4 K for d

&
=40 (0 ) 25

(E ), 15 (0), and 5 nm ( + ), respectively, for the curves from left
to right. ( ) Theoretical curves using the y values deter-
mined from Fig. 9 and yz&=y»=0. ( ———) The same for
junction with dl =40 nm with y» =1.

for Ao and T, for bulk Nb. The current axis is normal-
ized with A~" and R&' obtained by fitting the experimen-
tal data to the theoretical (solid) curve calculated with
the y values, determined from Fig. 9, taking
y&&=y&2=0, at eV/Ao" =2.75. The difFerences in cal-
culated and measured sum-gap voltages are fairly small
and are largely ascribed to calibration errors of the
measuring setups and errors in the estimates of the scal-
ing parameters. For small d

&
the slope of the CVC at the

sum-gap voltage and the height of the proximity knee is
fairly well described with the model. The gap width in-
creases with increasing d i more than predicted and the
proximity knee remains more pronounced. The height of
the proximity knee reaches a maximum (for d, = 15 nm),
a feature which is also seen in Fig. 9 of Ref. 23. Taking
into account the correction with nonzero yz& gives only
marginal changes in the CVC (given by the dashed curve
for the 40-nm junction with y~&=1; this curve largely
merges with the curve for y~, =0). There are several
possible explanations for the differences between theory
and experiment. The shape of the CVC and especially
the proximity knee is very sensitive to the exact energy
dependence of the quasiparticle density of states: (a) The
theoretical curves have been calculated under the as-
sumption that the electrode metals consist of weak-
coupling sup erconductors, whereas for Nb and Al
bo/kz T, values of about 1.93, respectively 2.1, instead of
the BCS value 1.76, have been reported, ' indicating
strong-coupling effects. Indeed it has been shown recent-
ly that an SIS junction made up of strong-coupling ma-
terials shows also a proximity knee, contrary to an SIS
junction with weak-coupling electrodes. More impor-
tant reasons are probably that the model assumptions,
i.e., (b) the dirty limit conditions for the electrode materi-
als and (c) the thin-S'-layer approximation, are not
rigorously fulfilled. Using the dirty limit conditions im-
plies that the densities of states, as calculated from the
Usadel equations (especially the densities of states at the
barrier, which are reAected in the tunneling measure-
ments), do not depend on the direction of the electron
trajectory. In the clean limit, however, only quasiparti-
cles with a trajectory within a narrow cone, directed per-
pendicular to the SS' interface, can cross this interface
and create the proximity effect, whereas the other quasi-
particles are described by 4 functions which resemble
those of the bulk (BCS) properties of the S, respectively
S', metal. Both the affected and unaffected N functions
go into the describing equations (in this case the Eilen-
berger equations ") so that it must be expected that the
resulting tunneling densities of states show more BCS-
like behavior than in the dirty limit. Another way of
describing this is that in the clean case the quasiparticles
not only tunnel from nearby the barrier interfaces but
also from deeper out of the electrodes, where the densi-
ties of states are more BCS-like. The proximity effect in
clean-limit proximity sandwiches is subject of further
study. Aspect (c) implies that for large S'-layer
thicknesses the density of states in the S' layer at the SS'
interface is strongly different from the BCS density of
states, but changes gradually to more BCS-like, for in-
creasing distance from the SS' interface.
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FIG. 11. Sum-gap voltage versus reduced temperature for
Nb/Al„A1 oxide, A12/Nb junctions for d, =5 ( e ), 15 (Q), 25
(4), and 40 nm (0). The inset gives the sum-gap voltage nor-
malized on the voltage at zero temperature.

Figures 11 and 12 show the measured temperature
dependence of the sum-gap voltage Vg(T) and the critical
current I,(T) of these junctions, normalized with T,'",
b,ii", and 8&', as well as the theoretical curves (solid
lines), calculated with the same y values as used for the
CVC's and yz =0.

For low temperatures we find a close correspondence
between measured and calculated Vs( T) data within mea-
surement and scaling errors. This means that the gap
reduction in our junctions can be attributed largely to the
proximity effect. For higher temperatures and larger Al
layer thicknesses the experimental data are above the cal-
culated curves. In fact all curves are BCS-like as is
demonstrated in the inset of Fig. 11 by scaling the curves
to Vs( T=0). This means that the tunneling densities of
states have energy gaps with BCS-like temperature
dependence. The fact that for nonzero yz the density of
states in the S' layer becomes more BCS-like, since the
layers become decoupled, can only explain a small frac-
tion of the difference between theory and experiment.
The BCS-like temperature dependence suggests again
that the devices do not fully obey the model assumptions,
i.e., the dirty limit condition and the thin-5 -layer ap-
proximation.

For the normalization of the calculated critical-current
curves one has to take into account explicitly the strong-
coupling correction. The measured critical current
values at low temperatures are fairly well described by
the calculated values, corrected for strong-coupling
effects, although they are for nearly all devices systemati-
cally slightly lower. This difference is ascribed to factors
that decrease the critical current as, e.g., noise, RF in-
terference, and not-complete suppression/cancellation of
magnetic fields. Again we find that at higher tempera-
tures and with increasing d& the critical currents are
larger than predicted. The dashed curve in the main

1 Bcs

15nm

25 fl Pl
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o 40nrn
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FIG. 12. Critical current versus reduced temperature for
Nb/Al~, Al oxide, Alz/Nb junctions for d, =5 ( ), 15 (0), 25
(K), and 40 nm ( ). The inset gives the critical current nor-
malized on the current at zero temperature.

figure calculated with yz&=1 for the 40-nm junction
shows that a nonzero yz gives only a marginal increase
of I, at these temperatures. Thus a nonzero y~ value
cannot explain the differences between theory and experi-
ment. The inset shows the I,(T) curves normalized to
the critical current measured at about 1.4 K, the lowest
temperature in these measurements, being about equal to
I, (0). For the junctions with the thinnest Al, layers
I, (T)/I, (0) is close to the Ambegaokar-Baratoff temper-
ature dependence of a symmetrical junction with weak-
coupling electrodes (indicated by BCS). For the 40-nm
junction the temperature dependence deviates more from
the AB dependence and is described better by the prox-
imity model, as given by the curve labeled "40 nm. " We
see these aspects again as indications that the model as-
sumptions are not fully fulfilled by these devices.

In the foregoing we have shown that it is possible to
describe the various experimentally determined electrical
characteristics of the Nb/Al proximity junctions con-
sistently in terms of the microscopic proximity developed
in this paper, using only the proximity parameters y /d
and y~/d as fitting parameters. The values of these pa-
rarneters used are close to the values estimated from rna-
terial parameters. This supports the validity of the mod-
el. CVC, I,(T), and Vs(T) measurements have been de-
scribed simultaneously and consistently over the whole
temperature range T=O —T, and for a fairly large range
of proximity layer thicknesses with a proximity effect
model, using in essence only two parameters.

The discrepancies between theory and experiment, as
discussed above extensively, show how sensitive the elec-
trical characteristics are to any differences in the densities
of states, as, for example, due to long electron mfp's (in-
stead of the dirty limit assumed in the discussed model)
or due to the violation of the thin-S -layer approximation
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(used in this model). For a detailed quantitative descrip-
tion for these cases new models are needed.

VIII. CONCLUSIONS

A microscopic model of the proximity effect in a SS'
sandwich of two superconducting metals S and S' (with
T, & T, ) in the dirty limit has been developed, which is
applicable for thin S' layers backed by a thick S layer and
for arbitrary transparency of the SS' interface. The prox-
imity effect is described with three parameters: y and

y~, which are measures of the strength of the proximity
effect and the interface transparency respectively, and the
critical temperature ratio T,*/T, .

In the limit of small y it is shown that the depen-
dence on T,*/T, can be incorporated in effective
proximity parameters y' =a(T,*/T, )y and y~
=o.(T,*/T, )yg.

A very remarkable difference between the proximity
effect in SS' sandwiches with that in SN sandwiches
(T,'=0) is that at all temperatures T ( (T, ), also for
T) T, , the order parameter in the S' layer is nonzero,
contrary to the SN case, where 6& is always zero. This
effect causes large quantitative differences in the density
of states in the S' layer, depending on the T,*/T, value,
and consequently in the energy gap in the density of
states that is measured in the S' layer.

For small y and nonzero y~ (i.e., not perfect SS' in-
terface transparency) the order parameter in S and S' is
practically constant, as is required for the McMillan tun-
neling approach of the proximity effect. It is shown ex-
plicitly that in this case the equations can be recast in the
form of the McMillan model.

For large values of y and/or y~ one sees qualitatively
the same behavior, namely proximity-induced supercon-
ductivity above a certain crossover temperature T'
(T, & T & T,*) and a nearly fully developed supercon-
ducting state for T (T* in the S' layer.

Using the solutions of the order parameter and densi-
ties of states in both proximity sandwich electrodes the
electrical characteristics of SS'IS"S Josephson tunnel
junctions have been calculated as a function of T and y
These characteristics show the typical features of experi-
mental curves as measured on, for example, Nb/Al junc-
tions. The most pronounced effects are the proximity
knee and decreasing sum-gap voltage and a current rise
at the sum gap which becomes more sloped with increas-
ing y

The microscopic model was applied to describe the
energy-gap reduction in a series of Nb/Al junctions with

6,"+a,cos6, —8 sin6, =0, (Al)

—sin6, .=0, (A2)

where the function 6, has been introduced by the rela-
tions @,=cotan6, and G, =cos6, . Here and in the fol-
lowing energies are normalized to ~T, (indicated by the
tilde above the symbol) and distances to g, .

The boundary conditions for 6, are obtained from Eqs.
(5) and (9):

different Al-layer thicknesses of the base electrode (5—40
nm). In this way we determined the values y /d =0.032
nrn ' and y~/d=0. 025 nrn '. The estimate from ma-
terial parameters of the first parameter (0.021 nm ') is
close to the experimentally determined value. The yz/d
value found is considered to determine an upper limit of
the SS' interface potential barrier, giving D~ =0.21 as a
lower estimate of the interface transparency. The
current-voltage characteristics and the temperature
dependence of the sum-gap voltage and the Josephson
current were measured for all the junctions. These data
could be described quantitatively fairly well with the
model, using the small strong-coupling correction
b,0/k~ T, =1.93 for Nb and the y values, as determined
from the gap reduction, without any other correction
and/or scaling factors. The discrepancies found (a more
pronounced proximity knee and more BCS-like tempera-
ture dependence of the sum-gap voltage and critical
current than predicted for the junctions with the thickest
Al layers) are largely attributed to the facts that (a) the
metals of the junction are not fully in the dirty limit and
(b) the proximity layers are not thin compared to the
coherence length of the largest S'-layer thicknesses, as re-
quired by the model.
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APPENDIX
In order to calculate h, (x ), b„@,(co,x ), and @(co) for

arbitrary values of y, y~, and T,'/T„ the set of Usadel
equations (3) was solved numerically by a self-consistent
procedure, taking into account the boundary conditions
(5) and (9) and the relation (11). The Usadel equations in
the S region [Eq. (3)] are rewritten as

6, ( ~ ) =arctan(b. a/co),

co sin6, (0)—E cos6, (0)

j 1+y~(co +K )+2y~[cocos6, (0)+b, sin6, (0)]j'~

The order parameter b. in S is determined by the self-consistency Eq. (4b) and relation (11):

(A3a)

(A3b)

T T
b, ln +2 g . ——sin6(0) -=0, (A4)
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sine, (0)+yII b,
tane =

cose, (0)+yII co

Equations (A4) and (A5) are combined to give

(A5)

Eln, +2 g —— 1+T T cose, (0)+y,a '
sine, (0)+yII 5

-=0 . (A6)

The sum over n in Eq. (A6) can be rewritten as

oo QO

X I ]=XI ]+X
CO (

—2+g 2]1/2 (A7)

because for co) Qd=(g*/d) we have N=b„ i.e., B=arctan(b/co). The symbol I
.

I in Eq. (A7) denotes the expres-
sion in angular brackets in Eq. (A6).

Finally 6 is determined by the following recurrency expression:

g (m+1)

Qd

1+
Tc p

cose,' '(0)+yIIco

sine™(0)+y b, '

2 —1/2
max g (m)

+ Y
[
—2+ ( g (m))2]1/2

d

(A8)
max

ln(T/T, )+(2T/T, ) g
CO

on the mth iteration step. Here 0 „is some cutoff fre-
quency, Q,„)Qd. According to BCS theory the largest
frequency that can occur is the Debye frequency QD,
thus 0,„=QD.

The order parameter in S, 6„is determined simultane-
ously from Eq. (A2):

e,"+g,(x)e, = —f,(x),
e,'(0)+x,e, (0)= —q, ,

where

(A12a)

(A12b)

Equations (Al) and (A3) should now be solved for the
function 6,(x). Expanding cose, and sine, we obtain
for (Al) and (A3), respectively, the equations

g(m+I)( )S

mSX
~g sine', '(x)

Tc p
(A9)

g, = —n cose„—a,sine„,
f,=6,"p+X,cose„—m sine„.

(A13a)

(A13b)

Solutions for e,
To solve Eqs. (Al) and (A3) for 6, we use the lineari-

zation procedure

e, =e„+e, , (A10)

where 8, is a small correction on e,p, i.e., for each itera-
tion we calculate

e(m +1) e(m)+ eS S S (Al 1)

Thus Eqs. (A8) and (A9) express b, ' +" and b,,' +"(x)
through 8' ', 8,' +", and 6' ' on the mth iteration
step. —yap[cosine, p

—b, cose,p] j,
1p =6,' —y p(co sine„—E cose p)

(A14a)

(A14b)

where

p = [1+yII(co +b. )+2yII(jocose, p+E sine, p)]

(A14c)

The scheme Eqs. (A12)—(A14) is solved by the stan-
dard method of "forward elimination, backward substitu-
tion"; see, for example, Ref. 40.

At the boundary x =0 the constants xp and yp are given
by

xp
= —y p t co cose,p+ E,sinB, p
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